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INTRODUCTION AND FUNDAMENTAL CONCEPTS 

In this chapter some preliminary definitions and basic terminologies related to this research are 

written.  

1.1 Fluids: 

The type of matter which needs some support to reminisce its shape as well as size is called fluid. 

In other words fluid is a material which flows or have capacity of flowing. Natural examples of 

fluid are air and water. 

 

1.2 Classification of fluid: 

The fluids are divided into two categories. Newtonian fluids and non–Newtonian fluids. 

1.2.1 Newtonian fluid: 

Fluid in which stress tensor and rate of strain tensor are linearly related (as shown in figure 1.1) 

are known as Newtonian fluid. Couple of examples of Newtonian fluids are Gasoline, glycerin. 

  

Figure 1.1 Newtonian fluid Figure 1.2 Non–Newtonian fluid 

1.2.2 Non-Newtonian fluid: 

Fluids in which relation of stress tensor and rate of strain tensor are not linearly related (as shown 

in figure 1.2) are known as Non–Newtonian fluids. Few examples of non – Newtonian fluids are 

custard, honey, shampoo, paint. 

This research is focused on non – Newtonian fluids. 
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1.3 Types of non – Newtonian fluids: 

Non-Newtonian fluids are classified in three types. Time dependent, Time independent, Elastic 

viscous fluids.  

1.3.1 Time dependent fluids: 

In the fluid, if relation between shear stress and rate of shear strain depends on time, then such 

fluids are called time dependent fluids. In such fluids viscosity of the fluid varies with time. 

Yoghurt, paint, gypsum paste are few examples of time dependent fluids. 

1.3.2 Time independent fluids: 

In the fluid, if relation between shear stress and rate of shear strain does not depend on time, then 

such fluids are called time independent fluids. In such fluids viscosity of the fluid does not vary 

with time. Water, oil etc. are time independent fluids. 

1.3.3 Elastic viscous fluids: 

The fluids which have viscous properties as well as elasticity are called elastic viscous fluids. Such 

fluids have more viscous properties but, also have partial elastic properties after deformation. 

Amorphous polymers, semi crystalline polymers, biopolymers are few examples of elastic viscous 

fluids.  

 

1.4 Casson fluid 

The fluid in which viscosity is assumed to be infinitely high when shear strain is zero and when 

viscosity is zero rate of shear strain is assumed to be infinity, is called Casson fluid. Most common 

examples of Casson fluids are honey, jelly, concentrated fruit juices etc. It possess yield stress and 

has a great importance in biomechanics and polymer processing industries. Casson fluid model 

was presented by Casson [102] for the prediction of the flow behavior of pigment – oil suspensions.  

 

1.5 Second Grade fluid 

A fluid whose stress tensor is the sum of all tensors that can be formed from the velocity field with 

up to two derivatives, much as a Newtonian fluid is formed from derivatives up to first order. The 

constitutive equation of a second grade fluid is a linear relation between the stress and the first 

Rivlin-Ericksen tensor. This constitutive equation has three coefficients and is used for fluids of 

the visco-elastic type. The governing differential equations of a second grade fluid are of higher 
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order than the Navier-Stokes equations and thus, in general, one needs conditions in addition to 

the usual adherence boundary condition.  

 

1.6 Nanofluid  

Performance and compactness of engineering equipment such as heat exchangers, nuclear reactors 

and electronic devices can be upgraded, if thermal conductivity of conventional fluids such as oil, 

water and ethylene glycol mixture is improved. Pioneering technique to improve thermal 

conductivity of conventional fluids, is uniform and stable suspension of nanoparticles in the fluid. 

Suspension of copper or alumina nanoparticles in water are examples of nanofluids. Other metallic, 

nonmetallic, and polymeric particles can also be added into fluids to form nanofluids. Suspension 

of small amount of nanoparticles in conventional fluids, increases thermal conductivity 

significantly. 

 

1.7 Types of Fluid flow: 

1.7.1 Steady and unsteady fluid flow 

If any properties of fluids like temperature, density, pressure, velocity etc. remains unchanged with 

change in time, then flow is called steady with respect to that property. Means in steady flow, 

various fields are functions of only space co – ordinates and independent of time. Conversely, for 

properties of fluids varies with respect to time also, then flow is called unsteady flow. Means in 

unsteady flow, various fields are not only functions of space co – ordinates but also time. 

