
        

 

 

 

 
 

 

CROSS DIFFUSION EFFECTS ON THREE 

DIMENSIONAL CASSON FLUID FLOW  

 

 

 

 

6 
 

Content of this chapter is published in: 

Journal of Applied Science and Engineering (Scopus) 23 (2), (2020) 319-331 

 



Chapter 6 

83 
 

CROSS DIFFUSION EFFECTS ON THREE DIMENSIONAL CASSON 

FLUID FLOW  

 

Three dimensional modelling of the fluid flow problems are more realistic compared to lower 

dimensional studies. Thus this chapter is dedicated to extend work discussed in previous chapters 

to higher dimensions. This chapter deals with three dimensional MHD flow of Casson fluid past 

between horizontal plates. Here the considered fluid is conducting which passes through medium 

which has porosity.  

 

6.1 Introduction of the problem: 

In recent time, many researchers have been involved in doing research on mhd flow of various 

Non-Newtonian fluids due to their fascinating and noteworthy engineering focus with respect to 

utility and applications. It is established on the principle that particles of fluid would be structurally 

continuous. Casson fluid is a Pseudo plastic fluid, which means that it is Shear thinning fluid. The 

fluid is more viscous as compare to Newtonian fluids at low shear rates and is less viscous when 

shear rate is high.  

Casson [102] introduced Casson fluid model for the prediction of the flow behavior of pigment-

oil suspensions. Recently, Mahanta and shaw [23] discussed the 3D Casson fluid flow past linearly 

stretching sheet. First exact solution of MHD equations was found by J. Hartmann [52]. Nadeem 

et al. [126] studied three MHD Casson fluids flow in porous linearly stretching sheet.  

Analytical solution of higher dimensional problems are not possible in most of the cases. In such 

cases concept of Homotopy is very useful as discussed in some of the recent articles [1, 26-28, 

156]. Unsteady free convective MHD flow with heat and mass transfer is important in engineering 

and technology. Many researchers like, Kataria and Mittal [37], Freidoonimehr et al. [103] and 

Sheikholeslami and Bhatti [87] considered free convective flow with heat transfer problems. 

Radiations caused by effects of transfer of heat on fluid flow are vital in space technology, 

controlling of polymer processes or processes in which temperature is very high. Sheikholeslami 

and Shehzad [90] and Rashidi et al. [80] discussed effect of thermal radiation on MHD flow. Some 

of vital applications of flow containing heat and mass transfer with chemical reaction may be found 

in food processing, catalytic chemical reactors and polymer production. Investigations related to 

generation or absorption of heat by fluid flow is significant in various physical problems. Khan et 
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al. [72, 74] studied effects of chemical reaction on MHD problems. Shehzad et al. [118] studied of 

three dimension MHD flow with generation of heat and Hussain et al. [124] considered MHD flow 

with chemical reaction and heat absorption. Recently, Kumaran and Sandeep [22] studied 

parabolic flow of MHD Casson and Williamson fluids with cross diffusion whereas Sandeep et al. 

[106] considered kinematic viscosity model for 3D-Casson fluid flow on a surface at absolute zero. 

Porous media flow has many practical applications removal of heat from nuclear fuel, underground 

disposal of radioactive waste material, food storage, production of papers, oil exploration etc.. 

Some of relevant research studies are due to, Anantha et al. [56] and Sulochana et al. [9]. Khan et 

al. [73] on Casson fluid whereas Sheikholeslami et al. [93] have analyzed influence of external 

magnetic force on water based nanofluids.  Nayak et al. Kataria and Mittal [36] investigated effect 

of radiation on Casson fluid flow.  

 

6.2 Novelty of the chapter: 

Purpose of this chapter is to investigate semi analytic solution of Dufour and Soret effects on 

unsteady MHD Casson fluid flow past over vertical plate embedded in porous medium in a rotating 

system. This study may find fire dynamics applications. 

