
        

 

 

 
 

 

 

STUDY OF SORET EFFECT ON MHD FLOW OF 

NON-NEWTONIAN FLUID  

 

 

 

 

 

2 
 

Contents of this chapter are published in: 

• International Journal of Advanced Science and Technology (Scopus) 

29(04), 7588 - 7602.  

• Journal of Emerging Technologies Engineering and Innovative Research 

(Earlier in UGC list) July 2018, Volume 5, Issue 7, 279 - 286. 

 



Chapter 2 

17 
 

STUDY OF SORET EFFECT ON MHD FLOW OF NON-NEWTONIAN 

FLUID  

 

 

The importance of heat transfer problem comprising non-Newtonian fluid has developed 

noticeably due to vide range of applications of non-Newtonian fluids. The indulgent of physics in 

such fluid flows have instant effects on polymer treating, varnish, ink-jet painting, micro fluids, 

geological flows, colloidal suspensions, liquid crystals, animal blood, turbulent shear flow etc. 

Non-Newtonian flow embrace shear-thinning, shear thickness, viscoelasticity etc. This motivates 

this chapter to include the study of non-Newtonian flows 

 

2.1 Introduction of the problem: 

The attentiveness in heat transfer problem comprising non-Newtonian fluid has developed 

substantially as such fluids have applications in almost all industrial and engineering processes. 

Distinctive non-Newtonian flow comprise shear-thinning, viscoelasticity and shear thickness etc. 

Non - Newtonian fluid flow posts exceptional challenges to the engineers, scientists, 

mathematicians and physicists. Hayat at el. [151] have derived solution for mixed 

convective MHD flow of peristalsis of Non-Newtonian nanomaterial with zero mass flux 

conditions. Hayat at el. [148] have studied Non-Newtonian fluid. Asghar at el. [129] have studied 

MHD flow of Non-Newtonian fluid in specific condition. Unlike Newtonian fluids, a single model 

is not sufficient to describe all characteristics of non-Newtonian fluid flow. It is known that the 

prevailing equations of non-Newtonian fluids are extremely non-linear and of higher order. Thus 

it is observed that the exact solutions are challenging. Governing equations are linearized and 

system of partial differential equations have been transformed into ordinary differential equations 

and then analytical solutions may be obtained [38 - 41]. The porous medium has a vital role in 

terms of controlling momentum and heat transfer in the boundary layer flow. In understanding of 

this, several eminent scientists are attracted towards exploration of porous medium and its effects 

on Newtonian and non-Newtonian fluids. 

In most of the research works, the thermal-diffusion effects are insignificant due to smaller order 

of magnitude. However, an fascinating macroscopically phenomenon known as Soret effects have 

important effects on the thermal-diffusion processes. The combined buoyancy effect escalates due 

to the deviation of density with temperature and henceforward the temperature is influenced. 

http://www.sciencedirect.com/science/article/pii/S221137971630568X
http://www.sciencedirect.com/science/article/pii/S221137971630568X
http://www.sciencedirect.com/science/article/pii/S221137971630568X


Chapter 2 

18 
 

Consideration of thermal radiation in heat and mass transfer problems have attracted researchers 

due to its applications in advanced energy conversion systems operating at high temperature such 

as gas turbines, propulsion devices for aircraft, satellites and space vehicles, nuclear power plants 

etc 

 

2.2 Novelty of the chapter: 

The purpose of this chapter is to investigate impact of magnetic field on fluid flow, heat and mass 

transfer. Novelty of this chapter is analytic study of MHD non-Newtonian fluid flow with ramped 

boundary conditions. The derived ordinary differential equations are solved using the Laplace 

transform. The effects of the pertinent parameters governing the problem are discussed. 

