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6  THEORETICAL PROOF FOR ACO BASED SCHEDULING 

ALGORITHM 

 

Real-time task scheduling aims to ensure that it meets the deadline for scheduled tasks in the soft 

real-time system. Vast re-searches are going on real-time task scheduling to get this desired 

target. In general, all the real-time systems that exist use pre-emption and multitasking. Real-

Time scheduling methods are widely separated into two methods: Static and Dynamic Methods. 

Static methods allocate all priorities at design time, and it remains steady for the lifespan of a 

task. Dynamic methods keep changing the priority at the scheduled time, based on the design 

parameters of any job. Rate Monotonic (RM) and Deadline Monotonic (DM) are examples of 

static priority scheduling algorithms [15][16]. There are examples of dynamic scheduling with 

dynamic priority, such as Earliest Deadline First (EDF) and Least Slack Time First (LST). These 

algorithms are most favourable where jobs are preemptable, consist of a single processor, which 

in turn is under-loaded [54]. However, the constraint of such an algorithm is its performance, 

which diminishes exponentially if the system becomes somewhat overloaded [18]. The 

scheduling is treated as online if the scheduling algorithm forges scheduling outcome and 

doesn’t know about the task to be released in the future. Certain features make ACO based 

algorithm an exclusive method: it is an effective, population-based metaheuristic that feeds an 

indirect form of memory of an earlier performance[55][56][57]. That is one reason why it has 

considered the same approach for Real-Time scheduling. 

 

The Ant Colony Optimization (ACO) algorithm is a mathematical model enlivened by the 

system searching conduct of ants. By taking a gander at the qualities of ACO, it is most suitable 
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for scheduling tasks in soft real-time systems [33][58][59]. In this thesis, the ACO-based 

scheduling method for the soft real-time operating system (RTOS) has been profound with 

mathematical and practical proof. In mathematical proof, three different propositions and two 

theorems have been given, which prove the correctness of the proposed algorithm. Practical 

experiments also support mathematical proofs.[21]. Based on mathematical proof, it has been 

again demonstrated the effectiveness of the ACO-based scheduling algorithm [44].    

 

6.1  ACO Based Scheduling  

 

The scheduling method must execute when a directly running task completes or any new task 

gets generated. The main steps of the method are shown in subsequent sections, and the 

consecutive algorithm has been described.  

 

1) Design a journey of distinct ants to yield a better execution sequence of the task. 

2) Evaluate the sequences of the task for the given processor. 

3) Modify pheromone value. 

4) Calculate the probability of all tasks and choosing the best task for execution. 

 

Once ants have finished their respective journeys, calculate the progress of all ant’s journeys are 

calculated. Study of this foundation is based on the relative number of successful tasks and 

missed tasks. After that, consider the two leading trips of ants and modify the pheromone cost 

consequently. 
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6.1.1 Creation of Tour 

 

One is required to find the probability of each task using equation no 5 in the initial phase. In 

addition to that, all schedulable tasks are considered as a node and using pheromone τ, and 

heuristic value η, the probability of all nodes are selected for execution, 

 

𝑃𝑖(𝑡) =  
(𝜏𝑖(𝑡))𝛼 × (𝜂𝑖(𝑡))𝛽

∑ (𝜏𝑖(𝑡))𝛼×(𝜂𝑖(𝑡))𝛽
𝑙∈𝑅1

                    (5) 

 

 

Where,  

𝑃𝑖(𝑡) is the probability of ith fork at time t; where i ∈ N1, and N1 is a set of the node (schedulable 

tasks) at time t. 

• 𝜏𝑖(𝑡) is the value of pheromone of ith node at time t. 

• 𝜂𝑖  is the value of heuristic of ith node at time t, which can be regulated as, 

 

𝜂𝑖   =  
𝐾

𝐷𝑖− 𝑡
                           (6) 

 

Here, t is the current time, K is constant (scale 5 - 10) and 𝐷𝑖 is the absolute deadline of 

ith fork.  

• α and β are the constants that decide the significance of τ and η. 

 

Ants form their journey based on the value 𝑃𝑖(𝑡) for each fork, as per the following,  

• Ant-1:  1st maximum p(t) → 2nd maximum p(t) → 3rd maximum p(t) →  
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• Ant-2:  2nd maximum p(t) → 1st maximum p(t) → 3rd maximum p(t) →  

• Ant-3: 3rd maximum p(t) → 1st maximum p(t) → 2nd maximum p(t) → 

 

Consider on-time t; there are four schedulable tasks shown in Figure 6.1. Each task will be 

served as a fork, and from another fork, an ant will start its tour. Let’s assume the preference of 

all the forks is in descending order, such as T1, T2, T3, T4; ants will pass over different forks as 

per the following paths. 

 

 

 

 

 

 

6.1.2 Update Pheromone Value  

 

Pheromone update on every node will be done via two different operations: 

 

1) Evaporation Value of Pheromone: Pheromone evaporation is needed to forget ants' lousy 

journey and support new paths. The value of τ is updated using, 

Figure 6.1 – Ant Journey 
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 𝜏𝑖 = (1 − 𝜌)𝜏𝑖                 (7) 

Here,  

• ρ is constant (suitable value is 0.2 to 0.4).  

