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BROWNIAN MOTION AND THERMOPHORESIS EFFECTS ON 

VISCOELASTIC FLUID FLOW 

 

There are several physical and practical situations that are directly related to fluid flow and heat 

transfer produced by stretching/shrinking sheet. The uses of such types of mechanisms are 

involved in industrial and engineering simulations of fluid transport due to stretching/shrinking. 

This investigation embraces the study two-dimensional viscoelastic fluid flow over a stretchable 

surface. The analysis is performed considering Brownian motion, chemical reaction, and 

thermophoresis into account.  

 

5.1 Introduction of the problem: 

Viscoelastic fluid behavior is a type of non-Newtonian fluid formed by a viscous component and 

an elastic one. Examples of viscoelastic fluids are paints, some biological fluids, and DNA 

suspensions, etc. The importance of viscoelastic A number of features make the viscoelastic fluids 

very interesting and of industrial importance. A proper understanding of viscoelasticity is key for 

industrial applications. Viscoelastic fluids are common in very important applications [121, 125, 

and 163]. Research works in the MHD have been advanced significantly during the last few years 

in natural sciences and engineering disciplines after the pioneer work of Hartmann [52] in liquid 

metal duct flows under the influence of an external magnetic field. Recently, many researchers 

done works on MHD flow of viscoelastic fluid [7, 110, and 161]. The radiation effects become 

much vital when the difference between the surface and the ambient temperatures is extensive. It 

has wide applications in manufacturing industries, such as the design of reliable equipment, 

nuclear plants, gas turbines, power plants, and various propulsion devices for aircraft and missiles. 

Further, the radiation effects on MHD convective flow problems are more significant in electrical 

power generation, solar power technology, and astrophysical ground. 

Recently, Mittal and Kataria [5] studied fluid flow in the presence of radiation whereas,  Non-

linear thermal radiation effects on MHD flow with heat and mass transfer are also important in 

engineering fields. The effects of non-linear thermal radiation on MHD flow with different fluid 

are discussed in Ref. [33, 48]. The study of chemical reaction procedures is beneficial for 

improving a number of chemical technologies, such as food processing, polymer production, and 

manufacturing of ceramics or glassware. Kataria and Patel [43] studied the effects of chemical 
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reaction on magnetohydrodynamic Casson fluid flow over an exponentially accelerated vertical 

plate. Hayat et al. [145] and Ramesh [21] considered chemical reaction effects on viscoelastic fluid 

flow problems. Owing to the significance of thermal radiation and chemical reactions effects on 

fluid flow, extensive research works [104, 108, 139, and 142] are carried out. Recently, Jena et al. 

[123] studied the Chemical reaction effect on viscoelastic fluid flow over a vertical stretching sheet 

whereas, Imtiaz et al. [75] discussed homogeneous-heterogeneous reactions in MHD radiative 

flow due to a curved stretching surface. There are several physical and practical situations that are 

directly related to fluid flow and heat transfer produced by stretching/shrinking sheet. The uses of 

such types of mechanisms are involved in industrial and engineering simulations of fluid transport 

due to stretching/shrinking. Such type of fluid flow models is widely discussed and summarized 

by [3, 4, and 14]. 

 

5.2 Novelty of the chapter: 

To the best of the knowledge, till date there are no attempts to model, no investigation has been 

made which provides the analytic expression for the steady two-dimensional MHD flow of 

viscoelastic fluid over stretching/shrinking sheet considering the effects of Brownian motion, 

thermal radiation, and chemical reaction. Homotopy analysis method [122] is used for finding 

solutions to the governing equations. 

 

5.3 Mathematical Formulation of the Problem: 

Two-dimensional incompressible steady viscoelastic fluid over a stretching/shrinking surface is 

considered. The origin is taken as stagnation point. Plate is assumed to be along 𝑥 − 𝑎𝑥𝑖𝑠, and is 

subject to forces of magnitude 𝑏𝑥 applied in opposite directions keeping origin fixed which is 

represented in Figures 5.1. Flow is along positive y direction. Components of velocity along 𝑥 and 

𝑦 − 𝑎𝑥𝑖𝑠 are assumed to be 𝑢 and 𝑣 respectively.  Here we assign a magnetic field perpendicular 

to the stretching sheet.  
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Figure 5.1: Physical sketch of the problem 

 

The governing equations are: 

 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                                                                 (5.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝑈∞

𝑑𝑈∞

𝑑𝑥
+ 𝑣

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵0

2

𝜌
(𝑢 + 𝑘0𝑣

𝜕𝑢

𝜕𝑦
) −  𝑘0 (𝑢2 𝜕2𝑢

𝜕𝑥2 + 𝑣2 𝜕2𝑢

𝜕𝑦2 + 2𝑢𝑣
𝜕2𝑢

𝜕𝑥𝜕𝑦
)         (5.2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝑐𝑝
(

𝜕2𝑇

𝜕𝑦2) −
1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦
+𝐷𝐵 (

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
) + (

𝐷𝑇

𝑇∞
) (

𝜕𝑇

𝜕𝑦
)