 

2.3 Mathematical Formulation of the Problem: 

 

Figure 2.1: Physical sketch of the problem 

 

Sketch of physical problem is drawn in Figure 2.1. Axes are chosen as follows. 𝑥′ − 𝑎𝑥𝑖𝑠  which 

is drawn vertically is the wall and 𝑦’ –  𝑎𝑥𝑖𝑠 is drawn horizontally. As shown in that figure, 

magnetic field of strength 𝐵0 is in opposite direction to fluid flow. When time 𝑡′ ≤ 0 , plate and 

fluid are stationary having surface concentration 𝐶′
∞ and constant temperature of fluid and the 

plate is assumed to be 𝑇′
∞. During time between 0 < 𝑡′ ≤   𝑡0  velocity, temperature and 
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concentration are 𝑢′
∞ + (𝑢′

𝑤 − 𝑢′
∞)  𝑡′

 𝑡0
⁄ , 𝑇′

∞ + (𝑇′
𝑤 − 𝑇′

∞)  𝑡′

 𝑡0
⁄ and 𝐶′

∞  +  (𝐶′
𝑤 −

𝐶′
∞)  𝑡′

 𝑡0
⁄   respectively, whereas for time 𝑡′ > 𝑡0 , they remain constant 

 𝑢′
𝑤,  𝑇′

𝑤 and  𝐶′
𝑤 respectively. Effect of viscous dissipation induced by magnetic and electrical 

field are neglected. Here flow is considered as one dimensional laminar flow, and the fluid is 

incompressible Non-newtonian fluid. The equations which are governed for all these assumptions, 

are derived using Boussinesq’s approximation. They are as follows. 

𝜕𝑢′

𝜕𝑡′ =
𝜕2𝑢′

𝜕𝑦′2 −
𝜎𝐵0

2

𝜌
𝑢′ −

𝜇𝜙

𝜌𝑘1
′ 𝑢′ + 𝑔𝛽′

𝑇
(𝑇′ − 𝑇′

∞) + 𝑔𝛽′
𝐶

(𝐶′ − 𝐶′
∞)    (2.1) 

𝜕𝑇′

𝜕𝑡′ =
𝑘

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 −
1

𝜌𝑐𝑝

𝜕𝑞𝑟
′

𝜕𝑦′           (2.2) 

𝜕𝐶′

𝜕𝑡′ = 𝐷𝑀
𝜕2𝐶′

𝜕𝑦′2 + 𝐷𝑇
𝜕2𝑇′

𝜕𝑦′2 − 𝑘2
′  (𝐶′ − 𝐶′

∞)        (2.3) 

With following initial and boundary conditions: 

𝑢′ = 0, 𝑇′ = 𝑇′
∞,   𝐶′ =  𝐶′

∞;  𝑎𝑠   𝑦′ ≥ 0 𝑎𝑛𝑑   𝑡′ ≤ 0,  

  𝑢′ = {
𝑢′

∞ + (𝑢′
𝑤 − 𝑢′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑢′
𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

;   𝑎𝑠  𝑡′ > 0 𝑎𝑛𝑑 𝑦′ = 0  ,    

 𝑇′ = {
𝑇′

∞ + (𝑇′
𝑤 − 𝑇′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑇′
𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

 ;  𝑎𝑠  𝑡′ > 0 𝑎𝑛𝑑 𝑦′ = 0  ,  

 𝐶′ = {
𝐶′

∞ + (𝐶′
𝑤 − 𝐶′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝐶′
𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

;   𝑎𝑠  𝑡′ > 0 𝑎𝑛𝑑 𝑦′ = 0  ,  

𝑢′ → 0, 𝑇′ → 𝑇′
∞,   𝐶′ → 𝐶′

∞;  𝑎𝑠  𝑦′ → ∞ 𝑎𝑛𝑑 𝑡′ ≥ 0      (2.4) 

Since the fluid is Non-Newtonian, by Rosseland approximation [127]  

𝜕𝑞𝑟
′

𝜕𝑦′
= −4𝑎∗𝜎∗(𝑇′

∞
4

− 𝑇′4
)          (2.5) 

Where σ∗ and a∗ are Stefan Boltzmann constant and absorption coefficient respectively. 

