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INFLUENCE OF MAGNETIC FIELD ON WATER BASED COMPOSITE 

NANOFLUID FLOW. 

 

The restriction of the conventional fluids to expedite cooling/heating rates give rise to exploration 

of nanofluids. Generally, water based single phase nanofluids containing nanoparticles such as 

CuO or Al2O3 are discussed. Enhancement of heat transfer is beneficial in engineering and actual 

world problems. To achieve this, experiments considering composite nanoparticles in place of 

single nanoparticle based nanofluids are performed. Consequently, investigators are fascinated 

towards heat transfer properties of composite nanofluids.  Thermal conductivity of nanofluids is 

high, which is a motivation in this area, thus many investigators are doing research intensively. 

 

7.1 Introduction of the problem: 

Choi and Eastman [130] were probably the first to employ a mixture of nanoparticles and base 

fluid that such fluidswere designated as “nano-fluids”. Experimental studies have displayed that 

with 1%–5% volume of solid metallic or metallicoxide particles, the effective thermal conductivity 

of the resulting mixture can be increased by 20% compared tothat of the base fluid [53]. Nano-

fluids exhibit non-Newtonian behavior. Goud et al. [158] discussed evaporation of polystyrene 

encapsulated phase change composite material based nanofluids whereas Chaudhari et al. [128] 

studied heat transfer characteristics of Al2O3 and CuO nanofluids for machining application. 

Effect of magnetic field on electrically conducting fluids has many applications in almost all 

branches of science and engineering such as generators, coolant in huge nuclear power plants, 

plasma and bearings. Interaction between the electrically conducting fluid and a magnetic field is 

used as a control mechanism in material manufacturing industry, as the convection currents are 

suppressed by Lorentz force which is produced by the magnetic field. In pharmaceutical as well 

as environmental science, MHD has been playing a vital role in the application of fluid dynamics 

and medical sciences, owing to its implications in chemical fluids as well as metallurgical fields. 

Research works on MHD have been significantly advanced during the last few years in natural 

sciences and engineering disciplines after the pioneer work of Hartmann [52] in liquid metal duct 

flows under the influence of a strong external magnetic field. Lund et al. [60] studied multiple 

solution of Cu–Al2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface.  

https://www.sciencedirect.com/science/article/pii/S221478531931870X
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Radiations due to heat transfer effects on different flows are very important in space technology 

and high temperature processes. Thermal radiation parameter effects may play an important role 

in controlling heat transfer in polymer processing industry.   

The basic law governing the flow of fluids through porous media is Darcy's Law. Thermophoresis 

and Brownian motion is important phenomena in heat and mass transfer fluid flow problems. 

Recently, Patel and Singh [33] studied thermophoresis and brownian motion effects on mixed 

convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium. Mittal 

and Patel [6] studied influence of thermophoresis and Brownian motion on mixed convection two 

dimensional MHD Casson fluid flow with non-linear radiation and heat generation whereas Mittal 

and Kataria [5] considered three dimensional CuO–Water nanofluid flow with Brownian motion 

and thermal radiation. 

 

  7.2 Novelty of the Problem: 

The works stated that no effort is made to study the effects of thermal radiation and Brownian 

motion on MHD flow water based composite nanofluid passing through a porous medium. So, the 

objective of present study to be develop the mathematical modeling for Brownian motion effects 

on MHD flow water based composite nanofluid with thermal radiation. We consider the fluid flow 

past in porous medium. HAM Method applied for finding the solution of governing equations. 

Skin friction, Nusselt number and Sherwood number are obtained and presented in graphical form. 

 

7.3 Mathematical Formulation of the Problem: 

It is assumed that hybrid nanofluid (Mixture of Al2O3 – CuO - Water nanofluid) “flows between 

two horizontal parallel plates placed L units apart through a porous medium. A coordinate system 

(𝑥, 𝑦, 𝑧) is such that origin is at the lower plate as shown in Figure 7.1. The lower plate is stretched 

by two equal forces in opposite directions. The plates along with the fluid rotate about y axis with 

angular velocity 𝛺. A uniform magnetic flux with density 𝐵0 is applied along 𝑦 − 𝑎𝑥𝑖𝑠. Under 

these assumptions, governing equations are:” 

 

https://www.sciencedirect.com/science/article/pii/S0378437119315432#!
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Figure 7.1: Physical sketch of the problem. 