 

6.3 Mathematical Formulation of the Problem: 

 

Figure 6.1 Physical sketch of the problem 
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It is assumed that Casson fluid flows between two horizontal parallel plates placed 𝐿 units apart 

through a porous medium. A coordinate system (𝑥, 𝑦, 𝑧) is such that origin is at the lower plate as 

shown in Figure 6.1. The lower plate is stretched by two equal forces in opposite directions. The 

plates along with the fluid rotate about 𝑦 − 𝑎𝑥𝑖𝑠 with angular velocity 𝛺. A uniform magnetic flux 

with density 𝐵0 is applied along 𝑦 − 𝑎𝑥𝑖𝑠. Under these assumptions, governing equations are: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0          (6.1) 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 2Ω𝑤) = 𝜇 (1 +  

1

𝛾
) (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) − 𝜎𝐵2𝑢 −
𝜇∅

𝑘1
′ 𝑢    (6.2) 

𝜌 (𝑣
𝜕𝑣

𝜕𝑦
) = 𝜇 (1 +  

1

𝛾
) (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)         (6.3) 

𝜌 (𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
− 2Ω𝑤) = 𝜇 (1 + 

1

𝛾
) (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 ) − 𝜎𝐵2𝑤 −
𝜇∅

𝑘1
′ 𝑤    (6.4) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
=

𝑘

𝜌𝑐𝑝
(

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
) + (

𝐷𝑇

𝑇𝑤
((

𝜕𝑇

𝜕𝑥
)

2

+ (
𝜕𝑇

𝜕𝑦
)

2

+ (
𝜕𝑇

𝜕𝑧
)

2

) 

                                                 +𝐷𝐵 (
𝜕𝐶

𝜕𝑥

𝜕𝑇

𝜕𝑥
+

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝜕𝐶

𝜕𝑧

𝜕𝑇

𝜕𝑧
)) −

𝜕𝑞𝑟

𝜕𝑦
+

𝐷𝑇

𝑐𝑠𝑐𝑝

𝜕2𝐶

𝜕𝑦2   (6.5) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 +
𝜕2𝐶

𝜕𝑧2) +
𝐷𝑇

𝑇𝑤
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2)    (6.6) 

Considering temperature difference within the flow to be sufficiently small, Using Taylor series 

and neglecting higher terms, 𝑞𝑟 [127] becomes 

 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
= −

4𝜎∗

3𝑘∗

𝜕(4𝑇0
3𝑇−3𝑇0

4)

𝜕𝑦
         (6.7) 

Subject to boundary conditions 

𝑢 =  𝑎𝑥;  𝑣 =  0;  𝑤 =  0;  𝑇 =  𝑇𝑤 𝑎𝑡 𝑦 =  0             

𝑢 =  0;  𝑣 =  0;  𝑤 =  0;  𝑇 =  𝑇𝐿 𝑎𝑡 𝑦 =  𝐿       (6.8) 

Introducing non dimensional variables 

𝜂 =
𝑦

𝐿
, 𝑢 = 𝑎𝑥𝑓′(𝜂), 𝑣 = −𝑎ℎ𝑓(𝜂), 𝑤 = 𝑎𝑥𝑔(𝜂), 𝜃(𝜂) =

T−𝑇𝐿

𝑇𝑤−𝑇𝐿
, C(𝜂) =

C−𝐶𝐿

𝐶𝑤−𝐶𝐿
 (6.9) 

Therefore, the governing momentum and energy equations for this problem are given in 

dimensionless form by: 

(1 + 
1

𝛾
) 𝑓𝑖𝑣 − 𝑅𝑒(𝑓′𝑓′′ − 𝑓𝑓′′′) − 2𝑅𝑘𝑔′ − (𝑀2 +

1

𝑘1
) 𝑓′′ = 0    (6.10) 

(1 + 
1

𝛾
) 𝑔′′ − 𝑅𝑒(𝑓′𝑔 − 𝑓𝑔′) + 2𝑅𝑘𝑓′ − (𝑀2 +

1

𝑘1
) 𝑔 = 0     (6.11) 
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(1 + R)𝜃′′ + 𝑃𝑟𝑅𝑒 𝑓𝜃′ + 𝑁𝑏𝐶′𝜃′ + 𝑁𝑡𝜃′2
+ 𝐷𝑓 𝐶′′ = 0     (6.12) 