We expand 𝑇′4
 in Taylor's series about 𝑇′

∞  and neglecting higher order terms, we get 

𝑇′4
≅ 4𝑇′

∞
3

𝑇′ − 3𝑇′
∞
4

          (2.6) 

Inputting (2.6) in (2.5) and subsequently putting the resultant in (2.2) we get  

𝜕𝑇′

𝜕𝑡′ =
𝑘4

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 −
1

𝜌𝑐𝑝
16𝑎∗𝜎∗𝑇′

∞
3

(𝑇′ − 𝑇′
∞)       (2.7) 

Introducing the following dimensionless quantities:  

𝑦 =
𝑦′

𝑈0𝑡0
, 𝑢 =

𝑢′

𝑈0
, 𝑡 =

𝑡′

𝑡0
, 𝜃 =

(𝑇′−𝑇′
∞)

(𝑇′
𝑤−𝑇′

∞)
, 𝐶 =

(𝐶′−𝐶′
∞)

(𝐶′
𝑤−𝐶′

∞)
, 𝐺𝑟 =

𝑣𝑔𝛽′
𝑇(𝑇′

𝑤−𝑇′
∞)

𝑈0
3     
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𝐺𝑚 =
𝑣𝑔𝛽′

𝐶(𝐶′
𝑤−𝐶′

∞)

𝑈0
3 , 𝑀2 =

𝜎𝐵0
2𝑣

𝜌𝑈0
2 , 𝑃𝑟 =

𝜌𝑣𝐶𝑝

𝑘
, 𝑅 =

16 𝑎 𝜎𝑣2𝑇′
∞

3

k 𝑈0
2 , 𝑆𝑐 =

𝑣

𝐷𝑀
  

𝐾𝑟 =
𝑣𝑘2

′

𝑈0
2 ,   𝑆𝑟 =

𝐷𝑇(𝑇′
𝑤 − 𝑇′

∞)

𝑣(𝐶′
𝑤 − 𝐶′

∞)
 

              (2.8) 

Substituting (2.7) and (2.8) in the equations (2.1), (2.2) and (2.3) and dropping out the " ′ " notation 

(for simplicity) from all variables we get 

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑦2
− (𝑀2 +

1

𝑘1
) 𝑢 + 𝐺𝑟𝜃 + 𝐺𝑚𝐶        (2.9) 

𝜕𝜃

𝜕𝑡
=

1+𝑅

𝑃𝑟

𝜕2𝜃

𝜕𝑦2            (2.10) 

𝜕𝐶

𝜕𝑡
=

1

𝑠𝑐

𝜕2𝐶

𝜕𝑦2 + 𝑆𝑟
𝜕2𝜃

𝜕𝑦2 − 𝑘𝑟𝐶          (2.11) 

With initial and boundary condition 

𝑢 = 𝜃 =  𝐶 = 0 , 𝑦 ≥ 0, 𝑡 ≤ 0 , 

𝑢 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

, 𝑎𝑡  𝑦 = 0, 𝑡 > 0 

𝜃 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

 ,   𝑎𝑡  𝑦 = 0, 𝑡 > 0 

  𝐶 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

 𝑎𝑡  𝑦 = 0, 𝑡 > 0 , 

 𝑢 → 0, 𝜃 → 0, 𝐶 → 0    𝑎𝑡  𝑦 → ∞, 𝑡 > 0         (2.12) 

 

2.4 Solution of the Problem: 

Found analytic solutions for fluid velocity; temperature and concentration. They are obtained from 

equations (2.9) to (2.11) with initial and boundary conditions (2.12) using the Laplace transform 

technique. 