 

𝜕𝑢′

𝜕𝑥
+

𝜕𝑣′

𝜕𝑦
+

𝜕𝑤′

𝜕𝑧
= 0           (7.1) 

𝜌ℎ𝑛𝑓 (𝑢′
𝜕𝑢′

𝜕𝑥
+ 𝑣′

𝜕𝑢′

𝜕𝑦
+ 2Ω𝑤′) = 𝜇ℎ𝑛𝑓 (

𝜕2𝑢′

𝜕𝑥2 +
𝜕2𝑢′

𝜕𝑦2 ) − 𝜎ℎ𝑛𝑓𝐵0
2𝑢′ −

𝜇ℎ𝑛𝑓∅

𝑘1
′ 𝑢′  (7.2) 

𝜌ℎ𝑛𝑓 (𝑣′
𝜕𝑣′

𝜕𝑦
) = 𝜇ℎ𝑛𝑓 (

𝜕2𝑣′

𝜕𝑥2 +
𝜕2𝑣′

𝜕𝑦2 )         (7.3) 

𝜌ℎ𝑛𝑓 (𝑢′
𝜕𝑤′

𝜕𝑥
+ 𝑣′

𝜕𝑤′

𝜕𝑦
− 2Ω𝑤′) = 𝜇ℎ𝑛𝑓 (

𝜕2𝑤′

𝜕𝑥2 +
𝜕2𝑤′

𝜕𝑦2 ) − 𝜎ℎ𝑛𝑓𝐵0
2𝑤′ −

𝜇ℎ𝑛𝑓∅

𝑘1
′ 𝑤′   (7.4) 

(𝜌𝑐𝑝)
ℎ𝑛𝑓

(𝑢′
𝜕𝑇′

𝜕𝑥
+ 𝑣′

𝜕𝑇′

𝜕𝑦
+ 𝑤′

𝜕𝑇′

𝜕𝑧
) = 𝑘𝑛𝑓 (

𝜕2𝑇′

𝜕𝑥2
+

𝜕2𝑇′

𝜕𝑦2
+

𝜕2𝑇′

𝜕𝑧2
) + 𝜇ℎ𝑛𝑓 (

𝐷𝑇

𝑇𝑤
((

𝜕𝑇′

𝜕𝑥
)

2

 

                                                                      + (
𝜕𝑇′

𝜕𝑦
)

2

+ (
𝜕𝑇′

𝜕𝑧
)

2
) + 𝐷𝐵 (

𝜕𝐶

𝜕𝑥

𝜕𝑇′

𝜕𝑥
+

𝜕𝐶

𝜕𝑦

𝜕𝑇′

𝜕𝑦
+

𝜕𝐶

𝜕𝑧

𝜕𝑇′

𝜕𝑧
)) −

𝜕𝑞𝑟

𝜕𝑦
 

            (7.5) 

𝑢′
𝜕𝐶

𝜕𝑥
+ 𝑣′

𝜕𝐶

𝜕𝑦
+ 𝑤′

𝜕𝐶

𝜕𝑧
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 +
𝜕2𝐶

𝜕𝑧2) +
𝐷𝑇

𝑇𝑤
(

𝜕2𝑇′

𝜕𝑥2 +
𝜕2𝑇′

𝜕𝑦2 +
𝜕2𝑇′

𝜕𝑧2 )   (7.6) 

From Ref. [5] and [37], we write 
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𝜌ℎ𝑛𝑓 = {(1 − 𝜑2)[(1 − 𝜑1)𝜌𝑏𝑓 + 𝜑1𝜌𝑠1]} + 𝜑2𝜌𝑠2      (7.7)                    

𝜎ℎ𝑛𝑓

𝜎𝑏𝑓
=

𝜎𝑆2+2𝜎𝑏𝑓−2𝜑2(𝜎𝑏𝑓−𝜎𝑆2)

𝜎𝑆2+2𝜎𝑏𝑓+𝜑2(𝜎𝑏𝑓−𝜎𝑆2)
,         (7.8) 

𝜎𝑏𝑓

𝜎𝑓
=

𝜎𝑆1+2𝜎𝑓−2𝜑1(𝜎𝑓−𝜎𝑆1)

𝜎𝑆1+2𝜎𝑓+𝜑1(𝜎𝑓−𝜎𝑆1)
         (7.9) 

(𝜌𝑐𝑝)
ℎ𝑛𝑓

= {(1 − 𝜑2) [(1 − 𝜑1)(𝜌𝑐𝑝)
𝑓

+ 𝜑1(𝜌𝑐𝑝)
𝑠1

]} + 𝜑2(𝜌𝑐𝑝)
𝑠2

   (7.10)                

𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
=

𝑘𝑆2+(𝑛−1)𝑘𝑏𝑓−(𝑛−1)𝜑2(𝑘𝑏𝑓−𝑘𝑆2)

𝑘𝑆2+(𝑛−1)𝑘𝑏𝑓+𝜑2(𝑘𝑏𝑓−𝑘𝑆2)
,        (7.11) 

Where 

 
𝑘𝑏𝑓

𝑘𝑓
=

𝑘𝑆1+(𝑛−1)𝑘𝑓−(𝑛−1)𝜑1(𝑘𝑓−𝑘𝑆1)

𝑘𝑆1+(𝑛−1)𝑘𝑓+𝜑1(𝑘𝑓−𝑘𝑆1)
,        (7.12) 

𝜇ℎ𝑛𝑓 =
𝜇𝑏𝑓

(1−𝜑1)2.5(1−𝜑2)2.5         (7.13) 

Table 1 demonstrates values of thermo-physical properties for water as base fluid and different 

materials used as suspended particles. 