2

                                                     (5.3)        

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= (

𝐷𝑇

𝑇∞
) (

𝜕2𝑇

𝜕𝑦2) − 𝑘2
′ (𝐶 − 𝐶∞) + 𝐷𝐵 (

𝜕2𝐶

𝜕𝑦2)                                                                 (5.4)                                                                           

                                                        

Where 𝑈∞ = 𝑎𝑥, 𝑎 > 0 is the straining velocity of the flow is the straining constant, where 𝑢  and 

𝑣 are the velocity component in the 𝑥 and 𝑦 directions. 𝑇∞ and 𝐶∞ are denoted for the ambient 

values of 𝑇 and 𝐶, when y tends towards infinity. 

The boundary conditions for the above defined model are: 

𝑢 = 𝑈𝑤 = 𝑏𝑥,   𝑣 = 0,   − 𝑘
𝜕𝑇

𝜕𝑦
= ℎ(𝑇𝑤 − 𝑇),   𝐶 = 𝐶𝑤    at 𝑦 = 0, 

𝑢 → 𝑈∞ = 𝑎𝑥, 𝑇 → 𝑇∞,   𝐶 → 𝐶∞, 𝑎𝑠 𝑦 → ∞.                                                                            (5.5)                                                                                                                 

Where the temperature has linear relationship with temperature gradient,   𝑇𝑤 and 𝐶𝑤 are the 

temperature of the fluid and concentration at the wall. 

Heat flux is:  
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𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
                                                                                                                             (5.6) 

The velocity components 𝑢  and 𝑣 are given as: 

 𝑢 = 𝑏𝑥𝑓′(𝜂), 𝑣 = −√𝑏𝝊𝑓(𝜂)                                                                                                               (5.7) 

As per usual, the stream function 𝜓 is defined as 𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −

𝜕𝜓

𝜕𝑥
  so that Eq. (5.1) is satisfied. 

We introduce the following dimensionless quantities: 

𝜂 = √
𝑏

𝜐
𝑦,    𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
,    𝐶(𝜂) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
,    𝜓 = √𝑏𝜐𝑥𝑓(𝑛)                                               (5.8)                                                                                                                                

Now substituting Eqs. (5.6) - (5.8) into Eqs. (5.2) - (5.4), we get the system of non-linear ordinary 

differential equations as follows: 

𝑓′′′ − 𝐾(𝑓2𝑓′′′ − 2𝑓𝑓′𝑓′′) + 𝑀2𝐾𝑓𝑓′′ + 𝑓𝑓′′ − 𝑀2𝑓′ = 𝑓′2
− 𝑠2,                                     (5.9) 

(1 + 𝑅)𝜃′′ + Pr(𝑓𝜃′ + 𝑁𝑏𝜃′𝐶′ + 𝑁𝑡𝜃′2
) = 0,                                                                                         (5.10)  

𝐶′′ + 𝐿𝑒𝑃𝑟(𝑓𝐶′ − 𝐾𝑟 𝐶) +
𝑁𝑡

𝑁𝑏
𝜃′′ = 0.                                                                                               (5.11) 

where derivatives denote differentiation with respect to 𝜂 and the transformed boundary conditions 

of the problem are: 

𝑓′(0) = 1, 𝑓(0) = 0,       𝜃′(0) = −𝐵𝑖(1 − 𝜃(0)), 𝐶(0) = 1, 

𝑓′(𝜂) = 𝑠,    𝜃(𝜂) = 0,      𝐶(𝜂) = 0,  as 𝜂 → ∞.                                                          (5.12) 

where 𝑀 = √
𝜎𝐵0

2

𝜌𝑏
 , 𝑠 =

𝑎

𝑏
 , 𝐾 = 𝑘0𝑏 , 𝑃𝑟 =

𝑣

𝛼
 , 𝑅 =

16𝜎∗𝑇∞
3

3𝑘∗𝑘
 , 𝑁𝑏 =

𝜏𝐷𝐵(𝐶𝑤−𝐶∞)

𝑣
 , 

 𝑁𝑡 =
𝜏𝐷𝑇(𝑇𝑤−𝑇∞)

𝑣𝑇∞
 , 𝐵𝑖 =

√𝑣𝑎ℎ

𝑎𝑘
 , 𝐾𝑟 =

𝑘2
′

𝐶
 , 𝐿𝑒 =

𝑘

𝜌𝑐𝑝 𝐷𝐵
  

The Skin friction coefficient 𝐶𝑓, the local Nusselt numer 𝑁𝑢𝑥 and the local Sherwood number 𝑆ℎ𝑥 

are described as follows: 

𝐶𝑓 =
𝜏𝑤

𝜌𝑈𝑤
2 , 𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝛼(𝑇𝑤−𝑇∞)
 , 𝑆ℎ𝑥 =

𝑥𝑞𝑚

𝐷𝐵(𝐶𝑤−𝐶∞)
,                                                                     (5.13) 

where 𝑇𝑤, 𝑞𝑤 and 𝑞𝑚 denotes surface shear stress, heat flux and mass flux respectively. 

