
1

5. EXPERIMENTS AND RESULT ANALYSIS

This chapter discusses the experimentation and the result analysis in two sub-sections. The first

sub-section starts with the data analysis and visualization details of the proposed air quality

monitoring system using IoT. Next, the sub-section discusses the details of the performance of

the power consumption optimization scheme and the event-based transmission scheme. In the

end, it discusses the quality of service and system performance under periodic transmission.

The second sub-section starts with discussing the performance of the air quality parameter

prediction using the proposed approach. Next, the performance under the employed

regularization techniques and attention mechanism with various hyperparameter settings are

discussed in the same sub-section.

5.1 RESULTS AND DISCUSSION OF PROPOSED AIR

QUALITY MONITORING SYSTEM

Figure 5.1(a) represents the prototype design of the sensing smart node of the proposed

system. Figures 5.1(b) and 5.1(c) depict the deployment of the sensing node at indoor(home)

and outdoor(rooftop), respectively.

(a)

2

 (b) (c)

Figure. 5.1. (a) prototype (b) deployment at home(indoor) (c) deployment rooftop(outdoor)

5.1.1 Data Analysis and Visualization

We have conducted the deployment and testing of the proposed air quality monitoring

system at two sites (indoor and outdoor). The experiments for the indoor site were conducted

within the home environment which we will refer to as site 2, and outdoor experiments were

conducted at the rooftop of the building, to which we will refer as site 1.

 We utilized the HiveMQ broker during the experiments, and the MQTT publisher was

set to work at QoS 0 and QoS 1 levels. The publisher transmits the observed data to the broker

from the two sites. Figure 5.2 represents the sample real-time graph generated using python

script for a visual appearance from the data collected and logged at the MQTT subscriber at

the server-side. These real-time graphs of data collected at the server are implemented using

the “matplotlib” library using python script. The obtained data of CO, PM2.5, and PM10 from

the remote side at a particular instance is shown in the figure. The observation data received at

the periodic interval at the server are displayed in the graph by updating the graph's data at

every one-hour sliding window in the matplotlib library. Parallel to the rendering of the real-

time graph of retrieved parameters of air pollutants available at broker from the deployment

sites, MQTT subscribers also log the data in the MYSQL database, which can be used for

further analysis.

3

 (a) (b)

 (c) (d)

4

 (e) (f)

Figure 5.2. Some snaps of GUI cum graphs generated from the data at server for monitoring

the parameters of home rooftop (site 1: outdoor) and home (site 2: indoor) per one-hour

sliding window (a) CO (at rooftop) (b) PM 2.5 (at rooftop) (c) PM 10 (at rooftop) (d) CO (at

home) (e) PM 2.5 (at home) (f) PM (at home)

Figure 5.3(a) represents the distribution of the pollutants recorded at the server and

compares the daytime distribution for indoor and outdoor sites. The readings displayed are

analysed for 6 hours’ duration at the specific instance for the two sites. It can be seen that the

PM2.5 parameter values vary from the minimum value of 23 to the maximum value of 51 μg

/m3. The median of the PM2.5 observed is 35 at site1. The PM10 is observed to be in the range

98 to 126 μg /m3and the median is 110 at site 1. At site 1, the maximum value of carbon

monoxide observed r) is 3.15 ppm. The temperature varies from the minimum value of 32.5◦C

to the maximum value of 34.8◦C during the 6 hours’ interval at site 1. The relative humidity is

found to be fluctuating in the range of 24.1 % to 31.1 %.

For the observed air pollutants at site 2, carbon monoxide, Particulate matter10, and

Particulate matter2.5, the median values are recorded as 0.38 ppm, 80 μg/m3, and 24μg /m3,

respectively. The highest value of PM10 is recorded 102 μg/m3 for site 2 during this time

interval, which is 23% lower than the maximum value of PM10 observed at site1. The

minimum value recorded for PM10 is 69 μg /m3. Figure 5.3 (b) and Figure 5.3 (c) represent the

recorded data of pollutants Particulate matter 10, 2.5, and carbon monoxide during daytime for

outdoor deployment and indoor deployment. The figure represents the differences in the air

pollutant levels at both sites. From the figure, it can be observed that the second site (indoor

5

environment) is less polluted compared to the first site (outdoor site). Moreover, the collected

pollutant at site 1 also represents a higher concentration of particulate matter and carbon

monoxide recorded during the mid-day. The figure depicts that at site 1, the recorded value of

air pollutants particulate matter 10 and 2.5 have been varying around 110 and 35 median values,

respectively.

