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HEAT GENERATION EFFECTS ON SECOND GRADE FLUID FLOW  

 

Various substances like such as penetrating muds, clay coatings, oils, grease, molten polymers and 

emulsions are regarded as non-Newtonian fluids. A single model cannot be employed to justify 

properties of non-Newtonian fluids completely, they are more complicated compared to 

Newtonian fluids and this makes classification of non-Newtonian fluids tough. The present chapter 

is concerned with the study of heat generation/absorption effect on unsteady natural convective 

MHD Second grade fluid flow past an oscillating vertical plate in presence of thermal radiation 

and chemical reaction.  

 

3.1 Introduction of the problem: 

On broader sense, classification is given by (i) shear stress depending only on the rate of shear; (ii) 

relation between shear stress and shear rate depends on time; (iii) the visco-elastic fluids, which 

possess both elastic and viscous properties. Thus different non-Newtonian models are proposed.   

In the problems having slower flow in viscoelastic sense, the second order constitutive equations 

are used in calculations.  

The equation of motion of incompressible second grade fluids, in general, is of higher order than 

the Navier–Stokes equation. The Navier–Stokes equation is a second-order partial differential 

equation, but the equation of motion of a second-order fluid is a third-order partial differential 

equation. A marked difference between the case of the Navier–Stokes theory and that for fluids of 

second grade is that, ignoring the non-linearity in the Navier–Stokes equation does not lower the 

order of the equation, however, ignoring the higher order non-linearities in the case of the second 

grade fluid, reduces the order of the equation. Tan and Masuoka [160] considered the Stokes’ first 

problem for a second grade fluid and Rashidi et al. [78] dealt with squeezing flow of a second-

grade fluid. Hayat et al. [149] studied MHD flow of second grade fluid in porous channel whereas 

Hatat et al.  [146] solved MHD transient rotating flow of second grade fluid. Hayat et al. [152] 

derived influenced of heat transfer in second grade fluid.  

In a comprehensive sort of industrial applications, necessary temperature modifications around the 

adjoining fluid and the surface does exist. These involve the consideration of heat generation that 

effects heat transfer. The presence and inference of heat generation gained substantial interest, 
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largely as it bears importance in engineering systems, such as thermal insulation, cooling of atomic 

reactors and geothermal supplies etc. 

 

3.2 Novelty of the chapter: 

Purpose of this chapter is to investigate exact solution of heat generation/absorption effect on 

unsteady natural convective MHD Second grade fluid flow. Such study may find application in 

fire dynamics in insulations and geothermal energy systems etc. 

 

3.3 Mathematical Formulation of the Problem: 

Fig. 1 gives sketch of the physical problem. Coordinate system is selected in such a way that 𝑥′ −

𝑎𝑥𝑖𝑠 is taken as the wall which is in the vertical direction and 𝑦′ − 𝑎𝑥𝑖𝑠  is horizontal direction. 

 

Figure 3.1: Physical sketch of the problem 

 

As described in that figure, there exists a magnetic field with strength 𝐵0 in transverse direction to 

the flow. Initially, at time 𝑡′ ≤ 0 , both the fluid and the plate are at rest having a constant 

temperature 𝑇′
∞  and the surface concentration is assumed to be 𝐶′

∞  respectively. At time 𝑡′ >

0, the temperature of the plate is either increased or decreased to 𝑇′
∞ + (𝑇′

𝑤 − 𝑇′
∞)  𝑡′

 𝑡0
⁄  

when 𝑡′ ≤   𝑡0 . For  𝑡′ > 𝑡0 , it is maintained constant 𝑇′
𝑤. Mass transfer level at the wall surface 

is elevated or reduced to 𝐶′
∞  +  (𝐶′

𝑤 − 𝐶′
∞)  𝑡′

 𝑡0
⁄  when 𝑡′ ≤   𝑡0 . For 𝑡′ > 𝑡0 it is maintained 
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constant 𝐶′
𝑤. Viscous dissipation effect, induced magnetic and electrical field effects are 

neglected. In MHD flow one of the body force term is the Lorentz force. The formula of Lorentz 

force is 𝐽 × 𝐵 = 𝜎𝐵0
2𝑉, where B is the total magnetic field, 𝐽 is the current density, 𝜎 is electrical 

conductivity of the fluid and 𝑉 is the velocity vector field. 