𝜏𝑤 = 𝜇(1 + 𝐾) (
𝜕𝑢

𝜕𝑦
)

𝑦=0
,      𝑞𝑤 = −𝛼 (

𝜕𝑇

𝜕𝑦
)

𝑦=0
 , 𝑞𝑚 = −𝐷𝐵 (

𝜕𝐶

𝜕𝑦
)

𝑦=0
.                               (5.14)     

Using the similarity variables, we obtain 

𝐶𝑓𝑅𝑒𝑥

1
2⁄

= (1 + 𝐾)𝑓′′(0), 𝑅𝑒𝑥

−1
2⁄

𝑁𝑢𝑥 = −𝜃′(0),   𝑅𝑒𝑥

−1
2⁄

𝑆ℎ𝑥 = −𝐶′(0).                         (5.15)   

where 𝑅𝑒𝑥 =  
𝑈𝑤𝑥

𝑣
 is the Reynolds number. 
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5.4 Solution by Homotopy Analysis Method: 

In HAM initial guesses 𝑓0(𝜂), 𝜃0(𝜂), 𝐶0(𝜂)  and linear operators 𝐿𝑓 , 𝐿𝜃 , 𝐿𝐶 are chosen in such a way that 

they satisfy the boundary conditions given in Eq. (5.12).  

The initial guess is 

𝑓0(𝜂) = (1 + 𝑠𝜂)(1 − 𝑒−𝜂)   ,           𝜃0(𝜂) =
𝐵𝑖

𝐵𝑖+1
 𝑒−𝜂            , 𝐶0(𝜂) =   𝑒−𝜂                                  (5.16) 

with auxiliary linear operators  

 𝐿𝑓 =
𝜕3𝑓

𝜕𝜂3 +
𝜕2𝑓

𝜕𝜂2  ,                      𝐿𝜃 =
𝜕2𝜃

𝜕𝜂2 + 
𝜕𝜃

𝜕𝜂
  ,                𝐿𝜙 =  

𝜕2𝐶

𝜕𝜂2 + 
𝜕𝐶

𝜕𝜂
                                            (5.17) 

with   𝐿𝑓(𝐶1 + 𝐶2 𝜂 + 𝐶3𝑒−𝜂) = 0,   𝐿𝜃(𝐶4 + 𝐶5𝑒−𝜂) = 0,    𝐿𝐶( 𝐶6 + 𝐶7𝑒−𝜂) = 0.                      (5.18) 

where 𝑐1,   𝑐2, … . , 𝑐7  “are constants. 

 

The zeroth order deformation problems are constructed as follows: 

(1 − 𝑝)𝐿𝑓[𝑓(𝜂;  𝑝) − 𝑓0(𝜂)] = 𝑝ℏ𝑓𝐻𝑓𝑁𝑓[𝑓(𝜂;  𝑝)],                                                                         (5.19) 

(1 − 𝑝)𝐿𝜃[𝜃(𝜂;  𝑝) − 𝜃0(𝜂)] = 𝑝ℏ𝜃𝐻𝜃𝑁𝜃[�̂�(𝜂;  𝑝)],                                                                       (5.20)                                                    

(1 − 𝑝)𝐿𝐶[�̂�(𝜂;  𝑝) − 𝐶0(𝜂)] = 𝑝ℏ𝐶𝐻𝐶𝑁𝐶[�̂�(𝜂;  𝑝)],                                                                    (5.21) 

The nonlinear operator are defined as 

𝑁𝑓[𝑓(𝜂;  𝑝)] =    
𝜕3�̂�

𝜕𝜂3 − 𝐾𝑓2 𝜕3�̂�

𝜕𝜂3 + 𝑓
𝜕2�̂�

𝜕𝜂2  + 𝑀2𝐾𝑓
𝜕2�̂�

𝜕𝜂2 + 2𝐾𝑓   
𝜕�̂�

𝜕𝜂

𝜕2�̂�

𝜕𝜂2 − (
𝜕�̂�

𝜕𝜂
)

2

− 𝑀2 𝜕�̂�

𝜕𝜂
+ 𝑠2,       (5.22) 

𝑁𝜃[�̂�(𝜂;  𝑝)] =    (1 + 𝑅)
𝜕2�̂�

𝜕𝜂2 + 𝑃𝑟𝑓
𝜕�̂�

𝜕𝜂
+ 𝑃𝑟𝑁𝑏

𝜕�̂�

𝜕𝜂

𝜕�̂�

𝜕𝜂
+ 𝑃𝑟𝑁𝑡 (

𝜕�̂�

𝜕𝜂
)

2

,                                           (5.23) 