𝑁𝑏𝐶′′ + 𝑁𝑡𝜃′′ + 𝑁𝑏 𝑅𝑒 𝑆𝑐 𝑓𝐶′ = 0        (6.13) 

Subject to 

𝑓 = 0, 𝑓′ = 1, 𝑔 = 0, 𝜃 = 1, 𝐶 = 1 𝑎𝑡 𝜂 = 0  

𝑓 = 0, 𝑓′ = 0, 𝑔 = 0, 𝜃 = 0, 𝐶 = 0 𝑎𝑡 𝜂 = 1       (6.14)       

Where 

𝑃𝑟 =
𝜇 𝑐𝑝

𝑘
, 𝑆𝑐 =

𝜇 

𝜌𝐷𝐵
, 𝑀2 =  

𝜎𝐵0
2𝐿2

𝜌𝜈
,

1

𝑘
=

𝑣∅2

𝑘1𝜈
, 𝐾𝑂 =

Ω𝐿2

𝜈
, 

 𝑅𝑒 =
𝑎𝐿2

𝜈
, 𝛼 =  

𝑘

𝜌𝑐𝑝
, 𝑁𝑏 =  

𝐷𝐵𝐶𝐿

𝛼
 

6.4 Solution of the Problem: 

To solve equations (6.10) – (6.13) subject to boundary conditions (6.14), HAM [122] is employed. 

Initial guess is: 

 

𝑓0(𝜂) =
−2

𝑒2−4𝑒+3
+

𝑒−1

𝑒−3
𝜂 +

2−𝑒

𝑒2−4𝑒+3
𝑒𝜂 +

𝑒

𝑒2−4𝑒+3
𝑒−𝜂; 𝑔0(𝜂) = 0; 𝜃0(𝜂) = 1 − 𝜂; 

𝐶0(𝜂) = 1 − 𝜂;                  (6.15) 

with auxiliary linear operators: 

 

𝐿𝑓 =
𝜕4𝑓

𝜕𝜂4 −
𝜕2𝑓

𝜕𝜂2  , 𝐿𝑔 =
𝜕2𝑔

𝜕𝜂2 −  𝑔  ,   𝐿𝜃 =  
𝜕2𝜃

𝜕𝜂2   ,   𝐿C =  
𝜕2C

𝜕𝜂2                                                     (6.16) 

Satisfying 

𝐿𝑓(𝐶1 + 𝐶2 𝜂 + 𝐶3𝑒𝜂 + 𝐶4𝑒−𝜂) = 0,   𝐿𝑔(𝐶5𝑒𝜂 + 𝐶6𝑒−𝜂) = 0,    𝐿𝜃( 𝐶7 + 𝐶8𝜂) = 0,     

𝐿𝐶( 𝐶9 + 𝐶10𝜂) = 0.              (6.17) 

where 𝑐1,   𝑐2, … . , 𝑐10  are the arbitrary constants. 

The zeroth order deformation problems are constructed as follows: 

(1 − 𝑝)𝐿𝑓[𝑓(𝜂;  𝑝) − 𝑓0(𝜂)] = 𝑝ℏ𝑓𝑁𝑓[𝑓(𝜂;  𝑝), �̂�(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)]                    (6.18) 

(1 − 𝑝)𝐿𝑔[�̂�(𝜂;  𝑝) − 𝑔0(𝜂)] = 𝑝ℏ𝑔𝑁𝑔[𝑓(𝜂;  𝑝), �̂�(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)]  (6.19)                                                           

(1 − 𝑝)𝐿𝜃[𝜃(𝜂;  𝑝) − 𝜃0(𝜂)] = 𝑝ℏ𝜃𝑁𝜃[𝑓(𝜂;  𝑝), �̂�(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)]                     (6.20) 

 