 

Governing equations of Boussinesq’s approximation under above assumptions are as follows. 

𝜕𝑢′

𝜕𝑡′ = (𝜈 +
𝛼1

𝜌

𝜕

𝜕𝑡′)
𝜕2𝑢′

𝜕𝑦′2 + 𝑔𝛽′
𝑇

(𝑇′ − 𝑇′
∞) −

𝜎𝐵0
2

𝜌
𝑢′ −

∅

𝑘1
′ (𝜈 +

𝛼1

𝜌

𝜕

𝜕𝑡′) 𝑢′ + 𝑔𝛽′
𝐶

(𝐶′ − 𝐶′
∞) 

            (3.1) 

𝜕𝑇′

𝜕𝑡′
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 −
1

𝜌𝑐𝑝

𝜕𝑞𝑟
′

𝜕𝑦′
+

𝑄0

𝜌𝑐𝑝
(𝑇′ − 𝑇′

∞)        (3.2)  

𝜕𝐶′

𝜕𝑡′ = 𝐷𝑀
𝜕2𝐶′

𝜕𝑦′2 − 𝑘2
′  (𝐶′ − 𝐶′

∞)         (3.3) 

With following initial and boundary conditions: 

𝑢′ = 0,     𝑇′ = 𝑇′
∞,   𝐶′ =  𝐶′

∞;  𝑎𝑠   𝑦′ ≥ 0 𝑎𝑛𝑑   𝑡′ ≤ 0  

𝑢′ =
𝑈0 cos 𝜔′𝑡′

𝑈0 sin 𝜔′𝑡′ 𝑎𝑠
 𝑡′ > 0 𝑎𝑛𝑑 𝑦′ = 0  ,   

𝑇′ = {
𝑇′

∞ + (𝑇′
𝑤 − 𝑇′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑇′
𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

 ,  

𝐶′ = {
𝐶′

∞ + (𝐶′
𝑤 − 𝐶′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝐶′
𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

;  𝑦′ = 0  

𝑢′ → 0, 𝑇′ → 𝑇′
∞,   𝐶′ → 𝐶′

∞;  𝑎𝑠  𝑦′ → ∞ 𝑎𝑛𝑑 𝑡′ ≥ 0      (3.4) 

Using the Rosseland approximation [127], the radiative heat flux term is given by.  

 

𝑞𝑟
′ = −

4𝜎∗

3𝑘∗

𝜕𝑇′4

𝜕𝑦′
           (3.5) 

Where σ∗ and k∗ are Stefan Boltzmann constant and mean absorption coefficient respectively. 

Assuming that the temperature difference between the fluid within the boundary layer and free 

stream is small, so 𝑇′4
 can be expressed as a linear function of the temperature, we expand 𝑇′4

 

about 𝑇∞
′ about Taylor's series and neglecting higher order terms, we get 

 

𝑇′4
≅ 4𝑇′

∞
3

𝑇′ − 3𝑇′
∞
4

          (3.6) 

Thus we have  
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𝜕𝑞𝑟
′

𝜕𝑦′ = −
16𝜎∗𝑇′

∞
3

3𝑘∗

𝜕2𝑇′

𝜕𝑦′2           (3.7) 

Using equations (3.6) and (3.7) in equation (3.3), we get 

𝜕𝑇′

𝜕𝑡′
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 +
1

𝜌𝑐𝑝

16𝜎∗𝑇′
∞
3

3𝑘∗

𝜕2𝑇′

𝜕𝑦′2 +
𝑄0

𝜌𝑐𝑝
(𝑇′ − 𝑇′

∞)       (3.8) 

Introducing the following dimensionless quantities: 

 