1.7.2 Compressible or Incompressible fluid flow 

By changing the pressure on the fluid flow, if density of the fluid changes; then fluid is called 

compressible and if density remains unchanged then flow is called incompressible. Most of the 

liquids are incompressible and many gases are compressible. 

1.7.3 Rotational and Irrotational flow 

If we put some object in the flow and if that object spins, then flow is considered as rotational if it 

doesn’t spin then flow is considered irrotational. If 𝑢 is a velocity vector function of fluid and if 

𝑐𝑢𝑟𝑙 𝑢 = 0⃗  then flow is irrotational.  
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1.8 Magnetohydrodynamics flow 

To study many natural occurrences like swimming of fishes, flying of birds the bra Fluid dynamics 

is an important science used to solve many natural phenomena such as flying of birds, swimming 

of fishes and the development of weather conditions to be studied technically. 

The study of the laws that govern the conversion of energy from one form to another, the direction 

in which the heat will flow, and the availability of energy to do work is the subject the 

Thermodynamics. The study of charge particle in motion, the forces created by electric and 

magnetic field, and the relationship between them give rise to the subject Electrodynamics. The 

collective effects of these three significant branches of science namely, Fluid dynamics, 

Thermodynamics and Electrodynamics give rise to the topic Magneto-fluid dynamics (MFD) 

which in the form of definition read as The science of motion of electrically conducting fluid in 

the presence of a magnetic field". It has two subtopics: Magnetohydrodynatnics (MHD) and 

Magnetogasdynatnics (MGD). MHD deals with electrically conducting liquids whereas MGD 

deals with ionized compressible gases. 

Magnetohydrodynamics (often referred to as MHD) deals with the dynamics of fluids having non-

negligible electrical conductivity which interact with a magnetic field. As a result of motion of an 

electrically conducting fluid in the presence of a magnetic field, electric currents are induced in 

the fluid. An electrically conducting fluid moving in presence of a magnetic field (transverse) 

experiences a force called the Lorentz force. This force has a tendency to modify the initial motion 

of the conducting fluid. Moreover, the induced currents generate their own magnetic field, which 

is added to the primitive magnetic field. Thus there is an interlocking between the motion of the 

conductor and the electromagnetic field. MHD has several applications, namely, application in 

fusion research, in the field of engineering, in MHD accelerator and power generator and in 

causing delay in the transition from laminar to turbulent flow. First theory of laminar flow of an 

electrically conductive liquid in a homogenous magnetic field was introduced in 1937 by Hartman 

[52].  The magnetohydrodynamics is a combination of three words. Magneto means magnetic 

field, hydro stands for liquid and dynamics for movement. Study of motion of electrically 

conducting fluids in which current is induced by magnetic field, is known as 

magnetohydrodynamics (MHD). Examples of such fluids are plasma, electrolytes, salt water and 

liquid metals. Motion of a conducting fluid across magnetic field generates electric currents, which 

modify magnetic field; and at the same time electric currents react with magnetic field to produce 
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a body force, which in turn modifies the motion (Figure 1.3). This study was primarily inspired by 

geophysical and astrophysical problems and by problems associated with fusion reactor. 

 

Figure 1.3: Induced current in a moving conductive fluid in the presence of a magnetic 

field 

 

1.9 Heat transfer 

Study of heat transfer includes thermal energy, where transfer is a result of temperature variance. 

In studying heat transfer, understanding of temperature distribution in a system is necessary. Heat 

flow takes place whenever there is a temperature gradient in a system. Once temperature 

distribution is known, heat flux, which is amount of heat transfer per unit area per unit time is 

obtained from rule connecting heat flows to temperature gradient. There are three fundamental 

modes of transfer of heat, which are conduction, convection and radiation. 

 

1.10 Mass Transfer 

When fluid’s concentration changes in the system, Mass transfer is obtained. The alteration in 

concentration is a driving force for the transfer of mass. It always occurs from higher concentration 

to lower concentration. Visible effects of this phenomena are measurable at least on the solar 

surface. 
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The applications of mass transfer process are vital in several fields of Science, Technology and 

Engineering.  