(a)

 (b)

6

 (c)

Figure. 5.3. (a) distribution comparison of observed Parameters (b) observation of PM2.5,

PM10, and CO at the rooftop during day time (site 1: outdoor) (c) observation of PM2.5, PM10,

and CO at home during day time (site 2: indoor)

Figures 5.4 (a) and 5.4 (b) show the aggregated air pollutant values of particulate matter

10 and 2.5 for three days. The measured periodical air pollutant values were aggregated every

three hours. The figure depicts that the outdoor site has observed the higher air pollution index

specifically during the time slot of 12-15 hours each of the three days.

 (a) (b)

Figure. 5.4. (a) scatter plot of PM 2.5 at the rooftop (site 1: outdoor) over 3 days (b) scatter plot

of PM 10 at the rooftop (site 1: outdoor)

7

Figure 5.5 represents the screenshots of the python shell at the server showing the

received stream of air pollutants from the deployment sites. Figure 5.6 shows some of the

snapshots of the mobile application developed for air pollutant parameters monitoring as one

of the handy tools.

Figure. 5.5. Screenshots of the python shell at sever

8

Figure. 5.6. Screenshots of the mobile application

9

5.1.2 Power Consumption Optimization Scheme and Performance

Figure. 5.7. The detailed circuit design of sensor interfacing

 The power consumption of the sensing node is a big issue when the deployment is done

at remote places. We address the issue and attempt genuine effort to reduce the power

consumption of the sensing node by switching the smart node to five different modes. Power

consumption of the smart node has been reduced by switching the smart node to sleep mode at

suitable intervals, thus the soft solution instead of hardware optimization. The controller in

sleep mode draws very little power comparing to regular consumption during the active mode.

The ESP8266 12E controller supports deep-sleep, light-sleep, and modem-sleep, three types of

sleep modes [126]. The controller draws a 0.9 mA current during light sleep mode and 120 mA

in an active mode. The controller has been kept to a light sleep mode when the node is not

fetching(reading) the air quality parameters data to reduce the power consumption. The RF

10

transceiver remains in an idle state while it is reading data from sensors. The transceiver is

switched on only when the transmission of the data starts to reduce the power consumption.

Figure 5.7 shows the interfacing of the sensors with the sensor board. As shown in the

figure, PM sensor SDS021 and CO sensor ZE07C0 are connected to [vin] directly instead of

the power out pin of the controller. The [Vin] here is the direct output from the power backup

supply, which supplies the controller's power. So, even if the controller is kept in a light sleep

mode, the [vin] will not idle and can supply the necessary power to the two sensors. The

sensors can also be put to a power-down state while readings are not taken. It is also possible

and beneficial to power down SDS021 by switching the module to a sleep mode. It is necessary

to maintain the ZE07CO sensor in the active mode all the time because the sensor needs a

warm-up time of 3-minute before getting stable whenever it is switched on and off [127]. So it

is not suitable to switch the sensor ZE07CO sensor off during the communication period.

Table 5.1. Sensing cycle phases for various components of sensing unit during

 parameter reading

Phases controller DHT22 SDS021 ZE07CO Wi-Fi

P1 light sleep Power down sleep active OFF

P2 active active sleep Active OFF

P3 active active active Active OFF

P4 active active sleep Active OFF

P5 active active sleep Active ON

 The operation of the sensing node can be separated into five different phases as shown

in Table 5.1. Initially, the system remains in the P1 phase.

During this phase, the controller stays in a light sleep mode for 60 seconds. During this phase,

the PM sensor module stays in hibernation mode, and DHT22 remains in sleep mode. The

controller will switch to an active mode from a light sleep mode when the timer expires, and

the P2 phase starts. On entering the p2 phase, DHT22 takes 10 seconds considering the

stabilization period of 8 seconds (delay) and records the temperature and humidity parameter.

During the p3 phase, the ESP8266 12E will activate the SDS021. It will read the particulate

matter data for around 10 seconds and switch into sleep mode again. After reading the Carbon

monoxide data, the proposed system will enter into the P5 phase. Eventually, a publisher turns

11

on the transceiver and transmits the gathered data using MQTT messages. The average power

usage of the node can be calculated as:

𝑃 = [
𝐼𝑙𝑠𝑚∗𝑇𝑠𝑙𝑒𝑒𝑝+𝐼𝑎𝑐𝑡𝑖𝑣𝑒∗𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑇𝑠𝑖
+ 𝐼𝐶𝑂] ∗ 𝑉𝑖𝑛 (5.1)

 where Ilsm is the current usage by sensing node in the light sleep mode, Tsleep is period

spent in sleep mode by the node, Iactive is usual current is drawn when the node is in active

mode, Tactive is the total active time comprised of data collection and stabilization time of the

sensors, Tsi is the total time per sampling duration which comprises of node operation (active

period) and sleep period, Ico is the current usage of carbon monoxide sensor which is never at

rest. Vin is the input voltage power supply. The smart node remains in a sleep mode for 60

seconds duration out of around 90 seconds sampling interval. The ESP8266 12E draws 0.9 mA

current during the light sleep mode and 120 mA in an active mode as per the manufacturers'

datasheet. The average power consumption of a smart node for 90 seconds is 316 mW plus the

consumption of CO sensor (CO sensor is never at rest) by applying a power optimization

scheme around 900 mW plus the consumption of CO sensor without power optimization. The

battery's lasting time is extended, as mentioned in the table below during the experiments.

