List of Figures

 of different reaction mechanisms in nuclear reaction multiple pre-equilibrium spectra, including confrom multiple pre-equilibrium processes 1.3 Neutron emission spectra at various angles for 208 <i>Pb</i>, compared with data	ontributions1 $256 \text{ MeV } p$ +1 $256 \text{ MeV } p$ +1Solid lines1son after the1without any1ource3 Rh reaction	4 0 1 2
 from multiple pre-equilibrium processes 1.3 Neutron emission spectra at various angles for 208 <i>Pb</i>, compared with data	1 $256 \text{ MeV } p + 1$ $256 \text{ MeV } p + 1$ 30 Ines $3 \text{ on after the without any}$ $3 \text{ ource} \dots 3$ $Rh \text{ reaction}$	1 2
 1.3 Neutron emission spectra at various angles for 2²⁰⁸<i>Pb</i>, compared with data	$256 \text{ MeV } p + 1$ Solid lines from after the without any $\dots \dots $	1 2
 ²⁰⁸<i>Pb</i>, compared with data	Solid lines on after the without any 	2
 1.4 Experimental and calculated spectra on ⁹³Nb. are the results of the HMS Monte Carlo simulat reduction by a factor of 0.6. The HMS results such reduction are shown as dashed lines 2.1 Measured gamma spectra of ¹⁵²Eu calibration sector function ¹⁰⁰Pd residue in the ¹⁴N+¹⁰³ with different level-density options 2.3 Excitation functions of <i>Ag</i> residues formed in the of ¹⁴N with ¹⁰³Rh as indicated. The solid syme experimental results of this paper. The calculate functions are shown as the red solid curves (OB let the blue dashed curves (FG level density), ard ashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014 2.4 Excitation function of ¹⁰⁴Cd residues formed in the function function of the function of the function of the function function of the function function	Solid lines fon after the without any 1 purce 3 <i>Rh</i> reaction	2
 are the results of the HMS Monte Carlo simulat reduction by a factor of 0.6. The HMS results such reduction are shown as dashed lines 2.1 Measured gamma spectra of ¹⁵²<i>Eu</i> calibration see 2.2 Excitation function ¹⁰⁰<i>Pd</i> residue in the ¹⁴<i>N</i>+¹⁰⁰ with different level-density options 2.3 Excitation functions of <i>Ag</i> residues formed in the of ¹⁴<i>N</i> with ¹⁰³<i>Rh</i> as indicated. The solid syme experimental results of this paper. The calculate functions are shown as the red solid curves (OB let the blue dashed curves (FG level density), ard ashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014 2.4 Excitation function of ¹⁰⁴<i>Cd</i> residues formed in the solid syme experimental results of the solid syme experimental curves (KR level density) as obtain nuclear reaction code ALICE2014	ion after the vithout any	
 reduction by a factor of 0.6. The HMS results a such reduction are shown as dashed lines 2.1 Measured gamma spectra of ¹⁵²<i>Eu</i> calibration see 2.2 Excitation function ¹⁰⁰<i>Pd</i> residue in the ¹⁴<i>N</i>+¹⁰³ with different level-density options 2.3 Excitation functions of <i>Ag</i> residues formed in the of ¹⁴<i>N</i> with ¹⁰³<i>Rh</i> as indicated. The solid syme experimental results of this paper. The calculate functions are shown as the red solid curves (OB let the blue dashed curves (FG level density), ard ashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014 2.4 Excitation function of ¹⁰⁴<i>Cd</i> residues formed in the solid syme experimental results of the solid syme experimental curves (KR level density) as obtain nuclear reaction code ALICE2014	without any	