 

Table 7.1: Thermo-physical properties of water and nanoparticles. 

Physical properties Fluid phase (water) Copper  Alumina  Silver 

𝐶𝑝(𝐽/(𝐾𝑔𝐾)) 4179 385 765 235 

𝜌(𝐾𝑔/𝑚3) 997.1 8933 3970 10500 

𝑘(𝑊/(𝑚𝐾)) 0.613 401 40 429 

𝛽 × 10−5(𝐾−1) 21 1.67 0.85 1.89 

𝜎((Ω𝑚)−1) 0.05 5.96107 10-10 3.60107 

 

𝑞𝑟 [127] can be expressed as, 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
= −

4𝜎∗

3𝑘∗

𝜕(4𝑇0
3𝑇−3𝑇0

4)

𝜕𝑦
        (7.14) 

“Subject to boundary conditions” 

𝑢′ =  𝑎𝑥; 𝑣′ =  0;  𝑤′ =  0;  𝑇 ′ =  𝑇𝑤 𝑎𝑡 𝑦 =  0      (7.15) 
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𝑢′ =  0;  𝑣′ =  0;  𝑤′ =  0;  𝑇′ =  𝑇𝐿 𝑎𝑡 𝑦 =  𝐿      (7.16) 

“Introducing non dimensional variables” 

𝜂 =
𝑦

𝐿
, 𝑢′ = 𝑎𝑥𝑓′(𝜂), 𝑣′ = −𝑎ℎ𝑓(𝜂), 𝑤′ = 𝑎𝑥𝑔(𝜂), 𝜃(𝜂) =

T′−𝑇𝐿

𝑇𝑤−𝑇𝐿
, C(𝜂) =

C−𝐶𝐿

𝐶𝑤−𝐶𝐿
  (7.17) 

“Therefore dimensionless form of governing equations is given by:” 

𝑎1𝑓𝑖𝑣 − 𝑅𝑒(𝑓′𝑓′′ − 𝑓𝑓′′′) − 2 𝑅𝑘 𝑔′ − (𝑎3𝑀2 +
𝑎1

𝑘1
) 𝑓′′ = 0    (7.18) 

𝑎1𝑔′′ − 𝑅𝑒(𝑓′𝑔 − 𝑓𝑔′) + 2 𝑅𝑘 𝑓′ − (𝑎3𝑀2 +
𝑎1

𝑘1
) 𝑔 = 0     (7.19) 

𝜃′′ + 𝑃𝑟𝑅𝑒𝑎2𝑓𝜃′ + 𝑁𝑏𝐶′𝜃′ + 𝑁𝑡𝜃′2
= 0       (7.20) 

𝑁𝑏C′′ + 𝑁𝑡𝜃′′ + 𝑁𝑏𝑅𝑒𝑆𝑐𝑓𝐶′ = 0        (7.21) 

“Subject to” 

𝑓 = 0, 𝑓′ = 1, 𝑔 = 0, 𝜃 = 1, 𝐶 = 1 𝑎𝑡 𝜂 = 0  

𝑓 = 0, 𝑓′ = 0, 𝑔 = 0, 𝜃 = 0, C = 0 𝑎𝑡 𝜂 = 1      (7.22) 

Where, 

𝑃𝑟 =
𝜇𝑏𝑓 (𝑐𝑝)

𝑏𝑓

𝑘𝑏𝑓
, 𝑆𝑐 =

𝜇𝑏𝑓 

𝜌𝑏𝑓𝐷
, 𝑀2 =  

𝜎𝑏𝑓𝐵0
2𝐿2

𝜌𝑏𝑓𝑣𝑏𝑓
,

1

𝑘1
=

𝑣𝜙2

𝑘1
′𝑣𝑏𝑓

, 𝐾𝑟 =
Ω𝐿2

𝑣𝑏𝑓
, 𝑅𝑒 =

𝑎𝐿2

𝑣𝑏𝑓
,  

𝐸𝑐 =
(𝑎𝐿)2

(𝑐𝑝)
𝑏𝑓

(𝜃0−𝜃𝐿)
, 𝛼 =  

𝑘ℎ𝑛𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

, 𝑁𝑏 =  
{(1−𝜑2)[(1−𝜑1)(𝜌𝑐𝑝)

𝑏𝑓
+𝜑1(𝜌𝑐𝑝)

𝑠1
]}+𝜑2(𝜌𝑐𝑝)

𝑠2
 𝐷𝐵𝐶𝐿

(𝜌𝑐𝑝)
𝑏𝑓

𝛼
,  

𝑁𝑡 =  
{(1−𝜑2)[(1−𝜑1)(𝜌𝑐𝑝)