Mass transfer in nature are found in formation of smoke, clouds’ evaporation, fog dispersion etc. 

 

1.11 Porous Medium 

Body of unconsolidated ordinary sand is the most common example of porous medium. Porous 

medium is present in such immeasurable holes of different shapes and sizes including “pore space” 

or slits among the distinct solid particles of sand. Moreover, each hole is connected by confined 

channels to other holes, the whole making a totally interconnected network of openings which 

form the channels through which the contained fluid may flow. It is the whole several 

interconnected of the minute openings that characterizes the ideal “porous media” assumed in this 

work.  

 

1.12 Soret effect 

When heat and mass transfer in a moving fluid occurs together, there is strong connection between 

potentials and fluxes. It is observed that temperature difference creates mass fluxes which 

represents the thermal-diffusion effect or Soret effect. This name Soret is named after the scientist 

Charles Soret.  

Thermal diffusion disrupts the mixture arrangement’s equality, due to which concentration is 

improved and temperature is reduced. 

 

1.13 Dufour effect 

Energy flux because of change in concentration of mass is called Dufour effect.  In many flow 

problems potential of chemical differs, and this drive the flow of heat, this process is called Dufour 

process. This process is reciprocal phenomenon of Soret effect. The name is Dufour is named after 

Swiss physicist L. Dufour. 

 

1.14 Chemical reaction 

In systems where heat transfer and mass transfer occur, distribution rates can be reformed by 

chemical reaction. The chemical reaction is dependent on the mixed or identical reaction. 

Particularly, a reaction is called a first order if the rate of reaction is directly proportional to the 
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concentration. In nature, the existences of pure water or air are not possible. Some external mass 

either may be existing naturally or mixed with air or water. The existences of external mass source 

some kind of chemical reaction. The study of such type of chemical reaction procedures is 

beneficial for improving a number of chemical technologies, such as food processing, polymer 

production and manufacturing of ceramics or glassware. In chemical reaction problems, Kr is 

chemical reaction parameter. If Kr > 0, then it is a destructive chemical reaction (means 

endothermic, i.e., heat is absorbed) if Kr < 0, then it characterizes a propagative chemical reaction 

(means exothermic, i.e., heat is generated). In many chemical reaction processes, there is chemical 

reaction between external mass and the fluid in which the plate is moving. These processes take 

place in several engineering applications such as manufacturing of ceramics, food processing and 

polymer production. 

 

1.15 Laplace transform technique (LTT) 

Many ideas of classical analysis needed their sources in study of physical problems important to 

boundary value problems. Study for a solution of this initial boundary values problems leads to 

discovery of new mathematical tool - tools that are currently of huge practice in pure and applied 

mathematics, and other engineering branches, is Laplace transform. 

The branches of science and engineering in which Laplace transform technique are used for solving 

linear system of partial differential equations with constant coefficients and ordinary differential 

equations in which coefficients are variables or simultaneous ordinary differential equations. 

Laplace transform technique can also be applied in mechanics (dynamics and statics), electrical 

circuits, to analysis characteristic of beam and several partial differential equations subject to 

initial and boundary conditions etc. Thus, it can be understood that Laplace transform has its 

remarkable applications in many branches of pure and applied mathematics.  

1.15.1 Laplace transforms technique in MHD 

The physical aspects of any fluid flow is expressed in terms of system of partial differential 

equation with initial and boundary condition, in which Laplace transform technique can be used 

properly; as it is art of substituting governing equations of fluid flow with numbers and proceeding 

these numbers in space and / or time into an ordinary differential equation, which can be solved 

by established rules and, then Inverse Laplace transforms techniques are useful to get required 
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results. This method is perfectly fitted for unsteady free convective MHD problems through porous 

medium. 

 

1.16 Homotopy analysis method (HAM) 

Two continuous functions from one topological space to another are called homotopic if one can 

be continuously deformed into the other, such a deformation is called a homotopy between the two 

functions.   