 such reduction are shown as dashed lines 2.1 Measured gamma spectra of ¹⁵²Eu calibration see 2.2 Excitation function ¹⁰⁰Pd residue in the ¹⁴N+¹⁰³ with different level-density options 2.3 Excitation functions of Ag residues formed in the of ¹⁴N with ¹⁰³Rh as indicated. The solid syme experimental results of this paper. The calculate functions are shown as the red solid curves (OB let the blue dashed curves (FG level density), ard dashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014 2.4 Excitation function of ¹⁰⁴Cd residues formed in the solid syme experimental results of the solid syme experimental curves (NR level density) as obtain nuclear reaction code ALICE2014	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
 2.1 Measured gamma spectra of ¹⁵²Eu calibration so 2.2 Excitation function ¹⁰⁰Pd residue in the ¹⁴N+¹⁰³ with different level-density options 2.3 Excitation functions of Ag residues formed in the of ¹⁴N with ¹⁰³Rh as indicated. The solid syme experimental results of this paper. The calculate functions are shown as the red solid curves (OB let the blue dashed curves (FG level density), are dashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014 2.4 Excitation function of ¹⁰⁴Cd residues formed in the solid curves (KR level density) as obtain nuclear reaction code ALICE2014	purce \dots 3 <i>Rh</i> reaction	
 2.2 Excitation function ¹⁰⁰<i>Pd</i> residue in the ¹⁴<i>N</i>+¹⁰³ with different level-density options 2.3 Excitation functions of <i>Ag</i> residues formed in the of ¹⁴<i>N</i> with ¹⁰³<i>Rh</i> as indicated. The solid syme experimental results of this paper. The calculate functions are shown as the red solid curves (OB let the blue dashed curves (FG level density), ard ashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014 2.4 Excitation function of ¹⁰⁴<i>Cd</i> residues formed in the solid curves (FG level density) as obtain nuclear reaction code ALICE2014	<i>Rh</i> reaction	1
 with different level-density options 2.3 Excitation functions of <i>Ag</i> residues formed in the of ¹⁴N with ¹⁰³Rh as indicated. The solid syme experimental results of this paper. The calculate functions are shown as the red solid curves (OB let the blue dashed curves (FG level density), are dashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014 2.4 Excitation function of ¹⁰⁴Cd residues formed in the solid curves formed in the solid curves in the solid curves (KR level density) as obtain nuclear reaction code ALICE2014 		
 2.3 Excitation functions of Ag residues formed in the of ¹⁴N with ¹⁰³Rh as indicated. The solid syme experimental results of this paper. The calculate functions are shown as the red solid curves (OB let the blue dashed curves (FG level density), are dashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014 2.4 Excitation function of ¹⁰⁴Cd residues formed in the solid curves (KR level density) as obtain nuclear reaction code ALICE2014	4	
 of ¹⁴N with ¹⁰³Rh as indicated. The solid symexperimental results of this paper. The calculate functions are shown as the red solid curves (OB let the blue dashed curves (FG level density), are dashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014. 2.4 Excitation function of ¹⁰⁴Cd residues formed in the solid curves in the solid curves in the solid curves formed in the solid curves in the solid curves formed in the solid curves is a solid curve. 		4
 experimental results of this paper. The calculate functions are shown as the red solid curves (OB let the blue dashed curves (FG level density), ar dashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014. 2.4 Excitation function of ¹⁰⁴Cd residues formed in 	e interaction	
 functions are shown as the red solid curves (OB letthe blue dashed curves (FG level density), ard dashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014. 2.4 Excitation function of ¹⁰⁴Cd residues formed in the statement of the stat	ools are the	