(1 − 𝑝)𝐿𝐶[�̂�(𝜂;  𝑝) − 𝐶0(𝜂)] = 𝑝ℏ𝐶𝑁𝐶[𝑓(𝜂;  𝑝), �̂�(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)]                 (6.21) 
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Subject to the boundary conditions: 

𝑓(0;  𝑝) = 0,      𝑓′(0;  𝑝) = 1;                                                                        (6.22) 

𝑓(1;  𝑝) = 0,      𝑓′(1;  𝑝) = 0;             (6.23) 

�̂�(0;  𝑝) = 0,      �̂�(1;  𝑝) = 0;               (6.24) 

𝜃(0;  𝑝) = 1,      𝜃(1;  𝑝) = 0,                                                           (6.25)        

�̂�(0;  𝑝) = 1,     �̂�(1;  𝑝) = 0,                                                    (6.26)                                 

The nonlinear operators are defined as  

𝑁𝑓[𝑓(𝜂;  𝑝), �̂�(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)] =  (1 +  
1

𝛾
)

𝜕4𝑓

𝜕𝜂4
− 𝑅𝑒 ( 

𝜕𝑓

𝜕𝜂

𝜕2𝑓

𝜕𝜂2
− 𝑓

𝜕3𝑓

𝜕𝜂3
) − 2𝑅𝑘  

𝜕�̂�

𝜕𝜂
 

− (𝑀2 +
1

𝑘1
)

𝜕2�̂�

𝜕𝜂2         (6.27) 

𝑁𝑔[𝑓(𝜂;  𝑝), �̂�(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)] = (1 + 
1

𝛾
)

𝜕2�̂�

𝜕𝜂2
− 𝑅𝑒 (�̂� 

𝜕𝑓

𝜕𝜂
− 𝑓 

𝜕�̂�

𝜕𝜂
) + 2𝑅𝑘  

𝜕𝑓

𝜕𝜂
 

                                                                               − (𝑀2 +
1

𝑘1
) �̂�        (6.28) 

𝑁𝜃[𝑓(𝜂;  𝑝), �̂�(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)] =  1 + 𝑅
𝜕2�̂�

𝜕𝜂2
+ 𝑃𝑟𝑅𝑒 𝑓

𝜕𝜃

𝜕𝜂
+ 𝑁𝑏

𝜕�̂�

𝜕𝜂

𝜕𝜃

𝜕𝜂
+ 𝑁𝑡 (

𝜕𝜃

𝜕𝜂
)

2

 

                                                                               +𝐷𝑓
𝜕2�̂�

𝜕𝜂2                  (6.29) 

𝑁𝐶[𝑓(𝜂;  𝑝), �̂�(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)] =    𝑁𝑏
𝜕2Ĉ

𝜕𝜂2 + 𝑁𝑡
𝜕2�̂�

𝜕𝜂2 + 𝑁𝑏𝑅𝑒𝑆𝑐𝑓
𝜕Ĉ

𝜕𝜂
      (6.30) 

Where 𝑓(𝜂;  𝑝), �̂�(𝜂;  𝑝),  �̂�(𝜂;  𝑝) and �̂�(𝜂;  𝑝) are unknown functions with respect to 𝜂  and 𝑝.  

ℏ𝑓, ℏ𝑔, ℏ𝜃 and  ℏC are the non-zero auxiliary parameters and 𝑁𝑓, 𝑁𝑔, 𝑁𝜃 and 𝑁C  are the nonlinear 

operators.  

Also  𝑝 ∈ (0, 1) is an embedding parameter. For 𝑝 = 0 and 𝑝 = 1 we have  

𝑓(𝜂; 0) = 𝑓0(𝜂), 𝑓(𝜂; 1) = 𝑓(𝜂),                                                                                   (6.31)                    

�̂�(𝜂; 0) = 𝑔0(𝜂), �̂�(𝜂; 1) = 𝑔(𝜂),               (6.32) 

𝜃(𝜂; 0) =  𝜃0(𝜂), 𝜃(𝜂; 1) =  𝜃(𝜂),                                             (6.33)                       