𝑁𝐶[�̂�(𝜂;  𝑝)] =
𝜕2�̂�

𝜕𝜂2 + 𝐿𝑒𝑃𝑟𝑓
𝜕�̂�

𝜕𝜂
− 𝐾𝑟𝐿𝑒𝑃𝑟�̂� +

𝑁𝑡

𝑁𝑏

𝜕2�̂�

𝜕𝜂2,                                                                      (5.24) 

Subject to the boundary conditions: 

𝑓(𝜂) = 0,      𝑓′(𝜂) = 1 𝑎𝑡 𝜂 = 0    𝑓′(𝜂) = 𝑠 𝑎𝑡 𝜂 → ∞ ,                                                               (5.25) 

𝜃′(𝜂) = −𝐵𝑖 (1 − 𝜃(0)) 𝑎𝑡 𝜂 = 0, 𝜃(𝜂) = 0 𝑎𝑡 𝜂 → ∞ ,                                                              (5.26) 

�̂�(𝜂) = 1 𝑎𝑡 𝜂 = 0 ,   �̂�(𝜂) = 0 𝑎𝑡 𝜂 → ∞.                                                                                   (5.27) 

Where 𝑓(𝜂;  𝑝), 𝜃(𝜂;  𝑝) and  �̂�(𝜂;  𝑝) are unknown functions with respect to 𝜂  and 𝑝.  ℏ𝑓, ℏ𝜃 and ℏ𝐶 are 

the non-zero auxiliary parameters and 𝑁𝑓, 𝑁𝜃 and 𝑁𝐶   are the nonlinear operators.  

Also where 𝑝 ∈ (0, 1) is an embedding parameter For 𝑝 = 0 and 𝑝 = 1 we have  

𝑓(𝜂; 0) = 𝑓0(𝜂), 𝑓(𝜂; 1) = 𝑓(𝜂),                                                                                                        (5.28) 

𝜃(𝜂; 0) =  𝜃0(𝜂), 𝜃(𝜂; 1) =  𝜃(𝜂),        (5.29) 

�̂�(𝜂; 0) =  𝐶0(𝜂),   �̂�(𝜂; 1) =  𝐶(𝜂),         (5.30) 

Taylor’s series expansion of these functions yields the following: 



Chapter 5 

66 
 

𝑓(𝜂;  𝑝) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)𝑝𝑚,∞
𝑚=1         (5.31) 

𝜃(𝜂;  𝑝) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑝𝑚,∞
𝑚=1         (5.32) 

�̂�(𝜂;  𝑝) = 𝐶0(𝜂) + ∑ 𝐶𝑚(𝜂)𝑝𝑚,∞
𝑚=1         (5.33) 

Where 

𝑓𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝑓(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

 ,                                                                                                                 (5.34) 

𝜃𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝜃(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

,                                                                                                                 (5.35)  

𝐶𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝐶(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

 .                                                                                                               (5.36) 

It should be noted that the convergence in the above series strongly depends upon ℏ𝑓 , ℏ𝜃 and ℏ𝐶 and the 

proper functions 𝐻𝑓(𝜂), 𝐻𝜃(𝜂) and 𝐻𝐶(𝜂). Assuming that these nonzero auxiliary parameters are chosen 

so that Equations (5.35)–(5.37) converges at 𝑝 = 1, Hence one can obtain the following. 

𝑓(𝜂) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂),∞
𝑚=1          (5.37) 

𝜃(𝜂) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂),∞
𝑚=1          (5.38) 

𝐶(𝜂) = 𝐶0(𝜂) + ∑ 𝐶𝑚(𝜂),∞
𝑚=1          (5.39) 

The 𝑚𝑡ℎ order deformation equations can be presented in the form  

𝐿𝑓[𝑓𝑚(𝜂) − χ𝑚𝑓𝑚−1(𝜂)] = ℏ𝑓𝐻𝑓(𝜂)𝑅𝑓,𝑚(𝜂),                                                                                    (5.40) 

𝐿𝜃[𝜃𝑚(𝜂) − χ𝑚𝜃𝑚−1(𝜂)] = ℏ𝜃𝐻𝜃(𝜂)𝑅𝜃,𝑚(𝜂),                                                                                  (5.41) 

𝐿𝐶[𝐶𝑚(𝜂) − 𝜒𝑚𝐶𝑚−1(𝜂)] = ℏ𝐶𝐻𝐶(𝜂)𝑅𝐶,𝑚(𝜂),                                                                               (5.42) 

Subject to the boundary conditions 

𝑓𝑚(0) = 𝑓𝑚
′ (0) = 𝑓𝑚

′ (+∞) = 0,                                            

𝜃𝑚
′ (0) = 𝐵𝑖𝜃𝑚(0), 𝜃𝑚(+∞) = 0,  

𝐶𝑚(0) = 𝐶𝑚(+∞) = 0 ,                                                                                                                     (5.43) 