𝑏𝑓
+𝜑1(𝜌𝑐𝑝)

𝑠1
]}+𝜑2(𝜌𝑐𝑝)

𝑠2
 𝐷𝐵𝑇𝐿

(𝜌𝑐𝑝)
𝑏𝑓

𝛼𝑇𝑤
      (7.23) 

𝑏0 = (1 − 𝜑1)(1 − 𝜑2)         (7.24)  

𝑏1 = (𝑏0 + (1 − 𝜑2)𝜑1
𝜌𝑠1

𝜌𝑓
+ 𝜑2

𝜌𝑠2

𝜌𝑓
)        (7.25) 

𝑏2 =
1

𝑏0
2.5           (7.26)  
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𝑏3 = (𝑏0 + (1 − 𝜑2)𝜑1

(𝜌)𝑠1(𝑐𝑝)
𝑠1

(𝜌)𝑏𝑓(𝑐𝑝)
𝑏𝑓

+ 𝜑2

(𝜌)𝑠2(𝑐𝑝)
𝑠2

(𝜌)𝑏𝑓(𝑐𝑝)
𝑏𝑓

)     (7.27)  

𝑏4 =
𝑘ℎ𝑛𝑓

𝑘𝑏𝑓
           (7.28)  

𝑏5 =
𝜎ℎ𝑛𝑓

𝜎𝑏𝑓
           (7.29)  

𝑎1 =
1

𝑏0
2.5𝑏1

           (7.30) 

𝑎2 =
𝑏3

𝑏4+𝑅
           (7.31)  

𝑎3 =
𝑏5

𝑏1
           (7.32)  

𝑎4 =
𝑏2

𝑏4
           (7.33) 

𝑅 =
16𝜎∗𝑇0

3

3𝑘∗𝑘𝑏𝑓
           (7.34) 

7.4 Solution of the Problem: 

Equations (7.18) – (7.21) subject to (7.22) are solved by HAM [122]. 

Initial guess is given by: 

𝑓0(𝜂) =
−2

𝑒2−4𝑒+3
+

𝑒−1

𝑒−3
𝜂 +

2−𝑒

𝑒2−4𝑒+3
𝑒𝜂 +

𝑒

𝑒2−4𝑒+3
𝑒−𝜂; 𝑔0(𝜂) = 0; 𝜃0(𝜂) = 1 − 𝜂; 𝐶0(𝜂) = 1 −

𝜂; (7.35) 

with auxiliary linear operators: 

 

𝐿𝑓 =
𝜕4𝑓

𝜕𝜂4
−

𝜕2𝑓

𝜕𝜂2
 , 𝐿𝑔 =

𝜕2𝑔

𝜕𝜂2
−  

𝜕𝑔

𝜕𝜂
  ,   𝐿𝜃 =  

𝜕2𝜃

𝜕𝜂2
  ,   𝐿𝐶 =  

𝜕2C

𝜕𝜂2
     (7.36) 

Satisfying 

𝐿𝑓(𝐶1 + 𝐶2 𝜂 + 𝐶3𝑒𝜂 + 𝐶4𝑒−𝜂) = 0,   𝐿𝑔(𝐶5 + 𝐶6𝑒𝜂) = 0,    𝐿𝜃( 𝐶7 + 𝐶8𝜂),    𝐿𝐶( 𝐶9 + 𝐶10𝜂) =

0. (7.37) 
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where 𝑐1,   𝑐2, … . , 𝑐10 “are the arbitrary constants. 

The zeroth order deformation problems are constructed as follows: 

(1 − 𝑝)𝐿𝑓[𝑓(𝜂;  𝑝) − 𝑓0(𝜂)] = 𝑝ℏ𝑓𝑁𝑓[𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝), 𝜃(𝜂;  𝑝), 𝐶̂(𝜂;  𝑝)]  (7.38) 

(1 − 𝑝)𝐿𝑔[𝑔̂(𝜂;  𝑝) − 𝑔0(𝜂)] = 𝑝ℏ𝑔𝑁𝑔[𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝), 𝜃(𝜂;  𝑝), 𝐶̂(𝜂;  𝑝)]  (7.39)                                                           

(1 − 𝑝)𝐿𝜃[𝜃(𝜂;  𝑝) − 𝜃0(𝜂)] = 𝑝ℏ𝜃𝑁𝜃[𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝), 𝜃(𝜂;  𝑝), 𝐶̂(𝜂;  𝑝)]  (7.40) 

 

(1 − 𝑝)𝐿𝐶[𝐶̂(𝜂;  𝑝) − 𝐶0(𝜂)] = 𝑝ℏ𝐶𝑁𝐶[𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝), 𝜃(𝜂;  𝑝), 𝐶̂(𝜂;  𝑝)]  (7.41) 

 

Subject to: 