The basic idea of HAM method [122] is to produce a succession of approximate solutions that tend 

to exact solution of the problem. Presence of auxiliary parameters and functions in approximate 

solution, results in production of a family of approximate solutions, rather than a single solution 

produced by traditional perturbation methods.  

The general approach used by HAM is to solve non-linear equation,                        

𝒩(𝑢(𝑡)) = 0,      𝑡 > 0,                                                                                                      (1.01) 

where 𝒩 is a nonlinear operator and 𝑢(𝑡) is unknown function of independent variable t. 

1.16.1 Zero-order deformation equation  

Let 𝑢0(𝑡) denote an initial guess of exact solution of Equation (1.01), ℏ ≠ 0 an auxiliary 

parameter, 𝐻(𝑡)  ≠  0 auxiliary function and ℒ an auxiliary linear operator with property, 

ℒ(𝑓(𝑡)) = 0  when 𝑓(𝑡) = 0.                                                                                            (1.02) 

The auxiliary parameter ℏ, auxiliary function 𝐻(𝑡), and auxiliary linear operator ℒ play important 

roles within HAM to adjust and control convergence region of solution series. Liao [122] 

constructs, using 𝑞 ∈ [0, 1] as an embedding parameter, so - called zero-order deformation 

equation, 

(1 − 𝑞)ℒ[Φ(𝑡; 𝑞) − 𝑢0(𝑡)] = 𝑞ℏ𝐻(𝑡)𝒩[Φ(𝑡; 𝑞)],                         (1.03) 

where Φ(𝑡; 𝑞) is solution which depends on  ℏ, 𝐻(𝑡), ℒ, 𝑢0(𝑡) and 𝑞. When 𝑞 = 0, zero-order 

deformation Equation (1.03) becomes,  

Φ(𝑡; 0) = 𝑢0(𝑡),                             (1.04)                                                                                                                         
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when 𝑞 = 1, since ℏ ≠ 0 and 𝐻(𝑡)  ≠  0, then Equation (1.04) reduces to, 

𝒩[Φ(𝑡; 1)] = 0.                                       (1.05)                                                                                                     

So, Φ(𝑡; 1) is exactly solution of nonlinear Equation (1.01). Expanding Φ(𝑡; 𝑞) in Taylor’s 

series with respect to 𝑞, we have  

Φ(𝑡; 𝑞) = 𝑢0(𝑡) + ∑ 𝑞𝑚𝑢𝑚(𝑡)∞
𝑚=1 ,                          (1.06)                                                                                                      

where, 

 𝑢𝑚(𝑡) =
1

𝑚!

𝜕𝑚Φ(𝑡;𝑞)

𝜕𝑞𝑚
|𝑞=0.                                                     (1.07)                                                                                                          

If power series (1.06) of Φ(𝑡; 𝑞) converges at 𝑞 = 1, then we get following series solution, 

𝑢(𝑡) = 𝑢0(𝑡) + ∑ 𝑢𝑚(𝑡)∞
𝑚=1 ,                           (1.08) 

where terms 𝑢𝑚(𝑡) can be determined by so-called high-order deformation equations which are 

described below. 

1.16.2 High-order deformation equation 

Define vector, 

𝑢𝑛⃗⃗ ⃗⃗ = {𝑢0(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑛(𝑡)}.               (1.09)             

Differentiating Equation (1.03) m times with respect to embedding parameter 𝑞, then setting 𝑞 =

0 and dividing them by 𝑚!, we have so-called 𝑚𝑡ℎ-order deformation equation, 

ℒ[𝑢𝑚(𝑡) − 𝜒𝑚𝑢𝑚−1(𝑡)] = ℏ𝐻(𝑡)𝑅𝑚(𝑢⃗ 𝑚, 𝑡),                                    (1.10)                                                                                      

where  

𝜒𝑚 = {
0, 𝑚 ≤ 1,
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                      (1.11)                                                                                                                                 

𝑅𝑚(𝑢⃗ 𝑚−1, 𝑡) =
1

(𝑚−1)!

𝜕𝑚−1𝒩[Φ(𝑡;𝑞)]

𝜕𝑞𝑚−1 |𝑞=0.                                                                           (1.12) 
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For any given nonlinear operator 𝒩, term 𝑅𝑚(𝑢⃗ 𝑚−1, 𝑡) can be easily expressed by Equation (1.12). 