𝑅𝑓,𝑚(𝜂) = 𝑓𝑚−1
′′′ − 𝐾 ∑ 𝑓𝑚−1−𝑗 ∑ 𝑓𝑖𝑓𝑗−𝑖

′′′

𝑗

𝑖=0

𝑚−1

𝑗=0

+ ∑ 𝑓𝑗𝑓𝑚−1−𝑗
′′

𝑚−1

𝑗=0

+ 𝑀2𝐾 ∑ 𝑓𝑗𝑓𝑚−1−𝑗
′′

𝑚−1

𝑗=0

 

                     +2𝐾 ∑ 𝑓𝑚−1−𝑗 ∑ 𝑓𝑖
′𝑓𝑗−𝑖

′′ − ∑ 𝑓𝑗
′𝑓𝑚−1−𝑗

′𝑚−1
𝑗=0 − 𝑀2𝑓𝑚−1

′𝑗
𝑖=0 + 𝑠2(1 − 𝜒𝑚)𝑚−1

𝑗=0   (5.44) 

𝑅𝜃,𝑚(𝜂) =   (1 + R)𝜃𝑚−1
′′ + 𝑃𝑟 ∑ 𝑓𝑗𝜃𝑚−1−𝑗

′

𝑚−1

𝑗=0

+ 𝑃𝑟𝑁𝑏 ∑ 𝜃𝑗
′𝐶𝑚−1−𝑗

′

𝑚−1

𝑗=0

+ 𝑃𝑟𝑁𝑡 ∑ 𝜃𝑗
′𝜃𝑚−1−𝑗

′

𝑚−1

𝑗=0

 , 

            (5.45) 

𝑅𝜙,𝑚(𝜂) =   𝐶𝑚−1
′′ + 𝐿𝑒𝑃𝑟 ∑ 𝑓𝑗

𝑚−1
𝑗=0 𝐶𝑚−1−𝑗

′ − 𝐾𝑟 𝐿𝑒𝑃𝑟𝐶𝑚−1 +
𝑁𝑡

𝑁𝑏
 𝜃𝑚−1

′′ .   (5.46) 

with 𝜒𝑚 = {
0, 𝑚 ≤ 1
1, 𝑚 ≥ 1

 ,                                                                                                                    (5.47) 
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To assure the convergence, the auxiliary functions  𝐻𝑓(𝜂), 𝐻𝜃(𝜂), 𝐻𝐶(𝜂) are selected as  

𝐻𝑓(𝜂) = 𝐻𝜃(𝜂) = 𝐻𝐶(𝜂) = 𝑒−𝜂.                                                                                                        (5.48) 

The general solutions 𝑓𝑚, 𝜃𝑚  𝑎𝑛𝑑 𝐶𝑚 comprising the special solution    𝑓𝑚
∗  , 𝜃𝑚

∗  𝑎𝑛𝑑 𝐶𝑚
∗   are given by 

𝑓𝑚(𝜂) = 𝑓𝑚
∗ (𝜂) + 𝐶1 + 𝐶2 𝜂 + 𝐶3𝑒−𝜂 ,                                                                                                (5.49) 

𝜃𝑚(𝜂) = 𝜃𝑚
∗ (𝜂) + 𝐶4 + 𝐶5𝑒−𝜂 ,                                                                                                           (5.50) 

𝐶𝑚(𝜂) = 𝐶𝑚
∗ (𝜂) + 𝐶6 + 𝐶7𝑒−𝜂.                                                                                                          (5.51) 

Here 𝑓𝑚
∗  , 𝜃𝑚

∗  𝑎𝑛𝑑 𝐶𝑚
∗   are given by are particular solutions of the corresponding mth- order equations and 

the constants 𝐶𝑖( 𝑖 = 1,2, … ,7) are to be determined by the boundary conditions.  

5.4.1 Convergence Analysis 

Convergence of the HAM solutions and their rate of approximations strongly depend on the values of the 

auxiliary parameters ℏ𝑓 , ℏ𝜃 and ℏ𝐶. For this purpose, the associated h-curve is plotted in Figure 2. In the 

present case, H-curve of 𝑓0
′′(0) is plotted taking appropriate order. The Figure 5.2 clearly suggest 

permissible ranges for the auxiliary parameter ℏ𝑓. Similarly values for ℏ𝜃 and ℏ𝐶 are chosen. 