𝑓(0;  𝑝) = 0,      𝑓′(0;  𝑝) = 1;        (7.42) 

𝑓(1;  𝑝) = 0,      𝑓′(1;  𝑝) = 0;        (7.43) 

𝑔̂(0;  𝑝) = 0,      𝑔̂(1;  𝑝) = 0;         (7.44) 

𝜃(0;  𝑝) = 1,      𝜃(1;  𝑝) = 0;         (7.45)        

𝐶̂(0;  𝑝) = 1,     𝐶̂(1;  𝑝) = 0.         (7.46) 

The nonlinear operators are given by  

𝑁𝑓[𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝), 𝜃(𝜂;  𝑝), 𝐶̂(𝜂;  𝑝)] =  𝑎1
𝜕4𝑓̂

𝜕𝜂4 − 𝑅𝑒 ( 
𝜕𝑓̂

𝜕𝜂

𝜕2𝑓̂

𝜕𝜂2 − 𝑓
𝜕3𝑓̂

𝜕𝜂3) − 2 𝑅𝑘  
𝜕𝑔̂

𝜕𝜂
−

(𝑎3𝑀2 +
𝑎1

𝑘1
)

𝜕2𝑓̂

𝜕𝜂2          (7.47) 

𝑁𝑔[𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝), 𝜃(𝜂;  𝑝), 𝐶̂(𝜂;  𝑝)] = 𝑎1
𝜕2𝑔̂

𝜕𝜂2 − 𝑅𝑒 (𝑔 
𝜕𝑓̂

𝜕𝜂
− 𝑓 

𝜕𝑔̂

𝜕𝜂
) + 2 𝑅𝑘  

𝜕𝑓̂

𝜕𝜂
− (𝑎3𝑀2 +

𝑎1

𝑘1
) 

            (7.48) 

𝑁𝜃[𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝), 𝜃(𝜂;  𝑝), 𝐶̂(𝜂;  𝑝)] =    
𝜕2𝜃̂

𝜕𝜂2 + 𝑃𝑟𝑅𝑒𝑎2𝑓
𝜕𝜃̂

𝜕𝜂
+ 𝑁𝑏

𝜕Ĉ

𝜕𝜂

𝜕𝜃̂

𝜕𝜂
+ 𝑁𝑡 (

𝜕𝜃̂

𝜕𝜂
)

2

  

            (7.49) 
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𝑁𝐶[𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝), 𝜃(𝜂;  𝑝), 𝐶̂(𝜂;  𝑝)] =    𝑁𝑏
𝜕2𝐶̂

𝜕𝜂2 + 𝑁𝑡
𝜕2𝜃̂

𝜕𝜂2 + 𝑁𝑏 𝑅𝑒 𝑆𝑐 𝑓
𝜕𝐶̂

𝜕𝜂
  (7.50) 

Where 𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝),  𝜃̂(𝜂;  𝑝) and 𝐶̂(𝜂;  𝑝) are unknown functions with respect to 𝜂  and 𝑝.  

ℏ𝑓, ℏ𝑔, ℏ𝜃 and  ℏ𝐶 are the non-zero auxiliary parameters and 𝑁𝑓, 𝑁𝑔, 𝑁𝜃 and 𝑁C  are the nonlinear 

operators.  

Also  𝑝 ∈ (0, 1) is an embedding parameter. For 𝑝 = 0 and 𝑝 = 1 we have  

𝑓(𝜂; 0) = 𝑓0(𝜂), 𝑓(𝜂; 1) = 𝑓(𝜂),        (7.51) 

𝑔̂(𝜂; 0) = 𝑔0(𝜂), 𝑔̂(𝜂; 1) = 𝑔(𝜂),        (7.52) 

𝜃(𝜂; 0) =  𝜃0(𝜂), 𝜃(𝜂; 1) =  𝜃(𝜂),        (7.53) 

Ĉ(𝜂; 0) =  𝐶0(𝜂), 𝐶̂(𝜂; 1) =  C(𝜂).        (7.54)                                                        

When 𝑝 varies from 0 to 1, then 𝑓, 𝑔̂, 𝜃 and 𝐶̂ vary from 𝑓0,  𝑔0, 𝜃0 and C0 to 𝑓, 𝑔, 𝜃 and 𝐶. Taylor’s 

series expansion yields: 

𝑓(𝜂;  𝑝) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)𝑝𝑚,∞
𝑚=1         (7.55) 

𝑔̂(𝜂;  𝑝) = 𝑔0(𝜂) + ∑ 𝑔𝑚(𝜂)𝑝𝑚,∞
𝑚=1         (7.56) 

𝜃(𝜂;  𝑝) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑝𝑚,∞
𝑚=1         (7.57) 

Ĉ(𝜂;  𝑝) = C0(𝜂) + ∑ C𝑚(𝜂)𝑝𝑚∞
𝑚=1 .        (7.58) 