Thus, we can gain 𝑢1(𝑡), 𝑢2(𝑡), … by means of solving linear high-order deformation Equation 

(1.10) one after other in order. 𝑚𝑡ℎ-order approximation of 𝑢(𝑡) is given by, 

𝑢(𝑡) =  ∑ 𝑢𝑘(𝑡)
𝑚
𝑘=0 .                             (1.13)                                                                                                                                              

Liao [122] points out that so-called generalized Taylor’s series provides a way to control and adjust 

convergence region through an auxiliary parameter ℏ such that homotopy analysis method is 

particularly suitable for problems with strong nonlinearity.  

1.16.3 Convergence analysis 

One of chief aims of HAM method is to produce solutions that will converge in a much larger 

region than solutions obtained with traditional perturbation methods. Solutions obtained using this 

method depend on our choice of linear operator ℒ, auxiliary function 𝐻(𝑡), initial approximation 

𝑢0(𝑡) and value of auxiliary parameter ℏ.  

Choice of base functions influence convergence of solution series significantly. For example, 

solution may be expressed as a polynomial or as a sum of exponential functions. It is expected 

that, base functions that more closely mimic behavior of actual solution should provide much better 

results than base functions whose behavior differs greatly from behavior of actual solution. Choice 

of a linear operator, auxiliary function, and initial approximation often determines base functions 

present in solution. Having selected a linear operator, auxiliary function, and an initial 

approximation, deformation equations can be developed and solved in series solution. Solution 

obtained in this way, still contains auxiliary parameter ℏ. This solution should be valid for a range 

of values of ℏ. In order to determine optimum value of ℏ, ℏ curves of solution are plotted. These 

curves are obtained by plotting partial sums 𝑢𝑚(𝑡) or their first few derivatives evaluated at a 

particular value of 𝑡 against parameter ℏ . As long as equation (1.01) with given initial or boundary 

conditions has a unique solution, partial sums and their derivatives will converge to correct 

solution for all values of ℏ for which solution converges. Which means that ℏ curves will be 

essentially horizontal over range of ℏ for which solution converges. As long as, ℏ is chosen in this 

horizontal region, solution must converge to actual solution of equation (1.01). 
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1.17 Dimensionless parameters 

Dimensionless parameters help us to understand physical importance of a particular phenomenon. 

Basic equations are made dimensionless using certain dependent or independent characteristic 

values. Some of dimensionless parameters used in thesis are clarified below. 

1.17.1 Thermal Grashof number (𝑮𝒓)  

Thermal Grashof number (Or Grashof number) is the ratio of buoyancy to viscous force acting on 

a fluid. It often arises in study of situations involving free convection. Its expression is  

𝐺𝑟 =
𝑔𝛽𝑇𝐿3(𝑇𝑤−𝑇0)

𝜈2                                        (1.14) 

1.17.2 Mass Grashof number (𝑮𝒎) 

The ratio of mass buoyancy force to hydrodynamics viscous force acting on a fluid is known as 

Mass Grashof number. It often arises in study of situations involving free convection and it is 

expressed by  

𝐺𝑚 =
𝑔𝛽𝐶𝐿3(𝐶𝑤−𝐶0)

𝜈2                              (1.15) 

1.17.3 Prandtl number (𝑷𝒓)  

It is defined as ratio of momentum and thermal diffusivity.  

𝑃𝑟 =
𝜈

𝛼
=

𝜇𝐶𝑝

𝑘
                              (1.16) 

1.17.4 Schmidt number (𝑺𝒄)  

It is defined as ratio of momentum and mass diffusivity.  

𝑆𝑐 =
𝜈

𝐷
                              (1.17) 

1.17.5 Magnetic parameter or Hartmann number (𝑴) 

It is defined as ratio of electromagnetic force to viscous force. It measures relative importance of 

drag forces resulting from magnetic induction and viscous forces in flow.  