 the blue dashed curves (FG level density), ar dashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014. 2.4 Excitation function of ¹⁰⁴Cd residues formed in 	d excitation	
 dashed-dotted curves (KR level density) as obtain nuclear reaction code ALICE2014	vel density),	
nuclear reaction code ALICE2014 2.4 Excitation function of ^{104}Cd residues formed in	d the black	
2.4 Excitation function of ^{104}Cd residues formed in	ned with the	
	4	7
	the interac-	
tion of ${}^{14}N$ with ${}^{103}Rh$. Also see the caption fo	r Fig. <mark>2.3</mark> for	
more details	4	8
2.5 Excitation function of <i>Pd</i> residues formed in the in		
^{14}N with ^{103}Rh as indicated. Also see the captio	n for Fig. <mark>2.3</mark>	
for more details	4	9
2.6 Excitation function of <i>Rh</i> residues formed in the i		
^{14}N with ^{103}Rh as indicated. Also see the captio	n for Fig. <mark>2.3</mark>	
for more details	5	0
2.7 Excitation function of Ru residues formed in the		
of ${}^{14}N$ with ${}^{103}Rh$ as indicated. Also see the caption	e interaction	
for more details	e interaction	1

2.8	Excitation function of <i>Tc</i> residues formed in the interaction of ${}^{14}N$ with ${}^{103}Rh$ as indicated. Also see the caption for Fig.2.3	
	for more details.	52
2.9	Intercomparison of excitation functions of ${}^{94}Tc$ for ${}^{12}C$, ${}^{14}N$, and ${}^{16}O+{}^{103}Rh$ systems. Theoretical calculations with the HMS model are shown by the solid red curves (OB), the dashed blue curves (FG), and the black dashed-dotted curves (ICD)	50
2.10	(KR)	53 54
2.11	Intercomparison of excitation functions of ${}^{100}Pd$ for ${}^{12}C$, ${}^{14}N$, and ${}^{16}O+{}^{103}Rh$ systems. Theoretical calculations with the HMS model are shown by the solid red curves (OB), the dashed blue curves (FG), and the black dashed-dotted curves (KR).	55
2.12	Level density of the ${}^{103}Rh$ isotope as a function of excitation energy for $l = 0$ for different options as indicated	56
3.1	Comparison of the experimentally obtained neutron effi- ciency(solid circles) with the same obtained using Monte Carlo simulation code NEFF(solid line)	64
3.2	Typical plot of pulse shape discrimination (PSD) signal ver- sus time-of-flight (TOF) signal.	65
3.3	Neutron emission differential cross sections for 130 MeV ^{19}F on ^{181}Ta target. The solid symbols are the experimental results of this work. The calculated cross sections are shown as a solid red curve (OB level density) and dash-dotted green curve (KRK level density) as obtained with the nuclear reaction code ALICE2014 and dashed blue curve as obtained from PACE4. The estimated errors are smaller than the ex-	
3.4	perimental scatter point size	68 69
3.5	Neutron emission differential cross sections for 145 MeV ^{19}F	
3.6	on ¹⁸¹ <i>Ta</i> target. The other details are the same as in Fig. 3.3 Neutron emission differential cross sections for 150 MeV ¹⁹ <i>F</i>	70
3.7	on ${}^{181}Ta$ target. The other details are the same as in Fig. 3.3 Neutron emission differential cross sections for 130 MeV ${}^{19}F$	71
	on ⁸⁹ Y target. The other details are the same as in Fig. 3.3	72

3.8	Neutron emission differential cross sections for 140 MeV ^{19}F on ^{89}Y target. The other details are the same as in Fig. 3.3	73
3.9	Neutron emission differential cross sections for 145 MeV ${}^{19}F$ on ${}^{89}Y$ target. The other details are the same as in Fig. 3.3	74
3.10	Neutron emission differential cross sections for 150 MeV ^{19}F on ^{89}Y target. The other details are the same as in Fig. 3.3	75
3.11	Neutron emission differential cross sections for 130 MeV ^{19}F on ^{51}V target. The other details are the same as in Fig. 3.3.	76