2.4.1 Solution of the problem for ramped velocity, ramped wall temperature and ramped 

surface concentration: 

𝜃(𝑦, 𝑡) = 𝑓7(𝑦, 𝑡) − 𝑓7(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)        (2.13) 

𝐶(𝑦, 𝑡) = [𝑔4(𝑦, 𝑡) − 𝑔5(𝑦, 𝑡)] − [𝑔4(𝑦, 𝑡 − 1) − 𝑔5(𝑦, 𝑡 − 1)]𝐻(𝑡 − 1)   (2.14) 

𝑢(𝑦, 𝑡) = 𝑓2(𝑦, 𝑡) − 𝑓2(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) + ℎ1(𝑦, 𝑡) − ℎ1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)   (2.15) 

2.4.2 Solution of the problem for constant velocity, ramped temperature and ramped 

surface concentration: 
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In order to understand effects of ramped velocity of the fluid flow, we must compare our results 

with constant velocity. In this case, initial and boundary conditions are same as Eq. (2.12) except 

only 𝑢 = 1 for 𝑦 = 0, 𝑡 > 0. Velocity u(𝑦, 𝑡) found for this case using Laplace Transform will be 

𝑢(𝑦, 𝑡) = 𝑓1(𝑦, 𝑡) + ℎ1(𝑦, 𝑡) − ℎ1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)      (2.16) 

Where, 

ℎ1(𝑦, 𝑡) = 𝑔1(𝑦, 𝑡) + 𝑔2(𝑦, 𝑡) + 𝑔3(𝑦, 𝑡)        (2.17) 

𝑔1(𝑦, 𝑡) = 𝑎29𝑓1(𝑦, 𝑡) + 𝑎30𝑓2(𝑦, 𝑡) + 𝑎31𝑓3(𝑦, 𝑡) + 𝑎32𝑓4(𝑦, 𝑡) +𝑎33𝑓5(𝑦, 𝑡)  (2.18) 

𝑔2(𝑦, 𝑡) = 𝑎34𝑓6(𝑦, 𝑡) − 𝑎17𝑓7(𝑦, 𝑡) − 𝑎31𝑓8(𝑦, 𝑡) + 𝑎28𝑓9(𝑦, 𝑡)     (2.19) 

𝑔3(𝑦, 𝑡) = 𝑎35𝑓10(𝑦, 𝑡) + 𝑎20𝑓11(𝑦, 𝑡) + 𝑎32𝑓12(𝑦, 𝑡) + 𝑎25𝑓13(𝑦, 𝑡)    (2.20) 

𝑔4(𝑦, 𝑡) = 𝑎37𝑓10(𝑦, 𝑡) − 𝑎36𝑓13(𝑦, 𝑡)        (2.21) 

𝑔5(𝑦, 𝑡) = 𝑎36𝑓6(𝑦, 𝑡) − 𝑎36𝑓9(𝑦, 𝑡)         (2.22) 

𝑓1(𝑦, 𝑡) =
1

2
[𝑒−𝑦√𝑎1 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
− √𝑎1𝑡) + 𝑒𝑦√𝑎1 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
+ √𝑎1𝑡)]     (2.23) 

𝑓2(𝑦, 𝑡) =
1

2
[(𝑡 −

𝑦

2√𝑎1
) 𝑒−𝑦√𝑎1 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
− √𝑎1𝑡) + (𝑡 +

𝑦

2√𝑎1
) 𝑒𝑦√𝑎1  𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
+ √𝑎1𝑡)] 

            (2.24) 

𝑓3(𝑦, 𝑡) =
𝑒𝑎8𝑡

2
[𝑒

−𝑦√
1

𝑎8
(𝑎1+𝑎8)

 𝑒𝑟𝑓𝑐 (
𝑦

2√ 𝑡
− √(𝑎1 + 𝑎8)𝑡) 

                    +𝑒
𝑦√

1

𝑎8
(𝑎8−𝑎1)

 𝑒𝑟𝑓𝑐 (
𝑦

2√ 𝑡
+ √(𝑎1 − 𝑎8)𝑡)]     (2.25) 