𝑦 =
𝑈0𝑦′

𝑣 
, 𝑢 =

𝑢′

𝑈0
, 𝑡 =

𝑡′𝑈0
2

𝑣
 ,   𝜃 =

(𝑇′−𝑇′
∞)

(𝑇′
𝑤−𝑇′

∞)
, 𝐶 =

(𝐶′−𝐶′
∞)

(𝐶′
𝑤−𝐶′

∞)
  

Using equation (3.8) and dimensionless quantities, equations (3.1 – 3.4) becomes 

 

𝜕2𝑢

𝜕𝑦2 + 𝛼
𝜕3𝑢

𝜕𝑦2𝜕𝑡
− 𝑐

𝜕𝑢

𝜕𝑡
− 𝑏𝑢 + 𝐺𝑟 𝜃 + 𝐺𝑚 𝐶 = 0       (3.9) 

𝜕𝜃

𝜕𝑡
=

1+𝑅

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 + 𝐻𝜃                                        (3.10) 

𝜕𝐶

𝜕𝑡
=

1

𝑠𝑐

𝜕2𝐶

𝜕𝑦2 − 𝑘𝑟𝐶          (3.11) 

With initial and boundary conditions 

𝑢 = 𝜃 =  𝐶 = 0 ,            𝑦 ≥ 0, 𝑡 ≤ 0  

𝑢 = 𝑐𝑜𝑠𝜔𝑡/𝑠𝑖𝑛𝜔𝑡, 𝜃 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    , 𝐶 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

     𝑎𝑡  𝑦 = 0, 𝑡 > 0  

𝑢 → 0, 𝜃 → 0, 𝐶 → 0    𝑎𝑡  𝑦 → ∞, 𝑡 > 0         (3.12) 

Where, 

𝛼 =
𝑈0

2𝛼1

𝜌 𝑣2 
, 𝐺𝑟 =

 𝑔𝑣𝛽′
𝑇

(𝑇′
𝑤 − 𝑇′

∞)

𝑈0
3 , 𝑀2 =

𝜎𝐵0
2 𝑣

𝜌𝑈0
2  ,

1

𝑘1
=

𝑣2 ∅

𝑈0
2𝑘′

1

,   

𝐺𝑚 =
𝑣 𝑔𝛽′

𝐶
(𝐶′

𝑤 − 𝐶′
∞)

𝑈0
3 , 𝑃𝑟 =

𝜌𝑣𝐶𝑝 

𝑘
, 𝑅 =

16𝜎∗𝑇′
∞
3

3𝑘 𝑘∗
, 𝐻 =

𝑄0𝑣

𝑈0
2𝜌𝐶𝑝

, 𝑆𝑐 =
𝑣

𝐷𝑀
,   

𝐾𝑟 =  
𝑣 𝑘2

′

𝑈0
2 , 𝑐 = 1 +

𝛼

𝑘1
, 𝑏 = 𝑀2 +

1

𝑘1
 

 

3.4 Solution of the Problem: 

Exact solution for fluid velocity; Temperature and Concentration is obtained for equations (3.9) to 

(3.11) with initial and boundary condition (3.12) using the Laplace transform technique. 
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3.4.1 Solution of the Problem for ramped wall temperature and ramped surface 

concentration: 

𝜃(𝑦, 𝑡) = 𝑓7(𝑦, 𝑡, −𝐻, 𝑎1) − 𝑓7(𝑦, 𝑡 − 1, 𝐻, 𝑎1)𝐻(𝑡 − 1)      (3.13) 

𝐶(𝑦, 𝑡) = 𝑓7(𝑦, 𝑡, 𝐾𝑟, 𝑎2) − 𝑓7(𝑦, 𝑡 − 1, 𝐾𝑟, 𝑎2)𝐻(𝑡 − 1)      (3.14) 

𝑢(𝑦, 𝑡) = [𝑔1(𝑦, 𝑡) + 𝑔2(𝑦, 𝑡, −𝐻, 𝑎1) − 𝑔2(𝑦, 𝑡 − 1, −𝐻, 𝑎1)𝐻(𝑡 − 1) + 𝑔3(𝑦, 𝑡, 𝐾𝑟, 𝑎2)   

                   +𝑔3(𝑦, 𝑡 − 1, 𝐾𝑟, 𝑎2)𝐻(𝑡 − 1)]       (3.15) 

3.4.2 Solution of the Problem for isothermal temperature and ramped surface concentration: 

In order to understand effects of ramped temperature of the plate on the fluid flow, we must 

compare our results with isothermal temperature. In this case, the initial and boundary conditions 

are the same excluding Eq. (3.12) that becomes θ = 1 at y = 0, t ≥ 0 . 