Where 

𝑓𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝑓(𝜂; 𝑝)

𝜕𝑝𝑚
]

𝑝=0
,         (7.59) 

𝑔𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝑔(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

 ,         (7.60) 

𝜃𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝜃(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

,         (7.61) 

𝐶𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚C(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

.         (7.62) 
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ℏ𝑓 , ℏ𝑔, ℏ𝜃 and ℏ𝐶 are chosen such that Equations (7.35) to (7.37) converge when 𝑝 = 1, Hence, 

“𝑓(𝜂) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂),∞
𝑚=1         (7.63) 

𝑔(𝜂) = 𝑔0(𝜂) + ∑ 𝑔𝑚(𝜂),∞
𝑚=1         (7.64) 

𝜃(𝜂) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂),∞
𝑚=1         (7.65) 

C(𝜂) = C0(𝜂) + ∑ C𝑚(𝜂).∞
𝑚=1         (7.66) 

Differentiating (7.37) – (7.39) and (7.40) – (7.43) 𝑚 times w.r.t. 𝑝 and putting 𝑝 = 0, 𝑚𝑡ℎ order 

deformation (𝑚 ≥ 1) can be expressed as” 

𝐿𝑓[𝑓𝑚(𝜂) − χ𝑚𝑓𝑚−1(𝜂)] = ℏ𝑓𝑅𝑓,𝑚(𝜂),       (7.67)         

𝐿𝑔[𝑔𝑚(𝜂) − χ𝑚𝑔𝑚−1(𝜂)] = ℏ𝑔𝑅𝑔,𝑚(𝜂),       (7.68)            

𝐿𝜃[𝜃𝑚(𝜂) − χ𝑚𝜃𝑚−1(𝜂)] = ℏ𝜃𝑅𝜃,𝑚(𝜂),       (7.69)                                                                          

𝐿C[𝐶𝑚(𝜂) − 𝜒𝑚𝐶𝑚−1(𝜂)] = ℏC𝑅C,𝑚(𝜂).       (7.70)                                                                          

“Subject to the boundary conditions” 

𝑓𝑚(0) = 𝑓𝑚
′ (0) = 0,          (7.71) 

𝑓𝑚(1) = 𝑓𝑚
′ (1) = 0,          (7.72) 

𝑔𝑚(0) = 𝑔𝑚(1) = 0,          (7.73) 

𝜃𝑚(0) = 𝜃𝑚(1) = 0,          (7.74) 

C𝑚(0) = C𝑚(1) = 0.          (7.75) 

𝑅𝑓,𝑚(𝜂) = 𝑎1𝑓𝑚−1
𝑖𝑣 − 𝑅𝑒(∑ 𝑓𝑗

′𝑓𝑚−1−𝑗
′′𝑚−1

𝑗=0 − ∑ 𝑓𝑗𝑓𝑚−1−𝑗
′′′𝑚−1

𝑗=0 ) − 2 𝑅𝑘𝑔𝑚−1
′ − (𝑎3𝑀2 +

𝑎1

𝑘1
) 𝑓𝑚−1

′′  

            (7.76) 

𝑅𝑔,𝑚(𝜂) = 𝑎1𝑔𝑚−1
′′ − 𝑅𝑒(∑ 𝑓𝑗

′𝑚−1
𝑗=0 𝑔𝑚−1−𝑗 − ∑ 𝑓𝑗𝑔𝑚−1−𝑗

′𝑚−1
𝑗=0 ) + 2 𝑅𝑘 𝑓𝑚−1

′ − (𝑎3𝑀2 +

𝑎1

𝑘1
) 𝑔𝑚−1           (7.77) 
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𝑅𝜃,𝑚(𝜂) = 𝜃𝑚−1
′′ + 𝑃𝑟𝑅𝑒𝑎2 ∑ 𝑓𝑗𝜃𝑚−1−𝑗

′𝑚−1
𝑗=0 + 𝑁𝑏 ∑ 𝐶𝑗

′𝜃𝑚−1−𝑗
′𝑚−1

𝑗=0 + 𝑁𝑡 ∑ 𝜃𝑗
′𝜃𝑚−1−𝑗

′𝑚−1
𝑗=0  (7.78) 

𝑅C,𝑚(𝜂) = 𝑁𝑏𝐶𝑚−1
′′ + 𝑁𝑡𝜃𝑚−1

′′ + 𝑁𝑏𝑅𝑒𝑆𝑐 ∑ 𝑓𝑗𝐶𝑚−1−𝑗
′𝑚−1

𝑗=0      (7.79) 

“with 𝜒𝑚 = {
0, 𝑚 ≤ 1
1, 𝑚 ≥ 1

 ,         (7.80) 

Solving the corresponding mth-order deformation equations,”  

𝑓𝑚(𝜂) = 𝑓𝑚
∗ (𝜂) + 𝐶1 + 𝐶2 𝜂 + 𝐶3𝑒𝜂 + 𝐶4𝑒−𝜂      (7.81) 