 
Figure 5.2: The H-Curve of 𝒇”(𝟎) for 7th & 8th HAM approximation at 𝑀 =  1.2, 𝑃𝑟 =  6.7, 

𝑠 =  0.01, 𝐵𝑖 = 0.1, 𝑁𝑏 =  0.2, 𝑁𝑡  =  0.2, 𝐿𝑒 =  0.5, 𝐾 =  0.05, 𝐾𝑟 = 0.2, 𝑅 = 2.0 

 

5.5 Results and Discussion: 

Through Figures 5.3 – 5.27, the contribution of various parameter used in the system on the 

velocity, the temperature and the concentration distributions are deliberated in detail. Influence of 

the viscoelastic parameter 𝐾 on the velocity profile is displayed in Figure 5.3. It can be noticed 

that the velocity of the fluid reduces with increases viscoelastic parameter 𝐾. Figure 5.4 describes 
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that the velocity drops as 𝑀 increases. Physically, when we increased Magnetic parameter, means 

enhanced Lorentz force, which resists the flow. Figure 5.5 shows that a rise in the stagnation 

parameter 𝑠 creates widening in the velocity profile. Variation in temperature profile 𝜃 for different 

values of Biot number 𝐵𝑖 is shown in Figure 5.6. Here temperature is increasing for larger values 

of Biot number 𝐵𝑖 as stronger convection yields a developed temperature profile.  Figure 5.7 

displays that fluid temperature increases with increase in the chemical reaction parameter 𝐾𝑟. 

Figure 5.8 depicts behavior of the Viscoelastic fluid parameter 𝐾 on temperature profile. It can be 

noticed that temperature profile increases as the Viscoelastic fluid parameter increases. 

Consequence of Magnetic parameter 𝑀 on the temperature profile in shown in figure 5.9. The 

presence of stronger Magnetic field increases the temperature profile. The effect of 𝑁𝑏 on 

temperature profile is sketched in Figure 5.10. It can be observed that the temperature profile 

increases as 𝑁𝑏 increases. Figure 5.11 represents that temperature rises with increase in radiation 

parameter 𝑅. Figure 5.12 indicates that larger values of Thermophoresis parameter 𝑁𝑡 leads to 

higher temperature profile. Result of Prandtl number 𝑃𝑟 on temperature profile is illustrated in 

Figure 5.13. An enhancement in the Prandtl number 𝑃𝑟 causes decay in temperature profile. Figure 

5.14 demonstrates the variation in temperature profile for different values of the stagnation 

parameter s. We can notice that as stagnation parameter rises, with increases temperature profile. 

Figure 5.15 disclosed the behavior of the 𝐵𝑖 on the concentration profile. It is observed that 

increase in Biot number Bi enhances the concentration profile. Figure 5.16 shows that fluid 

concentration increases with increase in the chemical reaction parameter 𝐾𝑟. It is clear from Figure 

5.17 that as the viscoelastic parameter 𝜅 increases the concentration rises. In Figure 5.18 the 

influence of Lewis number 𝐿𝑒 on the concentration can be seen. Here the concentration profile 

reduces as Lewis parameter increases. The increasing Lewis number causes to the lesser mass 

diffusivity so the concentration profile decreasing. In figure 5.19, concentration profile increases 

for large value of magnetic parameter 𝑀. It is realized from Figure 5.20 that increase in Brownian 

motion parameter 𝑁𝑏 reduces the concentration, it is since Brownian motion can reduce the mass 

transfer.  
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Figure 5.3: 𝑓′ for 𝜂  and K  at  𝑀 = 1.2, 𝑠 = 0.01, 𝑃𝑟 = 6.7, 𝑁𝑏 = 0.2, 𝑅 = 2.0, 𝑁𝑡 = 0.2,

𝐿𝑒 = 0.5, 𝐾𝑟 = 0.2, 𝐵𝑖 = 1.0. 

 

Figure 5.4: 𝑓′ for 𝜂 𝑎𝑛𝑑   𝑀 at  𝐾 = 0.05, 𝐵𝑖 = 0.1, 𝑠 = 0.01, 𝑃𝑟 = 6.7, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2,

𝐿𝑒 = 0.5, 𝐾𝑟 = 0.2, 𝑅 = 2.0. 
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Figure 5.5: 𝑓′ for 𝜂 and 𝑠  at  𝑀 = 0.4, 𝐿𝑒 = 0.5, 𝑃𝑟 = 6.7, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2, 𝐵𝑖 = 0.1,

𝐾 = 0.05, 𝐾𝑟 = 0.2, 𝑅 = 2.0. 

 

Figure 5.6: 𝜃 for 𝜂 𝑎𝑛𝑑  𝐵𝑖 at  𝑀 = 1.2, 𝑠 = 0.01, 𝑁𝑡 = 0.2, 𝑁𝑏 = 0.2, 𝐿𝑒 = 0.5, 𝐾 = 0.05,

𝑃𝑟 = 6.7, 𝐾𝑟 = 0.2 , 𝑅 = 2.0. 
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Figure 5.7: 𝜃 for 𝜂 𝑎𝑛𝑑  𝐾𝑟 at 𝑀 = 1.2, 𝑠 = 0.01, 𝑁𝑡 = 0.2, 𝑁𝑏 = 0.2, 𝐿𝑒 = 0.5, 𝐾 = 0.05,

𝑃𝑟 = 6.7, 𝐵𝑖 = 0.1, 𝑅 = 2.0. 