�̂�(𝜂; 0) =  𝐶0(𝜂), �̂�(𝜂; 1) =  𝐶(𝜂)                                            (6.34)                                                                            

Taylor’s series expansion results in: 

𝑓(𝜂;  𝑝) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)𝑝𝑚,∞
𝑚=1           (6.35) 
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�̂�(𝜂;  𝑝) = 𝑔0(𝜂) + ∑ 𝑔𝑚(𝜂)𝑝𝑚,∞
𝑚=1         (6.36) 

𝜃(𝜂;  𝑝) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑝𝑚,∞
𝑚=1           (6.37) 

�̂�(𝜂;  𝑝) = 𝐶0(𝜂) + ∑ 𝐶𝑚(𝜂)𝑝𝑚,∞
𝑚=1           (6.38) 

Where 

𝑓𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝑓(𝜂; 𝑝)

𝜕𝑝𝑚
]

𝑝=0
 ,                         (6.39)                                              

𝑔𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝑔(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

 ,                     (6.40)                                                                       

𝜃𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝜃(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

,                  (6.41)      

𝐶𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚Φ(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

,                   (6.42)                                                                                                          

It should be noted that the convergence in the above series strongly depends upon ℏ𝑓 , ℏ𝑔, ℏ𝜃 

and ℏC. Assuming that these nonzero auxiliary parameters are chosen so that Equations (6.18)–

(6.21) converges at 𝑝 = 1, hence one can obtain the following: 

𝑓(𝜂) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂),∞
𝑚=1                (6.43) 

𝑔(𝜂) = 𝑔0(𝜂) + ∑ 𝑔𝑚(𝜂),∞
𝑚=1          (6.44) 

𝜃(𝜂) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂),∞
𝑚=1          (6.45) 

𝐶(𝜂) = 𝐶0(𝜂) + ∑ 𝐶𝑚(𝜂),∞
𝑚=1          (6.46) 

Differentiating the zeroth order deformation (6.18) – (6.21) and (6.22) – (6.26) m times with 

respect to 𝑝 and substituting 𝑝 = 0, and finally dividing by 𝑚! , we obtain the mth order 

deformation (𝑚 ≥ 1). 

𝐿𝑓[𝑓𝑚(𝜂) − χ𝑚𝑓𝑚−1(𝜂)] = ℏ𝑓𝑅𝑓,𝑚(𝜂),                                             (6.47)         

𝐿𝑔[𝑔𝑚(𝜂) − χ𝑚𝑔𝑚−1(𝜂)] = ℏ𝑔𝑅𝑔,𝑚(𝜂),                                          (6.48)            

𝐿𝜃[𝜃𝑚(𝜂) − χ𝑚𝜃𝑚−1(𝜂)] = ℏ𝜃𝑅𝜃,𝑚(𝜂),                         (6.49)                                                                          

𝐿𝐶[𝐶𝑚(𝜂) − 𝜒𝑚𝐶𝑚−1(𝜂)] = ℏ𝐶𝑅𝐶,𝑚(𝜂),                        (6.50)                                                                          

Subject to the boundary conditions 

𝑓𝑚(0) = 𝑓𝑚
′ (0) = 0,                                                   (6.51)      

𝑓𝑚(1) = 𝑓𝑚
′ (1) = 0,                                     (6.52)              

𝑔𝑚(0) = 𝑔𝑚(1) = 0,            (6.53) 

𝜃𝑚(0) = 𝜃𝑚(1) = 0,            (6.54) 

𝐶𝑚(0) = 𝐶𝑚(1) = 0,             (6.55) 
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with 

𝑅𝑓,𝑚(𝜂) = (1 +  
1

𝛾
) 𝑓𝑚−1

𝑖𝑣 − 𝑅𝑒 ( ∑ 𝑓𝑗
′𝑓𝑚−1−𝑗

′′

𝑚−1

𝑗=0

− ∑ 𝑓𝑗𝑓𝑚−1−𝑗
′′′

𝑚−1

𝑗=0

) − 2𝐾𝑟𝑔𝑚−1
′  

                     − (𝑀2 +
1

𝑘1
) 𝑓𝑚−1

′′         (6.56) 