 Without the Power

Reduction scheme

Under Power

Reduction Scheme

Battery Life Time

(with 2500 mAh)

7 hrs 15 minutes 12 hrs 50 minutes

5.1.3 Event-based Transmission for Power Consumption Optimization and

Performance

The average power consumption of the sensing node depends on two criteria, the

number of readings taken periodically (sampling frequency) and the number of transmissions

that occur of the sensed parameters. It can be seen from Table 5.1 that the transceiver is

activated only when the transmission takes place. The power consumption of the system can

be reduced further if the number of transmissions can be decreased, in addition to the power

optimization method represented above.

|𝑋𝑡
̅̅ ̅ − 𝑋𝑡−1

̅̅ ̅̅ ̅̅ | > 𝛿 𝑋𝑡−1
̅̅ ̅̅ ̅̅ (5.2)

12

Where,𝑋𝑡
̅̅ ̅ =

∑ 𝑋𝑘
𝑘=𝑡
𝑘=𝑡−(𝑁−1)

𝑁
and𝑋𝑡−1

̅̅ ̅̅ ̅̅ =
∑ 𝑋𝑘

𝑘=𝑡−1
𝑘=𝑡−(𝑁−1)

𝑁−1

The proposed air quality monitoring system was also investigated and implemented

with the event-based transmission with the goal of overall transmission reduction and

eventually the power consumption reduction. The proposed event-based transmission uses

equation 5.2 for the decision of transmission. On fulfilling the condition of the equation, the

transmission happens otherwise not. The 𝑋𝑡
̅̅ ̅ is the average of the last N measurement, including

the latest measurement at time t and 𝑋𝑡−1
̅̅ ̅̅ ̅̅ is the average of previous N-1 measurement till time

step t-1 (excluding the recent measurement). If the change in the average due to the contribution

of the current or recent value is greater than δ percent, then the update or change is said to be

significant for reporting, and thus the transmission happens. If any recent value of the carbon

monoxide, PM 2.5, or PM 10 makes the condition true of the equation, then the MQTT message

generated by the publisher is sent; otherwise, the message transmission will be skipped.

Algorithm 4. MQTT publisher with event-based transmission

Step 1: The smart node gets registered with the MQTT broker using a unique

ClientID.

Step 2 :

The ESP8266 12E (publisher) turns on the Particulate matter sensor,

fetches the observations from three sensors, and again turns the SDS021

sensor into the hibernation mode. Store and swap the values of parameters

for keeping the previous two values that can be used in the calculation of

equation 5.2 in step 3. (for N=3)

Step 3 : If (the equation is true for any of the sensed parameters) or (skip

counter=9)

Reset the skip counter to zero and go to step 4

Else increase the skip counter and go to step 7.

Step 4: The publisher creates the MQTT message by allocating the value fetched

in step2 to the relevant sub-topic.

Step 5: The publisher gets connected to the HIVEMQ broker, authenticated using

the unique ClientID.

Step 6: The publisher's MQTT message created in step 4 is published using the

topic set for an individual site.

Step 7: The controller again switches to a light sleep mode.

Step 8: After the timer gets expired, the controller auto awakes from sleep mode

and then goes to step 2.

13

The above algorithm displays the MQTT publisher with the event-based transmission

scheme. The gradual and steady small change can make it happen that the condition of the

equation never (or for a longer period) becomes true under the employed scheme. Due to that,

the air quality parameters cannot be reported at the server for a very long period. To stop such

kind of scenario, one more condition is added to the scheme. If continuous nine transmissions

are skipped in the algorithm (no transmission of observed data), then forceful tenth

transmission occurs. The event-based transmission scheme is implemented using a skip counter

that is incremented for each transmission skipping in the MQTT publisher.

Figure 5.8 represents the total number of transmissions in the applied scheme

experimented for 6 hours a day. The number of transmissions is calculated by considering the

number of MQTT messages subscribed and logged at the subscriber. The figure shows very

few transmissions in the event-based transmission scheme with N=3. Reduced number of

transmissions results in power consumption reduction.

Figure. 5.8. Message transmission under event-based transmission

14

Figure. 5.9. Message transmission for N=3 and various values of delta

The employability of such a scheme depends on the trade-off between tolerance

requirements in micro-level changes (to be reported at the server) versus power consumption.