• i ∈ N1; N1 is the set of all (schedulable and non-schedulable) tasks. 

 

2) Value of Pheromone Laying: Pheromone will be adjoined only for two ultimate journeys 

of ants. Select the most favorable journey and add pheromone to it, based on their order 

of travelling node. The pheromone (∆τ) added quantity will be different and vary from 

node to node, i.e., the possible nearby node will get the highest amount of pheromone, 

and the farthest node will get the smallest quantity. 

 

𝜏𝑖  =  𝜏𝑖 +  ∆𝜏𝑖           (8) 

where,  

• i ∈ N2, N2 is a set of nodes travel by the ants. 

• ∆𝜏 =  
𝑝ℎ

𝑠
           (9) 

Here,  

▪ 𝑝ℎ = 𝐶 ∗ 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑡𝑎𝑠𝑘𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑖𝑠𝑠𝑒𝑑 𝑡𝑎𝑠𝑘𝑠+1
    (10) 

▪ S is the sequence number of any fork that the ant hits during its leading journey. 

▪ C is a constant (near to 0.1). 

 

6.1.3 Selection of Task 
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After updating pheromone, find out the probability of each node using equation 5 and select the 

task for execution having the highest probability value. Thus, the complete flow of the 

scheduling algorithm has been given in figure 6.2.  

 

6.1.4 Algorithm Key Points 

 

1) All schedulable tasks are considered as a node, they store τ values, and it is pheromone. 

The pheromone τ is initialized with a value of 1 for each node. 

 

2) α and β values are decided for the weightage of τ and η. In the experiment, both constants 

have given equal weightage, which is 1. 

 

3) The number of ants which construct the tour is essential in design criteria. During the 

test, the system is having the same time, and the number of ants is decided based on the 

number of executable tasks. 
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Figure 6.2 – Flow of the ACO Based Scheduling Algorithm 

New Job 

Is Ready Queue 

Empty? 

Prepare a list of schedulable jobs and decide journey of 

the ants using Eq. 1. 

𝑃𝑖(𝑡) =  
(𝜏𝑖(𝑡))𝛼 × (𝜂𝑖(𝑡))𝛽

∑ (𝜏𝑖(𝑡))𝛼×(𝜂𝑖(𝑡))𝛽
𝑙∈𝑅1

  .... Eq. 5 

Analyze the Ant’s journey based on 

number of success and missed task. 

Update Pheromone 

• Evaporation : 𝜏𝑖 = (1 − 𝜌)𝜏𝑖  

• Laying of Best two Journey : 𝜏𝑖  =  𝜏𝑖 + ∆𝜏𝑖  

Decide Probability of different Jobs using Eq. 5 

Execute the job having maximum priority until a new 

job arrives OR currently executing job completes 

Wait 

Yes 

No 
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6.2 ACO Based Scheduling Algorithm 

 

ACO-based scheduling algorithm invokes when currently running task is completed, or new task 

arrives in the queue. This algorithm considers all task which is ready to run. It Calculate Pi(t) 

values for each task using the procedure Most_important_Task(), and the procedure uses 

equation 5 to calculate the probability. The algorithm analyzes the ant journey based on the 

number of successful tasks and missed tasks from the total task arrived. The algorithm updates 

the pheromone values using Pheromone_update(); it is required to forget the lousy journey. Once 

ants have finished their respective journeys, calculate the progress of all ant’s journeys. The 

study of this foundation is based on a relative number of successful tasks and missed tasks. After 

that, consider the two leading trips of ants and modify the pheromone cost consequently. After 

this algorithm, determine the Probability of each task using the Most_Important_Task() 

procedure and execute the task having the highest probability. This algorithm executes when the 

selection of task decision needs to take.  

 

ACO Based Scheduling Algorithm:   

Input: A set of Task, Pheromone (τ), Heuristic Value (ɳ), (α, β, ρ) are constants. 

Output: Executes the Most Important Task. 

for each New Task that Arrives or Currently running Task complete, do 

if Is Ready Queue is Empty then, 

     Wait; 

/* this step identifies the most suitable task for execution */ 
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Compute Most_important_Task() ; 

Analyze the Ant’s Journey using two tasks: 

Success Task = {Successfully Scheduled: Total Task Arrived}; 

Missed Task = {Unsuccessfully Scheduled: Total Task Arrived}; 

/* Update of Pheromone is needed to forget the wicked journey of ants */ 

Compute Pheromone_update() to satisfy the Most_Important_Task() 

Determine the Probability of each task using Most_Important_Task and execute the task 

having the highest probability. 

End for 

 

Procedure - Most_Important_Task (Pi(t)) 

Calculate Pi(t) for each task in task Set P at time t. 