𝑓4(𝑦, 𝑡) =
𝑒𝑎13𝑡

2
[𝑒

−𝑦√
1

𝑎13
(𝑎1+𝑎13)

 𝑒𝑟𝑓𝑐 (
𝑦

2√ 𝑡
− √(𝑎1 − 𝑎13)𝑡) 

                     +𝑒
𝑦√

1

𝑎13
(𝑎1−𝑎13)

 𝑒𝑟𝑓𝑐 (
𝑦

2√ 𝑡
+ √(𝑎1 − 𝑎13)𝑡)]     (2.26) 

𝑓5(𝑦, 𝑡) =
𝑒𝑎5𝑡

2
[𝑒

−𝑦√
1

𝑎5
(𝑎1+𝑎5)

 𝑒𝑟𝑓𝑐 (
𝑦

2√ 𝑡
− √(𝑎1 + 𝑎5)𝑡)    

                     +𝑒
𝑦√

1

𝑎5
(𝑎5−𝑎1)

 𝑒𝑟𝑓𝑐 (
𝑦

2√ 𝑡
+ √(𝑎1 − 𝑎5)𝑡)]     (2.27) 

𝑓6(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 (
1

2
 √

1

𝑎2𝑡
 𝑦)         (2.28) 

𝑓7(𝑦, 𝑡) = (
𝑦2

2𝑎
+ 𝑡) 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑎2𝑡
) −

𝑦

2

√ 𝑡

√𝑎2𝜋
𝑒

− 
𝑦2

4𝑎2𝑡      (2.29) 
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𝑓8(𝑦, 𝑡) =
𝑒𝑏𝑡

2
[𝑒

−𝑦√
𝑎8
𝑎2  𝑒𝑟𝑓𝑐 (

𝑦 √𝑎2

2√𝑡
− √𝑎8𝑡) + 𝑒

𝑦√
𝑎8
𝑎2  𝑒𝑟𝑓𝑐 (

𝑦 √𝑎2

2√𝑡
+ √𝑎8𝑡)]  (2.30) 

𝑓9(𝑦, 𝑡) =
𝑒𝑏𝑡

2
[𝑒

−𝑦√
𝑎5
𝑎2  𝑒𝑟𝑓𝑐 (

𝑦 √𝑎2

2√𝑡
− √𝑎5𝑡) + 𝑒

𝑦√
𝑎5
𝑎2  𝑒𝑟𝑓𝑐 (

𝑦 √𝑎2

2√𝑡
+ √𝑎5𝑡)]   (2.31) 

𝑓10(𝑦, 𝑡) =
1

2
[𝑒−𝑦√𝑘𝑟 𝑆𝑐 𝑒𝑟𝑓𝑐 (

𝑦√𝑆𝑐

2√𝑡
− √𝑘𝑟 𝑡) + 𝑒𝑦√𝑘𝑟 𝑆𝑐 𝑒𝑟𝑓𝑐 (

𝑦√𝑆𝑐

2√𝑡
+ √𝑘𝑟 𝑡)]  (2.32) 

𝑓11(𝑦, 𝑡) =
1

2
[(𝑡 −

𝑦 √𝑆𝑐

2√𝑘𝑟
) 𝑒−𝑦√𝑆𝑐 𝑘𝑟 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
− √𝑘𝑟 𝑡)       

                     + (𝑡 +
𝑦 √𝑆𝑐

2√𝑘𝑟
) 𝑒𝑦√𝑆𝑐 𝑘𝑟 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
+ √𝑘𝑟 𝑡)]     (2.33) 

𝑓12(𝑦, 𝑡) =
𝑒−𝑎13𝑡

2
[𝑒−𝑦√𝑆𝑐(𝑘𝑟−3) 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
− √(𝑘𝑟 − 𝑎13)𝑡)    