Figure 5.9 shows the effect of the delta value on the number of transmissions over five different

runs. The number of transmissions becomes periodic transmission under the larger delta value,

as shown in figure 5.9.

5.1.4 Quality of Service(QoS) and System Performance under Periodic

Transmission

IoT-based ecosystems such as air quality monitoring systems are transporting real-time

parameters and updates to the remote server. Such a system can also provide threshold-based

notifications based on received data. In such a real-time system, delivering the messages (in

terms of messages transmitted Vs. messages received) to the subscribers is a very important

parameter. Reliable delivery or accuracy is one of the metrics representing the Quality of

Service provided by the system. Thus implementation of QoS adds value to such a diverse

system by providing performance, visibility, and usability of the services offered. Very few

efforts have been attempted to implement and assess the performance of the implemented

system under complex architecture design.

There are three levels of Quality of Services supported by the MQTT publisher. The

least reliable level is Level 0 in these three levels. Level 0 is fire and forgets the type of delivery

15

where the MQTT publisher transmits the MQTT message and does not bother about the actual

delivery at the destination happen or not. The second is QoS level 1, where the publisher retains

the message until the acknowledgment - the PUBACK message received from the broker. The

message will be published again if the PUBACK acknowledgment is not available. Here the

multiple deliveries at the destination are possible. The QoS level 2 guarantees precisely one

message delivery to the subscriber. Sender and receive use various message identification for

the synchronization of the message delivery. A publisher sends the message again with a

duplicate flag if PUBREC is not acknowledged.

Figure 5.10. System performance over an MQTT protocol: rooftop (site 1: Outdoor) and home

(site 2: Indoor)

Figure. 5.11. End to End delay against QoS level in simulation

16

Figure 5.10 depicts the system performance at level 0 and level 1 of QoS for 12 hours.

With the QoS level 0, the packet dropout ratio observed is 1.97%, and for level 1, the dropout

ratio is around 0.94 % at site1. For understanding the effect of Quality of Service level on delay

(end to end), the publisher environment is simulated using MQTT-JMeter (apache tool). The

JMeter is configured with the MQTT plugin, which can serve to accomplish testing in which

simulated clients register to the broker.

 Figure 5.11 represents the correlation between the transmission rate and end-to-end delay

under three QoS levels during the simulation. It can be seen from the figure that the end-to-end

delay starts increasing when a packet is transmitted is shifted from a lower level to a higher

level of QoS. The effect is observed in the account of the retransmission and acknowledgment

overhead. The choice of the QoS level is a very important criterion for mitigating end-to-end

delay and packet loss ratio.

The retransmission and acknowledgment overhead also affect the energy consumption of

the system. We have not analysed the power consumption performance with the selection of

higher QoS level during our experiments, but the energy consumption is expected to be more

with the higher QoS level selection [145]. The QoS level selection is clear trade-off between

the allowable message loss and the system performance (higher end to end delay, higher power

consumption). Also the optimization strategy for QoS overhead (other than OoS 0) can be

addressed in future work.

The accuracy values observed at site 1(outdoor) and site 2(indoor) are 98% and 96%,

respectively, as shown in figure 5.10. The accuracy values are calculated by considering the

total number of packets transmitted and received at the two sites. The dropout and accuracy

show the system's performance in terms of reliable delivery of MQTT messages, including

sensing parameters. Figure 5.12 shows the average throughput of the system. It can be seen

that the observed average throughput of the smart node is around 4.28 for site 1 and 4.6 for site

2 in bytes per second for 6 hours under periodic transmission.

17

(a)

(b)

Figure. 5.12. Throughput of the Sensing Unit (a) home (site 2: indoor) (b) rooftop (site 1:

Outdoor)

5.2 RESULTS AND DISCUSSION OF PROPOSED AIR

QUALITY PARAMETERS PREDICTION USING FBLSTM

 Experimentations of the proposed prediction system or model(FBLSTM) is conducted

using Keras 2.1.6; Keras, in turn, uses Tensorflow as the back end. The proposed model utilizes

60 units in each layer of LSTM. The data are scaled as discussed in the data preparation section,

and each sample's input window or sequence size is kept to be sixty. In the Keras package, the

long short-term memory layer is shaped with a 3-dimensional vector. The vector is to be

initialized with fields (sample space size, timestep observations in a sample, and feature). The

training of the model is achieved by utilizing the stochastic gradient descent(SGD)

optimization algorithm. The SGD algorithm equates the prediction to original observation, and

the difference is used to approximate the error gradient. The error gradient is then utilized to

modify or update the weights and biases in the neural network. The SGD [142] algorithms are

facing the problem of determining the optimal step size. The issue is resolved by developing

the new optimization algorithm, i.e., ADAM [142]. Adaptive moment estimation(ADAM) is

one of the best stochastic optimization algorithms for deep neural network learning, and it

realizes the advantages of two broadly used algorithms AdaGrad and RMSProp. We used the

ADAM algorithm in the proposed model for optimization. The ADAM algorithm adjusts the

rate of learning based on the average of first and second moments of the gradients. The ADAM

delivers quick convergence with less memory requirement than the other two stochastic

algorithms [142].