/* Probability of each task will be calculated based on the following equation */ 

Calculate Pi(t) =  
(𝜏𝑖(𝑡))𝛼 × (𝜂𝑖(𝑡))𝛽

∑ (𝜏𝑖(𝑡))𝛼×(𝜂𝑖(𝑡))𝛽
𝑙∈𝑅1

 

 

Procedure - Pheromone_Update (τ) 

Calculate Evaporation (τi) = (1- ρ) τi to ignore the lousy path and support new paths. 

Calculate the Best of two paths to get the Best Path (𝝉𝒊)  =  𝜏𝑖 +  ∆𝜏𝑖 
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6.3 Mathematical Proof for Algorithm   

 

The probability of each node will be calculated based on Eq. 5. Then, it will decide which task 

should execute to get an optimal result in the proposed algorithm. The following mathematical 

propositions and theorems have been given with their proof. 

 

Proposition 1: After analyzing the journey, pheromone will be increased at the rate of ∆𝜏𝑖 (Eq. 

8), where ∆𝜏𝑖 > ∆𝜏𝑖+1, i∈𝑁2, 𝑁2 is a set of nodes travel by the ants. 

Proof - Possible amount of pheromone added to any node after analyzing the journey is ∆𝜏𝑖, 

Where ∆𝜏 =  
𝑝ℎ

𝑠
 (Eq. 9), s is the sequence number of nodes visited by ant during the tour, and 𝑝ℎ 

value will be identified based on Eq. 10. Clearly, at the first node, the maximum possible 

pheromone is 
𝑝ℎ

1
 , for the second node, it is 

𝑝ℎ

2
 and so on. It means the nearest node will get the 

highest pheromone, and far most will get the least.  

 

Proposition 2: Pheromone will be decreased at the rate of (1 − 𝜌)𝜏𝑖  (Eq. 7) ∀𝑖 ∈  𝑁1, where ρ is 

constant and 𝑁1 is the set of schedule and non-schedule tasks at that time. 

Proof - Pheromone evaporation is required to forget the lousy journey of ants and to encourage 

new paths. The possible amount of pheromone decreases to any node after analyzing the journey 

is(1 − 𝜌)𝜏𝑖 .  
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Theorem 1: Let P be the probability that the algorithm finds an optimal solution within the first 

analyzing journey, then for an arbitrary small 𝜖 > 0,  𝑃 ≥ 1 − 𝜖. By definition 𝑃𝑚𝑎𝑥 = 1. 

Proof - For the best two journeys, 𝑖 ∈  𝑁1 ∩  𝑁2, where i is the task which is part of both ant 

journey then pheromone lying will be done on i is ∆𝜏𝑖 as per proposition-1 and according to Eq. 

5, the probability 𝑃𝑖 will increase. 

If 𝑖 ∉  𝑁2 and 𝑖 ∈  𝑁1 then pheromone value 𝜏𝑖 will continuously decreasing and it will help us 

to forget a bad journey. Due to pheromone trail limits 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 one can guarantee that any 

feasible choice in Eq. 5, for any solution is made with a probability 𝑃𝑚𝑖𝑛 > 0 [58]. At trivial 

lower bound for 

𝑃𝑚𝑖𝑛  ≥  
𝜏𝑚𝑖𝑛

𝛼

(𝑁1− 1)𝜏𝑚𝑎𝑥
𝛼 + 𝜏𝑚𝑖𝑛

𝛼              (11) 

 

Proposition 3: Once an optimal solution has been found for any task such that ∉  𝑁1 , it holds 

that 𝜏𝑖  = 0.  

Proof - After the execution of the task, the task will not belong to the optimal solution and do not 

receive pheromone anymore.  

 

Theorem 2: The probabilistic decision taken by ant will be biased when incorporating heuristic 

information into an ACO-based solution. 

Proof - Prior available information on the schedulable task can be used to derive heuristic 

information that biases the probabilistic decision taken by the ant (Eq.6). When assimilating such 

heuristic information into ACO solution, the favorable choice is 𝐹𝑖(𝜏𝑖) =  (𝜏𝑖)
𝛼  ×  (𝜂𝑖)𝛽 . Based 
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on Eq. 5 and Eq. 6 𝜂𝑖 measures the heuristic desirability of choosing a solution as a task i. Infect, 

Theorem-1 are not going to be affected by the heuristic information, η is limited to some (instant 

specific) interval [𝜂min   ,𝜂𝑚𝑎𝑥] with  𝜂𝑚𝑖𝑛 > 0 and 𝜂𝑚𝑎𝑥 < +∞ . Then the heuristic information 

only affected changing the lower bound of the probability 𝑃𝑚𝑖𝑛 of making a specific decision 

[58]. 

 

6.4 Conclusion  

 

The empirical study perceives that, projected algorithm gives an ideal performance for a unified 

processor and the pre-emptive conditions when the system is not heavily loaded. In addition to 

that, the mathematical proof shows the effectiveness of ACO-based scheduling algorithm in Soft 

Real-Time systems. So, for real-time scheduling, it is possible to use swarm techniques for batter 

performance in underload as well as in overload scenarios. In the future, more Swarm 

Intelligence methods like PSO, GA, etc. can be explored to implement Soft Real-Time 

scheduling algorithms. 

  