                       +𝑒𝑦√𝑆𝑐(𝑘𝑟−𝑎13) 𝑒𝑟𝑓𝑐 (
𝑦 √𝑆𝑐

2√𝑡
+ √(𝑘𝑟 − 𝑎13)𝑡)]     (2.34)    

𝑓13(𝑦, 𝑡) =
𝑒𝑎5𝑡

2
[𝑒−𝑦√𝑆𝑐(𝑘𝑟+𝑎5) 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
− √(𝑘𝑟 + 𝑎5)𝑡)       

                       +𝑒𝑦√𝑆𝑐(𝑘𝑟+𝑎5) 𝑒𝑟𝑓𝑐 (
𝑦 √𝑆𝑐

2√𝑡
+ √(𝑘𝑟 + 𝑎5)𝑡)]     (2.35) 

 

2.5 Results and Discussion: 

Inspected fluid velocity, temperature and concentration for various parameters like Magnetic field 

parameter, Grashof number, mass Grashof number, thermal radiation parameter, chemical reaction 

parameter, Soret effect and Prandtl number. For plotting graphs as shown in figures 2.2 – 2.13, 

change is made in values of one parameter at a time and all remaining parameters remain fixed. 

The Figure 2.2 shows effect of Magnetic field parameter 𝑀 on velocity profiles for both velocity 

conditions. It is seen that velocity decreases with increment in 𝑀 values. Lorentz force induced on 

boundary is the reason for such decrement. Permeability of porous medium 𝑘 has positive impact 

on both velocity conditions which is reflected in Figure 2.3. Figure2.4 indicates that different 

values of Schmidt number 𝑆𝑐 have reciprocal effect on concentration. Figure 2.5 and Figure 2.6 

are about effects of radiation 𝑅 on velocity and temperature for both ramped and constant velocity 

conditions. It can be observed that temperature and velocity have affirmative correlation. The 

increment in temperature with increment of radiation is natural and when we increase radiation, 

particles which holds the bonding cracks, which induces velocity. 
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Figure 2.2: Velocity profile for different values of 𝑦 and 𝑀 for 𝑘 = 0.8, 𝑃𝑟 = 10,  
𝑆𝑐 = 6.2, 𝐺𝑟 = 3, 𝐺𝑚 = 2, 𝑅 = 5, 𝑘𝑟 = 10, 𝑆𝑟 = 5 

 

Figure 2.3.: Velocity profile for different values of 𝑦 and 𝑘 for 𝑀 = 5, 𝑃𝑟 = 10,  
𝑆𝑐 = 6.2, 𝐺𝑟 = 3, 𝐺𝑚 = 2, 𝑅 = 5, 𝑘𝑟 = 10, 𝑆𝑟 = 5 
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Figure 2.4: Velocity profile for different values of 𝑦 and 𝑆𝑐 for 𝑀 = 5, 𝑘 = 0.8, 

 𝑃𝑟 = 10, 𝐺𝑟 = 3, 𝐺𝑚 = 2, 𝑅 = 5, 𝑘𝑟 = 10, 𝑆𝑟 = 5 

 

Figure 2.5: Velocity profile for different values of 𝑦 and 𝑅 for 𝑀 = 5, 𝑘 = 0.8, 𝑃𝑟 = 10,  
𝑆𝑐 = 6.2, 𝐺𝑟 = 3, 𝐺𝑚 = 2, 𝑘𝑟 = 10, 𝑆𝑟 = 5 
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Figure 2.6: Temperature profile for different values of 𝜃 and 𝑅 for 𝑀 = 5, 𝑘 = 0.8, 
 𝑃𝑟 = 10, 𝑆𝑐 = 6.2, 𝑆𝑟 = 3, 𝐺𝑚 = 2, 𝑘𝑟 = 10, 𝑆𝑟 = 5 

 