𝜃(𝑦, 𝑡) = 𝑓3(𝑦, 𝑡, −𝐻, 𝑎1)          (3.16) 

𝐶(𝑦, 𝑡) = 𝑓7(𝑦, 𝑡, 𝐾𝑟, 𝑎2) − 𝑓7(𝑦, 𝑡 − 1, 𝐾𝑟, 𝑎2)𝐻(𝑡 − 1)      (3.17) 

𝑢(𝑦, 𝑡) = [𝑔1(𝑦, 𝑡) + 𝑔4(𝑦, 𝑡, −𝐻, 𝑎1) + 𝑔3(𝑦, 𝑡, 𝐾𝑟, 𝑎2) + 𝑔2(𝑦, 𝑡 − 1, 𝐾𝑟, 𝑎2)𝐻(𝑡 − 1)]  

            (3.18) 

Where 

𝑓1(𝑦, 𝑡, 𝑎) = 𝐿−1 (
𝑒

√𝑐 𝑠+𝑏
𝛼 𝑠+1 

𝑠+𝑎
)         (3.19) 

𝑓2(𝑦, 𝑡) =
𝑐

𝛼
𝑒−𝑡

𝛼⁄ ∫ 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑧
)

∞

0
𝑒−𝑐 𝑧

𝛼 ⁄ 𝐼0 (
2

𝛼
√(𝑐 − 𝛼𝑏)𝑧𝑡) 𝑑𝑧    

                   +
𝑏

𝛼
∫ ∫ 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑧
) 𝑒

−𝑐𝑧+𝑠

𝛼
𝑡

0

∞

0
𝐼0 (

2

𝛼
√(𝑐 − 𝛼𝑏)𝑧𝑠)  𝑑𝑠 𝑑𝑧    (3.20) 

𝑓3(𝑦, 𝑡, 𝑎, 𝑏 ) =
1

2
[𝑒−𝑦√𝑏 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
− √𝑏𝑡) + 𝑒𝑦√𝑏  𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
+ √𝑏𝑡)]    (3.21) 

𝑓4(𝑡) = 𝑎9 + 𝑎10 𝑒𝑏1 𝑡 + 𝑎11 𝑒𝑏2 𝑡          (3.22) 

𝑓5(𝑡) = 𝑎12 + 𝑎13 𝑒𝑏3 𝑡 + 𝑎14 𝑒𝑏4 𝑡          (3.23) 

𝑓6(𝑦, 𝑡, 𝑎, 𝑏) = 𝑓2(𝑦, 𝑡) − 𝑓3(𝑦, 𝑡, 𝑎, 𝑏 )        (3.24) 

𝑓7(𝑦, 𝑡, 𝑎, 𝑏) =
1

2
[(𝑡 −

𝑦

2√𝑏
) 𝑒−𝑦√𝑏 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
− √𝑏𝑡) + (𝑡 +

𝑦

2√𝑏
) 𝑒𝑦√𝑏 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑡
+ √𝑏𝑡)]  

            (3.25) 

𝑓8(𝑡) = 𝑎15 𝑒𝑏1 𝑡 + 𝑎16 𝑒𝑏2 𝑡          (3.26) 

𝑔2(𝑦, 𝑡, 𝑎, 𝑏) = ∫ 𝑓6(𝑦, 𝑢, 𝑎, 𝑏)𝑓4(𝑡 − 𝑢)
𝑡

0
 𝑑𝑢        (3.27) 