𝑅𝑔,𝑚(𝜂) = (1 + 
1

𝛾
) 𝑔𝑚−1

′′ − 𝑅𝑒 ( ∑ 𝑓𝑗
′

𝑚−1

𝑗=0

𝑔𝑚−1−𝑗 − ∑ 𝑓𝑗𝑔𝑚−1−𝑗
′

𝑚−1

𝑗=0

) + 2𝐾𝑟𝑓𝑚−1
′  

                      − (𝑀2 +
1

𝑘1
) 𝑔𝑚−1        (6.57) 

𝑅𝜃,𝑚(𝜂) = 𝜃𝑚−1
′′ + 𝑃𝑟 𝑅𝑒 𝑎2 ∑ 𝑓𝑗𝜃𝑚−1−𝑗

′𝑚−1
𝑗=0 + 𝑁𝑏 ∑ 𝐶𝑗

′𝜃𝑚−1−𝑗
′𝑚−1

𝑗=0 + 𝑁𝑡 ∑ (𝜃𝑗
′𝜃𝑚−1−𝑗

′𝑚−1
𝑗=0   

                    +𝐷𝑓𝐶′′𝑚−1)         (6.58) 

𝑅𝐶,𝑚(𝜂) = 𝑁𝑏𝐶𝑚−1
′′ + 𝑁𝑡𝜃𝑚−1

′′ + 𝑁𝑏𝑅𝑒𝑆𝑐 ∑ 𝑓𝑗𝐶𝑚−1−𝑗
′𝑚−1

𝑗=0           (6.59) 

with 𝜒𝑚 = {
0, 𝑚 ≤ 1
1, 𝑚 ≥ 1

 ,          (6.60) 

 

Solving the corresponding mth-order deformation equations,  

𝑓𝑚(𝜂) = 𝑓𝑚
∗ (𝜂) + 𝐶1 + 𝐶2 𝜂 + 𝐶3𝑒𝜂 + 𝐶4𝑒−𝜂      (6.61) 

𝑔𝑚(𝜂) = 𝑔𝑚
∗ (𝜂) + 𝐶5𝑒−𝜂 + 𝐶6𝑒𝜂        (6.62) 

𝜃𝑚(𝜂) = 𝜃𝑚
∗ (𝜂) + 𝐶7 + 𝐶8𝜂          (6.63) 

𝐶𝑚(𝜂) = 𝐶𝑚
∗ (𝜂) + 𝐶9 + 𝐶10𝜂         (6.64) 

Here 𝑓𝑚
∗  , 𝑔𝑚

∗ , 𝜃𝑚
∗   𝑎𝑛𝑑 𝐶𝑚

∗   are given by are particular solutions of the corresponding mth-order 

equations and the constants 𝐶𝑖( 𝑖 = 1,2, … ,6) are to be determined by the boundary conditions.  

6.4.1 Convergence Analysis: 

Convergence of the HAM solutions and their rate of approximations strongly depend on the values 

of the auxiliary parameters ℏ𝑓 , ℏ𝑔, ℏ𝜃 and ℏC. For this persistence, the associated h-curves are 

plotted in Figure 6.2 and Figure 6.3, where Figure 6.2 shows h-curves for f, g and 𝜃 and Figure 6.3 

displays h-curve for C. Acceptable choices for the auxiliary parameters are obtained. 
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Figure 6.2: h-curve of 𝑓′′(𝜂), 𝑔′(𝜂)and 𝜃′(𝜂) 

 

 

Figure 6.3: h-curve of 𝐶′(𝜂) 
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6.5 Results and Discussion: 

The physics of the problem through various graphs of velocity, temperature and concentration 

profiles are displayed in this section. Solutions for different parameters are plotted using 

Mathematica.  Effects of different parameters: Magnetic parameter, Reynolds number, Radiation 

parameter, Rotation parameter, nanoparticle volume fraction, Permeability parameter, Prandtl 

number, Thermophoretic parameter, Brownian parameter and Schmidt Number on fluid flow is 

represented through Figures 4 - 32. 