Figure 2.7: Velocity profile for different values of 𝑦 and 𝐾𝑟 for 𝑀 = 5, 𝑘 = 0.8,  
 𝑃𝑟 = 10, 𝑆𝑐 = 6.2, 𝐺𝑟 = 3, 𝐺𝑚 = 2, 𝑘𝑟 = 10, 𝑆𝑟 = 5 
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Figure 2.8: Concentration profile for different values of 𝐶 and 𝐾𝑟 for 𝑀 = 5, 𝑘 = 0.8, 
 𝑃𝑟 = 10, 𝑆𝑐 = 6.2, 𝐺𝑟 = 3, 𝑔𝑚 = 2, 𝑅 = 5, 𝑆𝑟 = 5 

 

Figure 2.9: Velocity profile for different values of 𝑦 and 𝑆𝑟 for 𝑀 = 5, 𝑘 = 0.8, 𝑃𝑟 = 10,  
𝑆𝑐 = 6.2, 𝐺𝑟 = 3, 𝐺𝑚 = 2, 𝑅 = 5, 𝑘𝑟 = 10 
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Figure 2.10: Concentration profile u for different values of 𝐶 and 𝑆𝑟 for 𝑀 = 5, 𝑘 = 0.8,  
𝑃𝑟 = 10, 𝑆𝑐 = 6.2, 𝐺𝑟 = 3, 𝐺𝑚 = 2, 𝑅 = 5, 𝑘𝑟 = 10 

 

Figure 2.11: Velocity profile for different values of 𝑦 and 𝐺𝑟 for 𝑀 = 5, 𝑘 = 0.8, 𝑃𝑟 = 10, 
 𝑆𝑐 = 6.2, 𝐺𝑚 = 2, 𝑅 = 5, 𝑘𝑟 = 10, 𝑆𝑟 = 5 
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Figure 2.12: Velocity profile for different values of 𝑦 and 𝐺𝑚 for 𝑀 = 5, 𝑘 = 0.8,  
𝑃𝑟 = 10, 𝑆𝑐 = 6.2, 𝐺𝑟 = 3, 𝑅 = 5, 𝑘𝑟 = 10, 𝑆𝑟 = 5 

 

Figure 2.13: Temperature profile for different values of 𝜃 and 𝑃𝑟 for 𝑀 = 5, 𝑘 = 0.8, 
 𝑆𝑐 = 6.2, 𝐺𝑟 = 3, 𝐺𝑚 = 2, 𝑅 = 5, 𝑘𝑟 = 10, 𝑆𝑟 = 5 
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The results of Chemical reaction parameter 𝐾𝑟 on velocity and concentration profiles are shown 

in Figure 2.7 and Figure 2.8 respectively. It is evident from graphs that 𝐾𝑟 limits both the velocity 

and concentration. Buoyancy force on particle is the reason for such fall. It is seen from Figure 2.9 

and Figure 2.10 that when we increase 𝑆𝑟, velocity and concentration also increased. Effects of 

Grashof number 𝐺𝑟 and mass Grashof number 𝐺𝑚 has positive impact on velocity as described in 

Figure 2.11 and Figure2.12. Figure 2.13 shows that increment in 𝑃𝑟 will reduce the temperature. 

2.6 Conclusion: 
 

The concept of this research is to get analytical solution for MHD flow of Non-Newtonian fluid 

passing through a vertical plate with ramped fluid velocity and observe various effects like effects 

of radiation, chemical reaction and Soret effect. Results are derived for constant and variable 

velocity.  

Key remarks for the conclusions can be summarized as: 

• Magnetic field parameter 𝑀, and chemical reaction parameter 𝐾𝑟 have impeding effects 

with constant or ramped velocity. 

• Permeability of porous medium 𝑘 and Thermal radiation parameter 𝑅 have affirmative 

correlation with velocity. 

• Temperature of the fluid also have positive impact on thermal radiation parameter 𝑅 but, 

negative impact with 𝑃𝑟. 

• Concentration profile decreases if there is increment in chemical reaction parameter 𝐾𝑟. 