 𝑀 =
𝜎𝐵2𝐿2

𝜈 𝜌
                  (1.18) 

1.17.6 Soret Number (Sr) 

It is noticed that, mass fluxes can also be created by temperature gradients and this embodies 

thermal diffusion (Soret) effect. Soret number is represented by 

𝑆𝑟 =
𝐷𝑇

𝐷𝑚
                    (1.19) 
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1.17.7 Reynolds number (𝑹𝒆)   

It is used to identify different flow behaviors like laminar or turbulent flow. It measure ratio of 

inertial force and viscous force. Mathematically, 

𝑅𝑒 =
𝜌𝑢2

𝐿
𝜇𝑢

𝐿2

⟹ 𝑅𝑒 = 𝐿𝑢/𝜈                  (1.20) 

At low Reynolds number, laminar flow arises, where viscous forces are dominant whereas at high 

Reynolds number, turbulent flow arises, where inertial forces are dominant. 

1.17.8 Brownian diffusion coefficient (𝑫𝑩) 

Brownian diffusion occurs due to continuous collision between molecules and nanoparticles of 

fluid. Brownian diffusion coefficient 𝐷𝐵 is given by 

𝐷𝐵 =
𝐾𝐵𝑇𝐶𝑐

3Π𝜇𝑑𝑝
                   (1.21) 

where 𝐾𝐵 and 𝐶𝑐 represent Boltzmann constant and correction factor respectively. 

1.17.9 Thermophoresis diffusion coefficient (𝑫𝑻) 

Thermophoresis diffusion occurs when particles diffuse due to effect of temperature gradient. It is 

given by 

𝐷𝑇 =
−𝜐𝑡ℎ𝑇

𝜈∇𝑇
                   (1.22) 

where 𝜐𝑡ℎ and ∇𝑇 denote thermophoretic velocity and temperature gradient respectively. 

1.17.10 Skin friction coefficient (𝑪𝒇) 

It occurs between solid and fluid surface through which motion of fluid becomes slow. Skin 

friction coefficient can be defined as, 

𝐶𝑓 = −(
𝜕𝑢

𝜕𝑦
)
𝑦=0

                  (1.23) 

1.17.11 Nusselt number (𝑵𝒖) 

It is temperature gradient at surface. Its expression is 
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𝑁𝑢 = −(
𝜕𝜃

𝜕𝑦
)
𝑦=0

                  (1.24) 

1.17.12 Sherwood number (𝑺𝒉) 

Sherwood number represents concentration gradient at surface. 

𝑆ℎ = −(
𝜕𝐶

𝜕𝑦
)
𝑦=0

                  (1.25) 

 

1.18 Review of relevant literature 

The study of MHD flow of Non-Newtonian fluid is important phenomena in science and 

technology fields. In this thesis, study of one, two and three dimensional MHD flow of different 

types of Non-newtonian fluids likes, Casson fluid, Second grade fluid, viscoelastic fluid and 

Hybrid Nano-fluid with heat and mass transfer are discussed. The governing equations are convert 

in system of Linear or Non-linear partial differential equations. So, analytical methods or 

Numerical methods have applied for solving governing equations. Some of them (related to the 

thesis) are briefly reviewed here. 

Fluid dynamics is main branch of science which is used to solve many natural phenomena such as 

flying of birds, swimming of fishes and the development of weather conditions to be studied 

technically [55]. The study of charge particle in motion, the forces created by electric and magnetic 

field, and the relationship between them give rise to the subject Electrodynamics. The collective 

effects of these three significant branches of science namely, Fluid dynamics, Thermodynamics 

and electrodynamics give rise to the topic Magneto-fluid dynamics (MFD) which in the form of 

definition read as The science of motion of electrically conducting fluid in the presence of a 

magnetic field. The study of Magnetohydrodynemics (MHD) flow of Non-Newtonian fluid has 

various application in science and engineering fields.  The set of equations that describe MHD are 

a combination of the Navier Stokes and Maxwell's equations. Research works in the magneto 

hydrodynamics have been advanced significantly during the last few decades in natural sciences 

and engineering disciplines after the pioneer work of Hartmann [52] in liquid metal duct flows 

under the strong external magnetic field. Recently, the study of MHD flow done by Farman et al. 

[11], Kataria and Patel [42].   