18

The batch size in a recurrent neural network can be defined as the total number of

individual training samples used (after processing that many samples, the error gradient

calculated) to estimate the error gradient. The batch size is one of the hyperparameters for the

ADAM optimization algorithm. We keep the batch size of 32 during the experiments. The

number of unidirectional layers in stacking to gain minimum loss for predicting air pollutant

time series data is decided through experiments. The return_sequence attribute is set to true in

Keras, while the output of one LSTM layer is given as input to the subsequent layer. So, instead

of giving one output, the LSTM layer gives output for each timestep. The backward pass layer

is implemented by setting go_backwards to be true in Keras. We use the functional API of

Keras for building the proposed training model. Following is the stepwise algorithm of the

proposed model implementation for prediction using Keras.

Stepwise process of model creation using Keras APIs

Tools used in experiments:

• Anaconda distribution with conda virtual environment

manager

• Spyder open-source IDE

• Keras - with TensorFlow backend
Step 1: Read CSV file in panda DataFrame

Step 2: Create NumPy array from panda Data Frame

Step 3: Scale down data in [0-1] using scaler - Min-Max Scaler

Step 4: Create and fill train and test data structure as discussed in data preparation

- according to the time steps parameter

Step 5: Reshape data structure matching to Tensorflow

- Parameters: batch size, time step, and features

Step 6: Create a sequential model from Keras

Step 7: Create forward and backward LSTM layer

- set return_sequence=true for both layer and go_backwards = true for backward

layer

Step 8: Add both layers using bidirectional and shape them for Tensorflow

- set merge option to the Alternatives available in Keras and of the choice

19

Step 9: Add hidden layers(LSTM) as per requirement

- units, activation function, return_sequences = true

Step 10: Add Dense output layer

Step 11: Compile the model with gradient optimization algorithm and loss function

Step 12: Train with the fit function of the model created

- parameters: no. of epochs, batch size for gradient update

Sample screenshot showing the scaled training time-series sequence of PM2.5

20

Sample screenshot of supervised learning data structure: Input window with 60-time steps for

PM2.5

21

Sample screenshot Input window with 60-time steps with corresponding output(target)

window for PM2.5

22

Sample screenshot showing performance after each epoch during training

Sample screenshot: plotting of MSE per epoch (up to 100) during training

23

5.2.1 Performance Comparison of the Proposed Model:

(a)

(b)

Figure. 5.13 Comparison of MSE of LSTM and RNN for (a) training and (b) validation

RNN(SS=1
0)

RNN(SS=6
0)

LSTM(SS=
60)

RNN(SS=1
0)

RNN(SS=6
0)

LSTM(SS=
60)

RNN(SS=1
0)

RNN(SS=6
0)

LSTM(SS=
60)

CO PM2.5 PM10

Epochs 100 0.0761 1.8967 0.0118 0.0643 2.1032 0.0104 0.0617 1.9873 0.0111

Epochs 200 0.0579 1.6993 0.0107 0.0408 1.8976 0.01 0.051 1.6973 0.0105

Epochs 300 0.0443 1.6341 0.0104 0.0392 1.7689 0.0089 0.0398 1.5961 0.0102

0

0.5

1

1.5

2

2.5

Lo
ss

 in
 M

SE
 (

Tr
ai

n
)

Epochs 100 Epochs 200 Epochs 300

RNN(SS=1
0)

RNN(SS=6
0)

LSTM(SS=
60)

RNN(SS=1
0)

RNN(SS=6
0)

LSTM(SS=
60)

RNN(SS=1
0)

RNN(SS=6
0)

LSTM(SS=
60)

CO PM2.5 PM10

Epochs 100 0.0903 1.9942 0.014 0.0834 2.4926 0.0119 0.0782 2.3031 0.0135

Epochs 200 0.1079 2.0934 0.0129 0.0986 2.5503 0.013 0.1087 2.3314 0.0137

Epochs 300 0.1127 2.2832 0.0144 0.1023 2.6845 0.0147 0.1324 2.7941 0.0153

0

0.5

1

1.5

2

2.5

3

Lo
ss

 in
 M

SE
 (

V
al

id
at

io
n

)

Epochs 100 Epochs 200 Epochs 300

24

(a)

(b)

Figure. 5.14 Comparison of MSE of proposed model(FBLSTM) with LSTM for (a) training

and (b) validation

LSTM
FBLST

M
(N=1)