𝑔𝑚(𝜂) = 𝑔𝑚
∗ (𝜂) + 𝐶5 + 𝐶6𝑒𝜂        (7.82) 

𝜃𝑚(𝜂) = 𝜃𝑚
∗ (𝜂) + 𝐶7 + 𝐶8𝜂         (7.83) 

C𝑚(𝜂) = C𝑚
∗ (𝜂) + 𝐶9 + 𝐶10𝜂         (7.84) 

Here 𝑓𝑚
∗  , 𝑔𝑚

∗ , 𝜃𝑚
∗   𝑎𝑛𝑑 C𝑚

∗   are particular solutions of mth-order equations and 𝐶𝑖( 𝑖 = 1,2, … ,10) 

are determined by boundary conditions. 

7.4.1 Convergence of Homotopy Solution 

Auxiliary parameters ℏ𝑓 , ℏ𝑔, ℏ𝜃 and ℏC guarantee convergence of solutions and are obtained in 

Figures 7.2 – 7.5. 

 

Figure 7.2: ℎ -curve of 𝑓′′(𝜂) 
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Figure 7.3: h-curve of 𝑔′(𝜂) 

 

Figure 7.4: h-curve of 𝜃′(𝜂) 
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Figure 7.5: h-curve of 𝐶′(𝜂) 

7.5 Results and Discussion: 

In order to get a clear insight on the physical of the problem, a parametric study is performed and 

obtained numerical results are clarified with the help of graphical representations. We have 

presented the velocity, temperature and concentration profiles for different values of physical 

parameters in Figures 7.6 to 7.37. Figures 7.6 to 7.8 reflects permeability parameter’s effects on 𝑓, 

 𝑓′ and 𝑔. It is evident that  𝑓 and 𝑓′ have positive correlation with 𝑘1, whereas 𝑔 has reverse 

tendency. Due to the effects of porosity, it is obvious to improvement of motion of the fluid. This 

occurrences is obviously satisfied which is clarifies the physical state that as 𝑘1 increases. 

Physically, if we increase values of 𝑘1, porosity will increase therefore motion of the fluid also 

increases. Causes existence of the porous medium in the flow furnishes confrontation to flow. 

Consequently, the result resistive force tends to sluggish the motion of the fluid along the surface 

of the plate. Effect of magnetic parameter on velocity profiles 𝑓 and 𝑓′ are shown in figures 7.9 to 

7.11. From Figure 7.9 and 7.10, it is seen that the velocity profiles as well as the boundary layer 

thickness decreases when 𝑀 is increased. The application of a transverse magnetic field results in 

a resistive type force (called Lorentz force) similar to the drag force, and upon increasing the values 

of 𝑀, the drag force increases which leads to the deaccelerate of the flow. Figure 7.11 illustrate 
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the influence of magnetic field effects on 𝑔. It is depicted that, Magnetic field tends to improve 

velocity profiles  𝑔.  Figure 7.12 to 7.14 shows effects of rotation parameter on velocity profiles 

𝑓, 𝑓′ and 𝑔. From figure 7.12 to 7.13, the rotation parameter 𝑅𝑘 tends to reduced velocity in both 

directions 𝑓 and 𝑓′. This is justifying because Coriolis force, created due to rotation, tends to 

overturn fluid flow in flow direction in the flow-field. From figure 7.14, it is concluded that the 

velocity profiles 𝑔 increase in interval [0, 0.2] after that velocity decrease in interval [0.2, 1]. 

Figure 7.15 and Figure 7.16 reflects effects of Brownian motion parameter 𝑁𝑏 on temperature and 

concentration profiles. It is evident that, temperature have positive changes whereas concentration 

have negative changes with increase in 𝑁𝑏. Figures 7.17 and 7.18 shows effects of thermal 

radiation on temperature and concentration profiles. It is observed that increasing radiation will 

increase temperature but, concentration has reverse effect. Physically, Due to increasing thermal 

radiation parameter 𝑅, heat is generated in fluid flow, which leads to improvement in heat transfer 

as well as momentum throughout the fluid flow region. The thermophoresis parameter effects on 

temperature and concentration profiles are shown in figures 7.19 and 7.20. It is depicted that, heat 

transfer process increase with increase in 𝑁𝑡 whereas concentration decrease with increase in 𝑁𝑡. 

Figures 7.21 to 7.22 reveals the effects of nanoparticles volume fraction on temperature and 

concentration. Concentration will increase by increasing volume fraction and temperature will 

decrease. Figure 7.23 and Figure 7.24 exhibits the temperature and concentration profiles for 

different values of Prandtl number 𝑃𝑟. It is observed that heat transfer process decreases with 

increase in Prandtl number 𝑃𝑟 whereas mass transfer increases with increase in 𝑃𝑟. It is justified 

due to the fact that thermal conductivity of the fluid decrease with increase in Prandtl number 

𝑃𝑟 and hence decrease the thermal boundary layer thickness. Figure 7.25 and 7.26 shows the 

effects of Schmidt number on temperature and concentration profiles. It is seen that, Schmidt 

number can decrease temperature and concentration marginally.  