In modern engineering, many characteristics of flow are not understandable with the Newtonian 

fluid model. Hence non-Newtonian fluids theory has become useful. Non-Newtonian fluid exerts 

non-linear relationships between the shear stress and rate of shear strain. It has an extensive variety 
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of applications in engineering and industry, especially in the extraction of crude oil from petroleum 

products. Casson fluid is one of such fluids. Casson fluid model was introduced by Casson [102] 

for the prediction of the flow behavior of pigment-oil suspensions.  

Second grade fluids can model many fluids such as dilute polymer solutions, slurry flows and 

industrial oils. Tan and Masuoka [160] examined the Stokes’ first problem for a Second grade 

fluid and Hayat et al. [152] considered with unsteady stagnation point flow of Second grade fluid 

with variable free stream. Viscoelastic fluid behavior is a type of non-Newtonian fluid formed by 

a viscous component and an elastic one. Examples of viscoelastic fluids are paints, some biological 

fluids, and DNA suspensions, etc. A number of features make the viscoelastic fluids very 

interesting and of industrial importance. A proper understanding of viscoelasticity is key for 

industrial applications. Study of Viscoelastic fluids are common in very important applications 

discussed by Rashidi et al. [99], Turkyilmazoglu [155] and Khan et al. [162].  

The study of heat transfer in boundary layer flows has many engineering applications such as in 

the design of thrust bearings and radial diffusers, in transpiration cooling, in drag reduction and in 

thermal recovery of oil. In the past many authors have studied a wide variety of flow situations. 

Fakour et al. [61] discussed micropolar fluid flow and heat transfer in a channel with permeable 

walls whereas, Ebrahimi et al. [65] studied heat transfer of fourth-grade fluid flow in the plane 

duct under an externally applied magnetic field with convection on walls. Recently, Nayak et al. 

[76], Larimi et al. [77], Sheikholeslami et al. [95], Turkyilmazoglu [96], Sheikholeslami and 

Seyednezhad [97], Sheikholeslami et al. [132] considered heat transfer effects on MHD flow of 

different fluid with different physical conditions. The convective heat transfer phenomena in 

nature are often attended by mass transfer. Convective mass transfer process creates the support 

of various procedures in the chemical engineering. This appears like sufficient purpose to contain 

mass transfer in heat convection as well. An analogy happens between convective mass transfer 

and convective heat transfer. This analogy is educationally actual significant because it provides a 

chance to organize the understanding of heat transfer and to learn mass transfer with the least 

memorization. Öztop et al. [30] studied natural convection in three-dimensional partially open 

enclosures. Zhou et al. [51] discussed design of microchannel heat sink with wavy channel and its 

time-efficient optimization with combined RSM and FVM methods whereas, Kundu [59] obtained 

exact solution of propagation of heat in a biological tissue subject to different surface conditions 
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for therapeutic applications. Recently, Rashidi et al. [81] and Turkyilmazoglu [154] considered 

MHD flow with heat and mass transfer.  

The restriction of the conventional fluids to expedite cooling/heating rates give rise to exploration 

of nanofluids. Generally, water based single phase nanofluids containing nanoparticles such as 

CuO or Al2O3 are discussed. Enhancement of heat transfer is beneficial in engineering and actual 

world problems. To achieve this, experiments considering composite nanoparticles in place of 

single nanoparticle based nanofluids are performed. Consequently, investigators are fascinated 

towards heat transfer properties of composite nanofluids.  Thermal conductivity of nanofluids is 

high, which is a motivation in this area, thus many investigators are doing research intensively. 

Choi and Eastman [130] were probably the first to employ a mixture of nanoparticles and base 

fluid that such fluidswere designated as “nano-fluids”. Recently, many researcher like Öztop [31], 

Khan [47], Waini et al. [49], Oztop and Abu-Nada [46], Jusoh et al. [54], Shirvan et al. [57], 

Hatami et al. [62], Abolbashari et al. [66] discussed MHD flow of nanofluid with different types 

of physical conditions. Owing to extraordinary characteristics, recent works [10, 12, 15 – 20] are 

dedicated to nano-fluids. Hatami et al. [69 - 71] considered natural convection heat transfer of 