𝑔3(𝑦, 𝑡, 𝑎, 𝑏) = ∫ 𝑓6(𝑦, 𝑢, 𝑎, 𝑏)𝑓5(𝑡 − 𝑢)
𝑡

0
 𝑑𝑢        (3.28) 
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𝑔4(𝑦, 𝑡, 𝑎, 𝑏) = ∫ 𝑓6(𝑦, 𝑢, 𝑎, 𝑏)𝑓8(𝑡 − 𝑢)
𝑡

0
 𝑑𝑢        (3.29) 

 

3.4.3 Nusselt Number, Sherwood Number and Skin friction: 

Expressions of Nusselt Number Nr, Sherwood Number Sh and Skin friction 𝜏 are calculated from 

equations (3.13 – 3.18) using the relation 

𝑁𝑟 = − (
𝜕𝜃

𝜕𝑦
)

𝑦=0
, 𝑠ℎ = − (

𝜕𝐶

𝜕𝑦
)

𝑦=0
𝑎𝑛𝑑 𝜏𝑤(𝑡) = − 𝜏(𝑦, 𝑡) 𝑎𝑡 𝑦 = 0, 𝜏(𝑦, 𝑡) = (1 + 𝛼

𝜕

𝜕𝑡
)

𝜕𝑢

𝜕𝑦
|

𝑦=0
 

            (3.30) 

3.4.3.1 For ramped wall temperature and ramped surface concentration: 

𝑁𝑟 = 𝐼7(𝑡, −𝐻, 𝑎1) − 𝑓7(𝑡 − 1, 𝐻, 𝑎1)𝐻(𝑡 − 1)       (3.31) 

𝑆ℎ =  𝐼7(𝑡, 𝐾𝑟, 𝑎2) − 𝑓7(𝑡 − 1, 𝐾𝑟, 𝑎2)𝐻(𝑡 − 1)       (3.32) 

𝜕𝑢

𝜕𝑦
|

𝑦=0
= [𝐼9(𝑡) + 𝐼10(𝑡, −𝐻, 𝑎1) − 𝐼10(𝑡 − 1, −𝐻, 𝑎1)𝐻(𝑡 − 1) + 𝐼11(𝑡, 𝐾𝑟, 𝑎2)         

                  +𝐼11(𝑡 − 1, 𝐾𝑟, 𝑎2) 𝐻(𝑡 − 1)]       (3.33) 

3.4.3.2 For isothermal temperature and ramped surface concentration: 

𝑁𝑟 = 𝐼3(𝑡, −𝐻, 𝑎1)           (3.34) 

𝑆ℎ = 𝐼7(𝑡, 𝐾𝑟, 𝑎2) − 𝐼7(𝑡 − 1, 𝐾𝑟, 𝑎2)𝐻(𝑡 − 1)       (3.35) 

𝜕𝑢

𝜕𝑦
|

𝑦=0
= [𝐼9(𝑡) + 𝐼12(𝑡, −𝐻, 𝑎1) + 𝐼11(𝑡, 𝐾𝑟, 𝑎2) + 𝐼11(𝑡 − 1, 𝐾𝑟, 𝑎2)𝐻(𝑡 − 1)]  (3.36) 

 

3.5 Results and Discussion: 

Graphs for the fluid velocity, temperature and concentration for several values of Second grade 

fluid with diffusivity 𝛼, Magnetic field parameter 𝑀, thermal radiation parameter 𝑅, chemical 

reaction parameter 𝐾𝑟 and Heat generation/absorption parameter 𝐻 described in Figures. 3.2–3.10. 