FBLST
M

(N=2)

FBLST
M

(N=3)
LSTM

FBLST
M

(N=1)

FBLST
M

(N=2)

FBLST
M

(N=3)
LSTM

FBLST
M

(N=1)

FBLST
M

(N=2)

FBLST
M

(N=3)

CO PM2.5 PM10

Epochs 100 0.0118 0.0059 0.0052 0.006 0.0104 0.0041 0.003 0.0043 0.0111 0.0047 0.0041 0.0052

Epochs 200 0.0107 0.0049 0.0041 0.0048 0.01 0.0039 0.0025 0.0045 0.0105 0.004 0.0032 0.0048

Epochs 300 0.0104 0.0042 0.0038 0.0048 0.0089 0.0026 0.0023 0.0033 0.0102 0.0036 0.0029 0.0043

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Lo
ss

 in
 M

SE
 (

Tr
ai

n
)

Epochs 100 Epochs 200 Epochs 300

LSTM
FBLST

M
(N=1)

FBLST
M

(N=2)

FBLST
M

(N=3)
LSTM

FBLST
M

(N=1)

FBLST
M

(N=2)

FBLST
M

(N=3)
LSTM

FBLST
M

(N=1)

FBLST
M

(N=2)

FBLST
M

(N=3)

CO PM2.5 PM10

Epochs 100 0.014 0.0082 0.0078 0.008 0.0119 0.0057 0.0058 0.0074 0.0135 0.0077 0.007 0.0084

Epochs 200 0.0129 0.0069 0.0061 0.0074 0.013 0.0072 0.0059 0.0079 0.0137 0.0073 0.0067 0.0081

Epochs 300 0.0144 0.0093 0.0093 0.0098 0.0147 0.0083 0.0077 0.0088 0.0153 0.0088 0.008 0.0094

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Lo
ss

 in
 M

SE
 (

va
lid

at
io

n
)

25

Table 5.2.: Comparison of MSE of the proposed model(FBLSTM) with LSTM and RNN for

training and validation

 Epochs 100 Epochs 200 Epochs 300

Train Val. Train Val. Train Val.

FBLSTM

(1 hidden layer,

CONCAT merge

fun., sequence

size =60)

CO 0.0059 0.0082 0.0049 0.0069 0.0042 0.0093

PM2.5 0.0041 0.0057 0.0039 0.0072 0.0026 0.0083

PM10 0.0047 0.0077 0.0040 0.0073 0.0036 0.0088

FBLSTM

(2 hidden layer,

CONCAT merge

fun., sequence

size =60)

CO 0.0052 0.0078 0.0041 0.0061 0.0038 0.0093

PM2.5 0.0030 0.0058 0.0025 0.0059 0.0023 0.0077

PM10 0.0041 0.0070 0.0032 0.0067 0.0029 0.0080

FBLSTM

(3 hidden layer,

CONCAT merge

fun., sequence

size =60)

CO 0.0060 0.0080 0.0048 0.0074 0.0048 0.0098

PM2.5 0.0043 0.0074 0.0045 0.0079 0.0033 0.0088

PM10 0.0052 0.0084 0.0048 0.0081 0.0043 0.0094

Figure 5.13 compares the loss in MSE (mean squared error) for simple LSTM and RNN

based networks. Figure 5.14 shows the loss in MSE when applied with different stacking

options (number of stacking layers N=1,2 and 3) for the FBLSTM model and compares it with

the simple LSTM model. The MSE values consider for plotting the graph are the averaged

MSE values calculated over six repeated runs. The experimentations are executed till 300

epochs and the MSE is highlighted at the end of 100, 200, and 300 epochs for both train and

test(validation) data. The FBLSTM performance shown in figure 5.14 is implemented with the

“CONCAT” (Con) function for merging the two layers (forward and backward), which is the

default one in Keras.

RNN is facing the vanishing gradient problem as the sequence sample size grows,

which can also be seen from figure 5.13 in the performance evaluation. On the increase of

sequence size from 10 to 60, the MSE(loss) value also increases. Figure 5.14 shows the

comparison of LSTM and FBLSTM with one, two, and three hidden layers. The FBLSTM

outperforms the simple LSTM model. The Mean Squared Error values for the FBLSTM with

26

different stacking layers are shown in table 5.2 is the reproduction of figure 5.14, just to realize

the comparison at a glance. The MSE values in the table highlighted in bold represent the

minimum observed loss. The minimum value of the loss, in turn, indicates the best accuracy

for time series prediction. It can be seen from the table that in the FBLSTM approach, along

with the mentioned hyperparameter, the minimum MSE can be realized with the stacking of

two layers. Going further by adding more layers to the existing unidirectional stacking, i.e., 3

layers, the performance begins degrading. The FBLSTM model performs better than the RNN

and the simple LSTM layer.