Figure 7.27 to 7.37 shows skin friction, Nusselt number and Sherwood number with different 

physical parameter. It is observed that the skin friction decrease with increase in 𝑘1 whereas 

increase with 𝑅𝑘. It is also seen that 𝜑  Nanoparticle volume fraction increase initially and the 

decrease with increase in skin friction. It also conclude that Nusselt number decrease with 𝑁𝑏, 𝑅, 

and 𝑁𝑡 increase and nusselt number increase with 𝜑 increase. It is also observed that Sherwood 

number decrease with increase in 𝑅𝑘, 𝑁𝑡 and 𝑆𝑐 and Sherwood number increase with increase 

in 𝑁𝑏. 
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Figure 7.6: 𝒇(𝜼) for different values of 𝒌𝟏. 

 

 

Figure 7.7: 𝒇′(𝜼) for different values of 𝒌𝟏. 
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Figure 7.8: 𝒈(𝜼) for different values of 𝒌𝟏. 

 

 

Figure 7.9: 𝒇(𝜼) for different values of 𝑴. 
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Figure 7.10: 𝒇′(𝜼) for different values of 𝑴. 

 

 

Figure 7.11: 𝒈(𝜼) for different values of 𝑴. 
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Figure 7.12: 𝒇(𝜼) for different values of 𝑲𝒓. 

 

 

Figure 7.13: 𝒇′(𝜼) for different values of 𝑹𝒌. 
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Figure 7.14: 𝒈(𝜼) for different values of 𝑹𝒌. 

 

 

Figure 7.15: 𝜽(𝜼) for different values of 𝑵𝒃. 
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Figure 7.16: 𝑪(𝜼) for different values of 𝑵𝒃. 

 

 

Figure 7.17: 𝜽(𝜼) for different values of 𝑹. 
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Figure 7.18: 𝑪(𝜼) for different values of 𝑹. 

 

 

Figure 7.19: 𝜽(𝜼) for different values of 𝑵𝒕. 
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Figure 7.20: 𝑪(𝜼) for different values of 𝑵𝒕. 

 

 

Figure 7.21: 𝜽(𝜼) for different values of 𝝋. 
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Figure 7.22: 𝑪(𝜼) for different values of 𝝋. 

 

 

Figure 7.23: 𝜽(𝜼) for different values of 𝑷𝒓. 
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Figure 7.24: 𝑪(𝜼) for different values of 𝑷𝒓. 

 

 

Figure 7.25: 𝜽(𝜼) for different values of 𝑺𝒄. 



Chapter 7 

130 
 

 

Figure 7.26: 𝑪(𝜼) for different values of 𝑺𝒄. 

 

 

Figure 7.27: Skin Friction Coefficient 𝑪𝒇 for different values of 𝒌𝟏. 
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Figure 7.28: Skin Friction Coefficient 𝑪𝒇 for different values of 𝑹𝒌. 

 

 

Figure 7.29: Skin Friction Coefficient 𝑪𝒇 for different values of 𝝋. 
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Figure 7.30: Nusselt Number variation 𝑵𝒖 for different values of 𝑵𝒃. 

 

 

Figure 7.31: Nusselt Number variation 𝑵𝒖 for different values of 𝑹. 
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Figure 7.32: Nusselt Number variation 𝑵𝒖 for different values of 𝑵𝒕. 

 

 

Figure 7.33: Nusselt Number variation 𝑵𝒖 for different values of 𝝋. 
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Figure 7.34: Sherwood Number variation 𝑺𝒉 for different values of 𝑹𝒌. 

 

 

Figure 7.35: Sherwood Number variation 𝑺𝒉 for different values of 𝑵𝒃. 
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Figure 7.36: Sherwood Number variation 𝑺𝒉 for different values of 𝑵𝒕. 

 

 

Figure 37: Sherwood Number variation 𝑺𝒉 for different values of 𝑺𝒄. 
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7.6 Conclusion: 

The key remarks can be summarized as follows. 

• Nanofluid velocity increases with decrease in magnetic parameter 𝑀. 

• Nanofluid velocity escalates with 𝑘1. 

• Temperature of Nanofluid can be raised by raising anyone parameter from radiation, 

magnetic field, rotation, thermophoresis or Brownian. 

• Nanofluid temperature decreases with rising values of 𝑆𝑐 𝑜𝑟 𝑃𝑟. 

• Concentration increases by increasing 𝜑 or 𝑃𝑟. 

• Concentration declines with increasing value of Thermophoresis parameter, Schmidt 

number and Brownian parameter. 

 

 