Figure 3.2 describes effect of thermal diffusivity 𝛼 on velocity for constant and variable wall 

temperature. It is seen that velocity falls with increment in values of 𝛼. It is also observed that, the 

boundary layer thickness appraises with reduction in diffusivity.  
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Figure 3.2: Velocity profile for different values of 𝑦 and 𝛼 at 𝑘 =  0. 8, 𝑀 =  5, 𝑃𝑟 =  7, 
𝑆𝑐 =  0. 66, 𝐺𝑚 =  4, 𝐺𝑟 =  5, 𝐾𝑟 =  5, 𝐻 =  3, 𝑅 =  5 𝑎𝑛𝑑 𝑡 =  0. 4 

 

Figure 3.3: Velocity profile for different values of 𝑦 and 𝑀 at 𝑘 =  0. 8, 𝛼 =  0. 5, 𝑃𝑟 =  7, 
  𝑆𝑐 =  0. 66, 𝐺𝑚 =  4, 𝐺𝑟 =  5, 𝐾𝑟 =  5, 𝐻 =  3, 𝑅 =  5 𝑎𝑛𝑑 𝑡 =  0. 4 
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Figure 3.4: Velocity profile for different values of 𝑦 and 𝑘 at 𝑀 =  5, 𝛼 =  0. 5, 𝑃𝑟 =  7,  
𝑆𝑐 =  0. 66, 𝐺𝑚 =  4, 𝐺𝑟 =  5, 𝐾𝑟 =  5, 𝐻 =  3, 𝑅 =  5 𝑎𝑛𝑑 𝑡 =  0. 4 

 

 

Figure 3.5: Velocity profile for different values of 𝑦 and 𝑅 at 𝑀 =  5, 𝛼 =  0. 5, 𝑃𝑟 =  7, 
 𝑆𝑐 =  0. 66, 𝐺𝑚 =  4, 𝐺𝑟 =  5, 𝐾𝑟 =  5, 𝐻 =  3, 𝑘 =  0. 8 𝑎𝑛𝑑 𝑡 =  0. 4 
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Figure 3.6: Temperature profile for different values of 𝑦 and 𝑅 at 𝑃𝑟 =  7, 𝐻 =  3 𝑎𝑛𝑑 𝑡 =  0. 4 

 

Figure 3.7: Velocity profile for different values of 𝑦 and 𝐻 at 𝑀 =  5, 𝛼 =  0. 5, Pr =  7, 
 𝑆𝑐 =  0. 66, 𝐺𝑚 =  4, 𝐺𝑟 =  5, 𝐾𝑟 =  5, 𝑅 =  5, 𝑘 =  0. 8 𝑎𝑛𝑑 𝑡 =  0. 4 
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Figure 3.8: Temperature profile for different values of 𝑦 and 𝐻 at 𝑃𝑟 =  7, 𝑅 =  5 𝑎𝑛𝑑 𝑡 =  0. 4  

 

Figure 3.9: Velocity profile for different values of 𝑦 and 𝐾𝑟 at 𝑀 =  5, 𝛼 =  0. 5, 𝑃𝑟 =  7,  
 𝑆𝑐 =  0. 66, 𝐺𝑚 =  4, 𝐺𝑟 =  5, 𝐻 =  3, 𝑅 =  5, 𝑘 =  0. 8 𝑎𝑛𝑑 𝑡 =  0. 4 
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Figure 3.10: Concentration profile for different values of 𝑦 and 𝐾𝑟 at 𝑆𝑐 =  0. 66, 𝑎𝑛𝑑 𝑡 =  0. 4. 

Figure 3.3 shows that Magnetic field parameter has negative impact on velocity for both thermal 

situations. This is due to Lorentz force on the fluid at boundary. Figure 3.4 reflects that in constant 

or variable temperature, Permeability of porous medium improves with velocity at entire 

boundary. Figure 3.5 and Figure 3.6 are about radiative impact on velocity and temperature for 

both isothermal and ramped thermal conditions. It is derived that velocity and temperature have 

positive correlation with thermal radiation. Temperature’s correlation is obvious whereas increase 

in velocity with radiation is due to generation of heat, bond holding components of particles are 

broken. Figure 3.7 and Figure 3.8 are graphs of heat generation/absorption coefficient 𝐻 on 

velocity and temperature. In both figures positive sign reflects the heat generation and negative 

sign means heat absorption. Heat generation obviously increases temperature which eventually 

increases flow of the fluid. So, if parameter of heat source is increased, there will be sudden rise 

in temperature. Results are very much supported physically as heat generation at the surface will 

increase porosity which rises fluid flow. Chemical reaction has a reverse impact on velocity and 

concentration for both thermal conditions as shown in Figure 3.9 and Figure 3.10. This means that 

when we increase values of 𝐾𝑟, buoyancy effect is reduced which eventually reduces 

concentration. Hence, flow is reduced.  
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Table 3.1 and table 3.2 validates Nusselt number and Sherwood number derived for different 

values by the values derived by seth et al. [24] and [25] respectively.  