(a)

(b)

Figure 5.15: MSE for merge function alternatives over: (a) training data (b) validation data

27

The performance of the bidirectional LSTM is influenced by the way we merge the two

layers of two directions. There are four different alternatives for merging that exist in Keras.

The Keras implements the Concat(Con) merging option by default, in which the outputs of the

respective cell state from the two layers are concatenated together. Mul and Add are other two

merge modes or functions in which these outputs from two layers are multiplied or added,

respectively. Ave is the fourth alternative for which the average of the corresponding outputs

from the two layers’ cell state is considered. We applied the optimum FBLSTM architecture

as shown in the above results, which have two hidden layers, and investigated the architecture

by applying all possible four merge alternatives. As shown in figure 5.15, the optimum

performance can be observed with the Con function over train and test data(minimum loss

function value). Add merge mode also achieve near equal performance to the Con merge mode.

The architecture with the Mul merge function has observed the highest loss amongst all four.

5.2.2 Performance with Regularization Techniques Employed:

Table 5.2 represents the mean square value at 100, 200, and 300 epochs. The results

show that the MSE value decreases with the increase of the number of epochs for the train data.

The epoch denotes the total number of scans throughout the whole sample space. It is

anticipated and obvious that the MSE (loss function) decreases with the increase of epochs,

and it becomes stable at a specific point. The same performance and behaviour were also

demonstrated for the train data, but the same is not observed for validation data (test data). The

in-depth performance of the model is denoted in figure 5.16 by gathering and plotting MSE

values after each epoch for a particular sample space for better understanding for train and test

data of PM 2.5 time-series data. The figure shows that initially, with fast convergence and after

obtaining the lowest value of loss function, the performance starts degrading with the increase

of epochs for validation. The behaviour depicted is due to the issue of overfitting.

28

Figure 5.16: Plotting of MSE per every epoch for training and validation

In the domain of deep neural networks, the researchers present various regularization

methods to overcome the issue of overfitting. The dropout approach is one of the regularization

techniques utilized to prevent the model performance from overfitting. The dropout

regularization method is implemented by keeping the leaving edges of hidden units in the

hidden layer to zero at every update of the training phase [143]. Keras employs the dropout

technique with the use of dropout layers. Dropout layers are added in between hidden layers.

Input and recurrent edges (connections to LSTM units) are omitted from activation with the

provided probability. The addition of dropout layers provides the environment with many

networks having a very dynamic structure in parallel. Also, due to dropout, a neural network

can never rely on any input node because every node has the probability of being removed. The

overall effect is that; the neural network will not allocate any high weight to a particular feature.

The probability setting for getting optimum performance is again hyperparameter which is

required to be set by experiments. Figure 5.17 (a) represents all values of dropout applied

during experiments, which are plotted against the MSE observed for specific dropout values.

The employed dropout value varies in the range of 0 to 1. The lowest MSE is obtained at 0.3

dropout value during experiments, and also it can be seen from figure 5.17 (a) that after 0.5

dropout value, there is a speedy increase in the MSE function. A dropout value of 0.3 indicates

the 30 percent of probability of node removal during training in Keras.

29

(a)

(b)

Figure 5.17: Performance of the model for (a) various values of dropout parameter under

dropout technique (b) various values of lambda or regularization factor under L2

regularization

Another approach for regularization is utilizing weight decay, also termed L2 regularization

[144]. The neural network always attempts to decrease the cost function by modification of

weights and biases. For the L2 regularization method, a factor is added that penalizes the large

weights. The factor or component is added to the cost function. The addition of the factor leads

the overall weight matric values down, which, in turn, decreases the activation function effect.

As an overall effect, the relatively less complex activation function may fit the observations,

which assists in overfitting reduction. The component of the factor added can be given using

the following equation.

30

𝑁𝑒𝑤 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐺𝑜𝑎𝑙 = 𝐿(𝑊, 𝐵) + 𝜆 ‖𝑊‖2 (5.3)

Lambda(λ), in the added component here, is the regularization or tuning parameter that

balances the trade-off between a low value of weights and low training loss. Lambda is also

the hyperparameter that is required to be optimized by experiments. We applied the initial value

of lambda provided as an argument to the L2 regularization in Keras, beginning from 10-1 to

10-6. Figure 5.17 (b) represents all the employed values of lambda plotted against the MSE

value observe for that specific lambda value (regularization factor). The figure shows that the

minimum MSE observed for the lambda value of 10-5.