Figures 4 – 6 indicate effect of magnetic field 𝑀 on velocity profiles. We can see here that 

increment in 𝑀 leads to decrement in velocity. The reason of this is the Lorentz force induced on 

fluid. We can see the effect of Casson fluid parameter 𝛾 on velocity profiles from Figures 7 – 9. 

When we raise the value of 𝛾 velocity will also increase. Figures 10 – 12 reveal effects of 𝑘1 on 

fluid velocity. It is clear from the figures that, permeability parameter 𝑘1 tends to improve velocity. 

As 𝑘1  increases, the wholes becomes bigger which allows more fluid to flow, hence velocity 

increases. Figures 13 – 15 displays negative impact of rotating parameter 𝑅𝑘 on velocity in 𝑥 and 

𝑦 direction whereas positive impact in 𝑧 direction. Physically this is true due to the effects of 

Coriolis force. 

 

 

Figure 6.4: 𝑓(𝜂) for 𝑀 at  𝛾 = 1, 𝑘1 = 0.5, 𝑅𝑘 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1, 
𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.5: 𝑓′(𝜂) for M at 𝛾 = 1, 𝑘1 = 0.5, 𝑅𝑘 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

Figure 6.6: 𝑔(𝜂) for M at  𝛾 = 1, 𝑘1 = 0.5, 𝑅𝑘 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1, 
 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.7: 𝑓(𝜂) for 𝛾 at  𝑀 = 0.1, 𝑘1 = 0.5, 𝑅𝑘 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

Figure 6.8: 𝑓′(𝜂) for 𝛾 at 𝑀 = 0.1, 𝑘1 = 0.5, 𝑅𝑘 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1,  
𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.9: 𝑔(𝜂) for 𝛾 at  𝑀 = 0.1, 𝑘1 = 0.5, 𝑅𝑘 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

Figure 6.10: 𝑓(𝜂) for 𝑘1 at  𝛾 = 1, 𝑀 = 0.1, 𝑅𝑘 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.11: 𝑓′(𝜂) for 𝑘1 at 𝛾 = 1, 𝑀 = 0.1, 𝑅𝑘 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1,  
𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

Figure 6.12: 𝑔(𝜂) for 𝑘1 at  𝛾 = 1, 𝑀 = 0.1, 𝑅𝑘 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.13: 𝑓(𝜂) for 𝑅𝑘 at  𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

Figure 6.14: 𝑓′(𝜂) for 𝑅𝑘 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.15: 𝑔(𝜂) for 𝑅𝑘 at  𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1,  
𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

 

Figure 6.16: 𝜃(𝜂) for 𝑃𝑟 at 𝛾 = 1, 𝑘1 = 0.5, 𝑀 = 0.1, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1, 
𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.17: 𝐶(𝜂) for 𝑃𝑟 at 𝛾 = 1, 𝑘1 = 0.5, 𝑀 = 0.1, 𝑅𝑒 = 1, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1,  
𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

Figure 6.18: 𝑓(𝜂) for 𝑅𝑒 at  𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑅𝑘 = 0.5, 𝑁𝑡 = 0.1,  
𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.19: 𝑓′(𝜂) for 𝑅𝑒 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑅𝑘 = 0.5, 𝑁𝑡 = 0.1,  
𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

Figure 6.20: 𝑔(𝜂) for 𝑅𝑒 at  𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑅𝑘 = 0.5, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 



Chapter 6 

100 
 

 

Figure 6.21: 𝜃(𝜂) for  𝑅𝑒 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑁𝑡 = 0.1,  
𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

 

Figure 6.22: 𝐶(𝜂) for  𝑅𝑒 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.23: 𝜃(𝜂) for 𝑁𝑏 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑁𝑡 = 0.1, 𝑅𝑒 = 1, 
 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