 

Table 3.1: Comparison of Nusselt number with Ref. [24] at 𝑃𝑟 =  0.71 

𝑅 

∅

= −𝐻

/𝑃𝑟 𝑡 

Nusselt 

Number 

𝑁𝑢 for 

ramped 

temp. 

Ref [24] 

Nusselt 

Number 

𝑁𝑢 for 

ramped 

temp. 

Nusselt 

Number 𝑁𝑢 

for 

isothermal 

temp. Ref 

[24] 

Nusselt Number 𝑁𝑢 for 

isothermal temp. 

2 3 0.3 0.38368 0.3837 0.89492 0.8949 

2 3 0.5 0.55828 0.5583 0.85907 0.8591 

2 3 0.7 0.72887 0.7289 0.84872 0.8487 

2 1 0.5 0.44983 0.4498 0.56755 0.5675 

2 3 0.5 0.55828 0.5583 0.85907 0.8591 

2 5 0.5 0.65207 0.6521 1.09210 1.0921 

2 3 0.5 0.55828 0.5583 0.85907 0.8591 

4 3 0.5 0.43244 0.4324 0.66543 0.6654 

6 3 0.5 0.36548 0.3655 0.56239 0.5624 

 

Table 3.2: Comparison of Sherwood Number with Ref. [25] 

𝑡 𝐾𝑟 𝑆𝑐 

Sherwood 

Number 𝑆ℎ 

for ramped 

temp. Ref 

[25] 

Sherwood 

Number 𝑁𝑢 

for ramped 

temp. 

 

Sherwood 

Number 𝑆ℎ 

for 

isothermal 

temp. 

Ref [25] 

Sherwood Number 𝑁𝑢 for 

isothermal temp. 

 

0.3 0.2 0.22 0.295649 0.2956 0.525702 0.5257 

0.5 0.2 0.22 0.386593 0.3866 0.428415 0.4284 

0.7 0.2 0.22 0.463189 0.4632 0.379505 0.3796 

0.3 2.0 0.22 0.344659 0.3447 0.839945 0.8399 
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0.5 2.0 0.22 0.488076 0.4881 0.785973 0.7860 

0.7 2.0 0.22 0.625355 0.6254 0.757863 0.7579 

0.3 5.0 0.22 0.416933 0.4169 1.1897 1.1897 

0.5 5.0 0.22 0.628694 0.6287 1.12945 1.1294 

0.7 5.0 0.22 0.838894 0.8389 1.09522 1.0952 

 

3.6 Conclusion: 

The objective of this research is to obtain analytical solution for MHD flow in oscillating vertical 

plate through porous medium of second grade fluid and observe radiation, heat generation or 

absorption and chemical reaction effects. Results are derived for constant and variable temperature 

of the surface. Graphical description is done for important parameters behaviors on velocity, 

temperature and concentration. 

Key remarks for the conclusions can be summarized as follows. 

• Velocity, temperature and concentration in constant temperature and constant surface 

temperature is more than those in variable temperature and variable surface concentration. 

• Magnetic field parameter 𝑀, second grade parameter α and chemical reaction parameter 

𝐾𝑟 have retarding effects with velocity. 

• Thermal radiation parameter 𝑅, permeability of porous medium 𝑘 and heat generation 

parameter 𝐻 have positive impacts with velocity. 

• Temperature of the fluid has increase tendency with heat generation parameter 𝐻 and 

thermal radiation parameter 𝑅.  

• Concentration profile decreases if there is increment in chemical reaction parameter 𝐾𝑟. 