3.12	Neutron emission differential cross sections for 140 MeV ^{19}F on ^{51}V target. The other details are the same as in Fig. 3.3.	77
3.13	Neutron emission differential cross sections for 145 MeV ^{19}F on ^{51}V target. The other details are the same as in Fig. 3.3.	78
3.14	Neutron emission differential cross sections for 150 MeV ^{19}F on ^{51}V target. The other details are the same as in Fig. 3.3.	79
3.15	Neutron angular distribution at various emission energies for ${}^{19}F$ (150 MeV) + ${}^{181}Ta$. PACE4 (dotted blue curve), AL- ICE2014 (KRK) (dashed green curve), ALICE2014 (OB) (solid red curve), and present experimental results (solid black	
0.1.6	points with error bars).	80
3.16	Neutron angular distribution at various emission energies for ${}^{19}F$ (150 MeV) + ${}^{89}Y$. The other details are the same as in Fig. 3.15.	81
3.17	Neutron angular distribution at various emission energies for ${}^{19}F$ (150 MeV) + ${}^{51}V$. The other details are the same as in Fig. 3.15.	82
3.18	The energy integrated angular distribution for emitted neu- trons for various targets at 150 MeV beam energy. The other details are the same as in Fig. 3.15.	83
		00
4.1	Experimental double differential α -particle spectra for the interaction of ¹⁴ N with ⁵⁹ Co at incident energy of 250 MeV.	96
4.2	Experimental double differential α -particle spectra for the interaction of ${}^{14}N$ with ${}^{93}Nb$ at incident energy of 250 MeV	96
4.3	Comparison between experimental and theoretical double differential α -particle energy spectra for the interaction of ¹⁴ N with ⁵⁹ Co at an incident energy of 250 MeV at various angles. Solid spheres (black) are experimental data points which include error bars and the results of modified PACE4 are shown as colid curve (red).	00
	are shown as solid curve (red).	98

4.4	Comparison between present experimental double differen-	
	tial α -particle energy spectra for the interaction of ^{14}N with	
	⁵⁹ Co at 250 MeV (solid symbols) and modified PACE4 (solid	
	lines)	99
4.5	Comparison between experimental and theoretical double	
	differential α -particle energy spectra for the interaction of	
	^{14}N with ^{93}Nb at an incident energy of 250 MeV at various	
	angles. Solid spheres (black) are experimental data points	
	which include error bars and the results of modified PACE4	
	are shown as solid curve (red).	100
4.6	Comparison between present experimental double differen-	
	tial α -particle energy spectra for the interaction of ¹⁴ N with	
	⁹³ Nb at at 250 MeV (solid symbols) and modified PACE4	
	(solid lines).	101
4.7	Experimental angular distribution of α -particles emitted in	
	the interaction of ${}^{14}N$ with ${}^{59}Co$ at 250 MeV	102

List of Tables

2.1	Energy degradation at each foil for incident beam energy of	
	250 MeV	26
2.2	Energy degradation at each foil for incident beam energy of	
	400 MeV	28
2.3	^{152}Eu gamma ray energies, their abundances and uncertainties	31
2.4	Identified isotopes, half-lives and spin, energies and abun-	
	dancies of the characteristic gamma lines	33
2.5	Measured cross sections of ${}^{103}Ag$, ${}^{104}Ag$, ${}^{105}Ag$, ${}^{104}Cd$, ${}^{99}Pd$	
	residues formed in the interaction of ${}^{14}N$ with ${}^{103}Rh$ upto 400	
	MeV	40
2.6	Measured cross sections of ¹⁰⁰ Pd, ¹⁰¹ Pd, ⁹⁷ Rh, ⁹⁹ Rh, ¹⁰¹ Rh	
	residues formed in the interaction of ${}^{14}N$ with ${}^{103}Rh$ upto 400	
	MeV	41
2.7	Measured cross sections of ⁹⁵ <i>Ru</i> , ⁹⁷ <i>Ru</i> , ⁹⁴ <i>Tc</i> , ⁹⁵ <i>Tc</i> , ⁹⁶ <i>Tc</i> residues	
	formed in the interaction of ${}^{14}N$ with ${}^{103}Rh$ upto 400 MeV $$.	42