Figure 6.24: 𝐶(𝜂) for 𝑁𝑏 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑁𝑡 = 0.1, 𝑅𝑒 = 1, 
 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.25: 𝜃(𝜂) for  𝑁𝑡 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑏 = 0.1,  
𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

 

Figure 6.26: 𝐶(𝜂) for 𝑁𝑡 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑃𝑟 = 10, 𝑅𝑒 = 1, 𝑁𝑏 = 0.1, 
 𝑆𝑐 = 0.22, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.27: 𝜃(𝜂) for  𝑆𝑐 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑁𝑡 = 0.1,  
𝑁𝑏 = 0.1, 𝑅𝑒 = 1, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

Figure 6.28: 𝐶(𝜂) for 𝑆𝑐 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑁𝑡 = 0.1,  
𝑁𝑏 = 0.1, 𝑅𝑒 = 1, 𝐷𝑓 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.29: 𝜃(𝜂) for 𝐷𝑓 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝑅𝑒 = 1 𝑎𝑛𝑑 𝑅 = 5. 

 

 

Figure 6.30: 𝐶(𝜂) for  𝐷𝑓 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑁𝑡 = 0.1, 
 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝑅𝑒 = 1 𝑎𝑛𝑑 𝑅 = 5. 
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Figure 6.31: 𝜃(𝜂) for  𝑅 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑃𝑟 = 10, 𝑁𝑡 = 0.1,  
𝑁𝑏 = 0.1, 𝑆𝑐 = 0.22, 𝑅𝑒 = 1 𝑎𝑛𝑑 𝐷𝑓 = 1. 

 

 

Figure 6.32: 𝐶(𝜂) for  𝑅 at 𝛾 = 1, 𝑀 = 0.1, 𝑘1 = 0.5, 𝑃𝑟 = 10, 𝑃𝑟 = 10, 𝑁𝑡 = 0.1, 𝑁𝑏 =
0.1, 𝑆𝑐 = 0.22, 𝑅𝑒 = 1 𝑎𝑛𝑑 𝐷𝑓 = 1. 
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Figures 6.16 – 6.17 depict fall temperature and concentration profiles with higher values of 𝑃𝑟. 

Actually, increment in 𝑃𝑟 leads to decrement in thermal conductivity of the fluid which deduce to 

decrement in boundary layer thickness. Figures 6.18 – 6.22 gives effect of 𝑅𝑒 on velocity, 

temperature and concentration. One can observe that higher values of 𝑅𝑒 tends to improve velocity 

in 𝑦 direction while reduce in x and z direction. Also, increment in 𝑅𝑒 will reduce temperature and 

concentration. Figures 6.23 – 6.24 reflects effects of 𝑁𝑏 on temperature and concentration profiles. 

It is noted that both have positive changes with increase in 𝑁𝑏. Figures 6.25 – 6.26 describes 

increase in thermophoresis parameter 𝑁𝑡 results increase in temperature and concentration 

profiles. Figures 6.27 – 6.28 exhibit temperature and concentration profiles for Schmidt 

number 𝑆𝑐. It can be noted that temperature falls with increase in 𝑆𝑐 whereas concentration rises 

with rise of 𝑆𝑐. Figures 6.29 – 6.30 reflect dufour effect 𝐷𝑓 on temperature and concentration. It 

can be observed that both have negative tendency with augmentation in 𝐷𝑓. Figures 6.31 – 6.32 

illustrate that radiation have positive tendency on temperature as well as concentration. 

 

6.6 Conclusion: 

From the observations of all results, the following can be concluded. 

•  Fluid velocity decreases with increase in 𝑀, 𝐾𝑟 and 𝑅𝑒.  

• Fluid velocity intensifies with 𝑘1. 

• Fluid temperature can be raised by increment in either 𝑅, 𝑅𝑘, 𝑁𝑡 or 𝑁𝑏. 

• Fluid temperature has retarding effect with growing values of 𝑅𝑒, 𝐷𝑓 or 𝑃𝑟. 

• Concentration can be increased by increasing values of 𝑁𝑡, 𝑆𝑐 or 𝑁𝑏, and reverse is for 𝑅. 