 

Figure 5.8: 𝜃 for 𝜂 𝑎𝑛𝑑  𝐾 at 𝑀 = 1.2, 𝐵𝑖 =  0.1, 𝑠 = 0.01, 𝑁𝑡 = 0.2, 𝑁𝑏 = 0.2, 𝐿𝑒 =

0.5, 𝑃𝑟 = 6.7, 𝐾𝑟 = 0.2 , 𝑅 = 2.0. 
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Figure 5.9: 𝜃 for 𝜂 𝑎𝑛𝑑  𝑀 at 𝐿𝑒 = 0.5, 𝐵𝑖 = 0.1, 𝑠 = 0.01, 𝑁𝑡 = 0.2, 𝑁𝑏 = 0.2, 𝐾 = 0.05,

𝑃𝑟 = 6.7, 𝐾𝑟 = 0.2, 𝑅 = 2.0. 

 

Figure 5.10: 𝜃 for 𝜂 𝑎𝑛𝑑  𝑁𝑏 at 𝑀 = 1.2, 𝐵𝑖 = 0.1, 𝑠 = 0.01, 𝑁𝑡 = 0.2, 𝐿𝑒 = 0.5, 𝐾 = 0.05,

𝑃𝑟 = 6.7, 𝐾𝑟 = 0.2, 𝑅 = 2.0. 
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Figure 5.11: 𝜃 for 𝜂 𝑎𝑛𝑑 𝑅 at  𝑀 = 1.2, 𝐵𝑖 = 0.1, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2, 𝐿𝑒 = 0.5, 𝐾 = 0.05,

𝑃𝑟 = 6.7, 𝑠 = 0.01 , 𝐾𝑟 = 0.2. 

 

 Figure 5.12: 𝜃 for 𝜂 𝑎𝑛𝑑  𝑁𝑡 at  𝑀 = 1.2, 𝐵𝑖 = 0.1, 𝑠 = 0.01, 𝑁𝑏 = 0.2, 𝐿𝑒 = 0.5,

𝐾 = 0.05, 𝑃𝑟 = 6.7, 𝐾𝑟 = 0.2 , 𝑅 = 2.0. 
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Figure 5.13: 𝜃 for 𝜂 𝑎𝑛𝑑  𝑃𝑟 at 𝑀 = 1.2, 𝐵𝑖 = 0.1, 𝑠 = 0.01, 𝑁𝑡 = 0.2, 𝐿𝑒 = 0.5, 𝐾 = 0.05,

𝑁𝑏 = 0.2, 𝐾𝑟 = 0.2 , 𝑅 = 2.0. 

 

Figure 5.14: 𝜃 for 𝜂 𝑎𝑛𝑑  𝑠  at 𝑀 = 1.2, 𝐵𝑖 = 0.1, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2, 𝐿𝑒 = 0.5, 𝐾 = 0.05,

𝑃𝑟 = 6.7, 𝐾𝑟 = 0.2 , 𝑅 = 2.0. 
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Figure 5.15: 𝐶 for 𝜂 𝑎𝑛𝑑 𝐵𝑖   at 𝑀 = 1.2, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2, 𝐿𝑒 = 0.5, 𝐾 = 0.05, 𝑃𝑟 =

6.7, 𝑠 = 0.01 , 𝐾𝑟 = 0.2, 𝑅 = 2.0. 

 

Figure 5.16: 𝐶 for 𝜂 𝑎𝑛𝑑  𝐾𝑟  at 𝐿𝑒 = 0.5, 𝐵𝑖 = 0.1, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2,   𝐾 = 0.05, 𝑃𝑟 =

6.7, 𝑠 = 0.01 , 𝑀 = 1.2, 𝑅 = 2.0. 
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Figure 5.17: 𝐶 for 𝜂 𝑎𝑛𝑑 𝐾   at 𝑀 = 1.2, 𝐵𝑖 = 0.1, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2, 𝐿𝑒 = 0.5, 𝑃𝑟 = 6.7,

𝑠 = 0.01 , 𝐾𝑟 = 0.2, 𝑅 = 2.0. 

 

Figure 5.18: 𝐶 for 𝜂 𝑎𝑛𝑑 Le  at 𝑀 = 1.2, 𝐵𝑖 = 0.1, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2,   𝐾 = 0.05, 𝑃𝑟 = 6.7,

𝑠 = 0.01 , 𝐾𝑟 = 0.2, 𝑅 = 2.0. 
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Figure 5.19: 𝐶 for 𝜂 𝑎𝑛𝑑 𝑀  at 𝐿𝑒 = 0.5, 𝐵𝑖 = 0.1, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2,   𝐾 = 0.05, 𝑃𝑟 = 6.7,

𝑠 = 0.01 , 𝐾𝑟 = 0.2, 𝑅 = 2.0. 