MHD nanofluids. Sheikholeslami [83] obtained the solution of CuO-water nanofluid free 

convection in a porous cavity whereas, Sheikholeslami and Oztop [84] studied MHD free 

convection of nanofluid in a cavity with sinusoidal walls by using CVFEM. Khashi et al [105] 

illustrated three-Dimensional hybrid nanofluid flow and heat transfer past a permeable 

stretching/shrinking Sheet. Sheikholeslami et al. [133-134] studied free/force convection MHD 

nanofluid considering MFD viscosity effect over a stretched surface while Abdellahoum et al. [8] 

discussed turbulent forced convection of nanofluid. Hayat et al. [136-144] described effects of 

magnetic field on different types of nanofluid flow. Miroshnichenko et al. [159] obtained results 

of MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid whereas, 

Shah et al. [164] influence of Cattaneo-Christov model on Darcy-Forchheimer flow of Micropolar 

Ferrofluid over a stretching/shrinking sheet. The radiation effects become much vital when the 

difference between the surface and the ambient temperatures is extensive [127]. It has wide 

applications in manufacturing industries, such as the design of reliable equipment, nuclear plants, 

gas turbines, power plants, and various propulsion devices for aircraft and missiles. Further, the 

radiation effects on MHD convective flow problems are more significant in electrical power 

generation, solar power technology, and astrophysical ground. Recently, Patel and Mittal [44], 
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Sheikholeslami et al. [88], Sheikholeslami et al. [92] and Sheikholeslami et al. [94] studied thermal 

radiation effects on MHD flow of nanofluid. Pal et al. [109] considered thermal radiation and 

Ohmic dissipation effects on MHD Casson nanofluid flow over a vertical non-linear stretching 

surface using scaling group transformation. Heat generation/absorption played important role in 

MHD flow with heat and mass transfer. The study of MHD flow in the presence of heat generation 

and absorption done by Miroshnichenko et al. [100], Nandkeolyar et al. [111] and Thumma et al. 

[153]. Kandasamy et al. [58] considered thermophoresis and Brownian motion effects on MHD 

boundary-layer flow in the presence of thermal stratification due to solar radiation. The porous 

medium has a vital role in terms of controlling momentum and heat transfer in the boundary layer 

flow. In understanding of this, several eminent scientists are attracted towards exploration of 

porous medium and its effects on Newtonian and non-Newtonian fluids. Seyf et al. [29] obtained 

analytical solution of fluid Flow in porous media with injection/suction, whereas Xu et al. [32] 

illustrate effects of thermal radiation on nanofluids in porous media. Kataria and Mittal [34] 

obtained numerical solution of three dimensional nanofluid flow in a rotating system through 

porous medium. Recently, Sheremet et al. [63], Aleem et al. [64], Sheikholeslami et al. [85], 

Sheikholeslami [89], Sheikholeslami and Shehzad [91] and Ghasemi et al. [112] discussed MHD 

flow in porous medium. Study of free/force convection MHD flow of different types of physical 

conditions through porous medium are discussed in Rassoulinejad-Mousavi et al. [114], 

Rassoulinejad-Mousavi and Yaghoobi [115], Rassoulinejad-Mousavi and Abbasbandy [116-117] 

and Samiulhaq et al. [131].  Rashidi et al. [79] obtained analytical solutions of steady MHD 

convective and slip flow due to a rotating disk with viscous dissipation and Ohmic Heating. 

Rashidi et al. [98] considered effect of solid surface structure on the condensation flow of argon 

in rough nanochannels with different roughness geometries using molecular dynamics simulation. 

Ramped velocity is helpful to diagnose, establish treatment, determine prognosis and evaluate 

functioning of cardiovascular system. Some contributions regarding TT may be found in the works 

of Bruce [2] Myers and Bellin [101], Astrand and Rodahl [107]. Mohammadian et al. [113] studied 

thermal management improvement of an air-cooled high-power lithium-ion battery by embedding 

metal foam. Abbasbandy et al. [119] obtained numerical and analytical solutions for falkner-skan 

flow of MHD Oldroyd-B fluid. Silva et al. [135] studied velocity and inclination in the ramp 

protocol for the treadmill ergometer. 