Figure. 5.18. MSE comparison of the proposed model(FBLSTM) under regularization

techniques for validation data

Figure 5.18 represents the MSE value observed for the three time-series air pollutants data

at the end 100, 200, and 300 epochs for validation or test data. It shows the comparison of the

MSE values for the dropout value of 0.3 and the lambda value of 10-5, which is found to be

achieving minimum loss during the respective regularization method application. The figure

shows that the dropout-based regularization method performs better than the weight decay(L2)

regularization method and is more appropriate for our model. The dropout regularization

method gains the stable converse and loss in MSE with values 0.0052, 0.0025, and 0.0041 for

CO, PM 2.5, and PM 10, respectively.

No. reg.
with

dropout
(0.3)

L2 reg.
(10-5)

No. reg.
with

dropout
(0.3)

L2 reg.
(10-5)

No. reg.
with

dropout
(0.3)

L2 reg.
(10-5)

CO PM2.5 PM10

Epoch 100 0.0078 0.0075 0.0081 0.0058 0.0047 0.0054 0.007 0.0061 0.0063

Epoch 200 0.0061 0.0057 0.0059 0.0059 0.0031 0.0043 0.0067 0.0047 0.0059

Epoch 300 0.0093 0.0052 0.0056 0.0077 0.0025 0.0038 0.008 0.0041 0.0057

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

lo
ss

 in
 M

SE
 (

V
al

id
at

io
n

)

31

5.2.3 Performance with the Self-Attention Mechanism:

Table 5.3: MSE comparison of FBLSTM with attention and without attention after 300

epochs for various time horizons

Simple

FB-

LSTM

With

self-

atten.

Simple

FB-

LSTM

With

self–

atten.

Simple

FB-

LSTM

With

self-

atten.

Simple

FB-

LSTM

With

self-

atten.

(Tx) (4Tx) (8Tx) (12Tx)

CO 0.0051 0.0047 0.0055 0.0049 0.0073 0.0053 0.011 0.006

Rate - - 7.84 4.26 32.73 8.16 50.68 13.21

PM2.5 0.0025 0.0023 0.0028 0.0025 0.0044 0.0029 0.0083 0.0034

Rate - - 12.00 8.70 57.14 16.00 88.64 17.24

PM10 0.0041 0.0036 0.0045 0.0039 0.0066 0.0044 0.0118 0.0052

Rate - - 9.76 8.33 46.67 12.82 78.79 18.18

Table 5.4: MSE comparison of FBLSTM with attention and without attention after 300

epochs for various input windows

Input

Window

size

CO Rate PM2.5 Rate PM10 Rate

FBLSTM

60

0.0055 - 0.0035 - 0.0046 -

FBLSTM +

Attention

0.0036 - 0.0021 - 0.0034 -

FBLSTM

80

0.0084 52.73 0.0057 62.86 0.0074 60.87

FBLSTM +

Attention

0.0045 25.00 0.0029 38.10 0.0045 32.35

FBLSTM

120

0.0223 165.48 0.0191 235.09 0.0208 181.08

FBLSTM +

Attention

0.0086 91.11 0.0061 110.34 0.0091 102.22

As discussed in subsection 4.2.2, the self-attention mechanism was also applied and

tested during the experiments. The Self-attention layer is kept as the last layer in the

model(FBLSTM) shown in figure 4.6. The output of the self-attention layer is given as input

to the final dense layer for prediction. To understand the effect on loss function and

improvement to the existing model, we analyse the self-attention mechanism with two

dimensions; time horizon and input window size or input lag. While increasing the time

32

horizon, the sequence size is kept of the same length. By keeping the same sequence size and

increase in time horizon, employed recorded parameter samples in training realize more

fluctuations than the small-time horizon. Table 5.3 compares the loss function value (mean

squared error) obtained for the FBLSTM (with two hidden layers), without attention, and with

attention mechanism for the three air quality parameters. The table shows the effect on MSE

value with the increase in the time horizon. The first two rows in the table depict the MSE

value for Tx (the basic time step in the input sequence) 90 seconds. The time horizon increment

further is obtained by aggregating the recorded value for the basic time step, i.e., 4Tx horizon

is the aggregated value over 360 seconds, and so on. The rate column in the table shows the

percentage of increase in MSE value with the increase of time horizon from the previous one.

It can be seen from the table that with the extension of the time horizon, the rate of increase in

MSE (compared to the previous horizon) remains small for the model with an attention

mechanism. The high rate of increase in MSE represents the rapid reduction in prediction

performance with the extension in the horizon. It can be seen that initially, there is not much

difference between the performance of the two models. Still, with a higher time horizon, the

attention mechanism model performs substantially better than the one without attention. Table

5.4 shows the performance of the two models with the increase in input window size over

recorded air quality parameters observations of a single day. The MSE value and rate of

increase in MSE are listed for an input window size of 60, 80, and 120. The table indicates that

the model with the attention mechanism realizes lower MSE and a slow rate of increase in MSE

for larger input window size. Thus the table depicts self-attention mechanism provides better

performance for longer sequences.