 

Figure 5.20: 𝐶 for 𝜂 𝑎𝑛𝑑 𝑁𝑏  at 𝐿𝑒 = 0.5, 𝐵𝑖 = 0.1, 𝑀 = 1.2, 𝑁𝑡 = 0.2,   𝐾 = 0.05, 𝑃𝑟 = 6.7,

𝑠 = 0.01 , 𝐾𝑟 = 0.2, 𝑅 = 2.0. 
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Figure 5.21: 𝐶 for 𝜂 𝑎𝑛𝑑  𝑅  at Le = 0.5, Bi = 0.1, Nb = 0.2, Nt = 0.2,   K = 0.05, 𝑃𝑟 = 6.7,

𝑠 = 0.01 , M = 1.2, 𝐾𝑟 = 0.2 

 

Figure 5.22: 𝐶 for 𝜂 𝑎𝑛𝑑 𝑁𝑡  at 𝐿𝑒 = 0.5, 𝐵𝑖 = 0.1, 𝑁𝑏 = 0.2, 𝑀 = 1.2,   𝐾 = 0.05, 𝑃𝑟 = 6.7,

𝑠 = 0.01 , 𝐾𝑟 = 0.2, 𝑅 = 2.0. 
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Figure 5.23: 𝐶 for 𝜂 𝑎𝑛𝑑 𝑃𝑟  at 𝐿𝑒 = 0.5, 𝐵𝑖 = 0.1, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2,   𝐾 = 0.05, 𝑀 = 1.2,

𝑠 = 0.01 , 𝐾𝑟 = 0.2, 𝑅 = 2.0. 

 

Figure 5.24: 𝐶 for 𝜂 𝑎𝑛𝑑 s  at 𝐿𝑒 = 0.5, 𝐵𝑖 = 0.1, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2,   𝐾 = 0.05, 𝑃𝑟 = 6.7,

𝑀 = 1.2 , 𝐾𝑟 = 0.2, 𝑅 = 2.0. 
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Figure 5.25:  Effect of Viscoelastic parameter 𝐾 on Skin friction coefficient at   𝐿𝑒 = 0.5, 𝐵𝑖 =

0.1, 𝑁𝑏 = 0.2, 𝑁𝑡 = 0.2, 𝑃𝑟 = 6.7, 𝑠 = 0.01 , 𝐾𝑟 = 0.2, 𝑅 = 2.0. 

 

Figure 5.26:  Effect of Brownian motion parameter  𝑁𝑏 on the Nusselt number at   𝐿𝑒 = 0.5,

𝐵𝑖 = 0.1, 𝑀 = 1.2,   𝐾 = 0.05, 𝑃𝑟 = 6.7, 𝑠 = 0.01 , 𝐾𝑟 = 0.2, 𝑅 = 2.0. 
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Figure 5.27:  Effect of Brownian motion parameter 𝑁𝑏 on Sherwood number at   𝐿𝑒 = 0.5, 𝐵𝑖 =

0.1, 𝑀 = 1.2,   𝐾 = 0.05, 𝑃𝑟 = 6.7, 𝑠 = 0.01 , 𝐾𝑟 = 0.2, 𝑅 = 2.0 

 

Effect of Radiation Parameter 𝑅 on concentration profile is depicted in figure 5.21. It can be 

observed that concentration increases as radiation parameter increases. Figure 5.22 represents a 

concentration field via Thermophoresis parameter 𝑁𝑡. It is observed that as thermophoresis 

parameter 𝑁𝑡 rises, concentration increases. By Figure 5.23, the effect of Prandtl number on 

concentration profile can be observed. Here concentration reduces as Prandtl number 𝑃𝑟 increases. 

It is noticeable in Figure 5.24 that as stagnation parameter increases, the concentration increases.  

Figure 5.25 shows the changes in skin friction coefficient with Viscoelastic fluid parameter 𝐾. It 

is observed that skin friction reduces with increase in viscoelastic parameter. Figure 5.26-5.27 

depict the effect of Brownian parameter on Nusselt number and the Sherwood number 

respectively. 

It is noticeable from Figure 5.26 that as Brownian motion parameter 𝑁𝑏 rises, Nusselt number 

reduces. It is also observed from Figure 5.27 that increasing values of 𝑁𝑏 has positive impact on 

the Sherwood number. 
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5.6 Conclusion: 

The objective of this research is to obtain semi–analytic solution for two dimensional Viscoelastic 

fluid flow and observe thermophoresis, Brownian motion, radiation and chemical reaction effects.  

Key remarks for the conclusions can be summarized as follows. 

• Fluid velocity declines with 𝐾 and 𝑀.  

• Fluid velocity surges with 𝑠. 

• Fluid temperature can be amplified by increasing either 𝐵𝑖, 𝐾𝑟, 𝐾, 𝑀, 𝑁𝑏, 𝑁𝑡, 𝑅 or 𝑠. 

• Fluid temperature decreases with increasing values of 𝑃𝑟 

• Skin friction reduces on increasing 𝐾.  

• 𝑁𝑏 has positive impact on the Sherwood number.  

• Nusselt number decreases with increase in 𝑁𝑏. 


