
Chapter 4

Congruency between classical and
mild solutions of Caputo fractional
impulsive evolution equation on
Banach Space

The sufficient conditions for existence and uniqueness of mild and classical solution

of fractional order impulsive integro-differential equations of the following form is

established in this chapter. And also derived conditions in which mild and classical

solution are congruence.

cDβx(t) = Ax(t) + f(t, x(t), Tx(t), Sx(t)) t 6= tk, k = 1, 2, · · · , p

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, · · · , p

x(0) = x0

(4.0.1)

over the interval [0, T0] in a Banach space X. Here, A is bounded linear operator

on X and f : [0, T0] × X × X × X → X,T, S : X → X are defined by Tx(t) =∫ t
0
h(t, s, x(s))ds and Sx(t) =

∫ T0
0
k(t, s, x(s))ds; where h : D0 × X → X, D0 =

{(t, s); 0 ≤ s ≤ t ≤ T0} and k : D1 × X → X, D1 = {(t, s); 0 ≤ t, s ≤ T0} are the

operators satisfying condition of the hypotheses.
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4.1 Introduction

Mathematical problems having such nonlinear equations arise in many physical sit-

uations like heat flow in materials with viscoelastic behavior [44]. Many physical

phenomena like seepage flow in porous media [7], anomalous diffusion, wave and

transport [8, 9, 10] and other problems in fluid dynamics [12] need modern mathe-

matical modeling and solutions. In fact fractional differential equations are consid-

ered as an alternative model for nonlinear model [13]. This is because of their non

local property unlike integer order differential equations [14] which means, that the

next state of the system depends not only upon its current state but also upon its

entire historical states.

On the other-hand due to sudden change at certain moments in dynamics of the

systems, such systems are modeled in to impulsive differential equations [20]. The

existence and uniqueness of integer order impulsive system for many systems are

studied by researchers like Gao, Liu, Rogovchenko, Anguraj and Arjunan [39] using

various conditions.

Existence and uniqueness of mild solutions of impulsive fractional differential equa-

tions with classical conditions using transition matrix and semi-group theory are

derived by Benchohra [40], Mophou [41, 87] and Ravichandran and Arjunan [42].

However, both the Riemann-Liouville and the Caputo fractional differential oper-

ators do not possess semi-group or commutative properties, which are inherent to

the derivatives on integer order [21, 22, 46]. Therefore, there should be another ap-

proach to study fractional differential equation. The existence and uniqueness of the

mild solution of impulsive fractional order evolution equation with initial classical

and nonlocal conditions introduced by [22]. Balachandran et. al.[46], existence and

uniqueness of mild solution of impulsive fractional differential equations with delay

using Banach fixed point theorem was explore by Wang et. al. [56, 88], existence and

uniqueness of the solutions of fractional order impulsive differential equation with

order lies between one and two using fixed point theorem was derived by Kataria and

48



Chapter-4

Patel [57], in this chapter we extended our work and discusses sufficient conditions

for existence and uniqueness of classical solutions and conditions in which the mild

solution becomes classical solution.

4.2 Notations

(N1) X = Banach space and D(A) = Domain of an operator A.

(N2) R+ = [0,∞)

(N3) C([0, T0], X) =
{
x : [0, T0]→ X/x is continuous

}
with norm ||x|| = supt||x(t)||

(N4) PC([0, T0], X) = Closure

({
x : [0, T0]→ X;x ∈ C([tk−1, tk], X), and x(t−k ) and x(t+k )

exist, k = 1, 2, · · · , p with x(t−k ) = x(tk)
})

with norm ||x||PC = supt∈[0,T0]||x(t)||

(N5) AC([0, T0], X) =
{
x : [0, T0] → X/x is absolutely continuous

}
with norm

||x|| = supt||x(t)||

(N6) B(X) =
{
A : X → X/A is bouneded and linear

}
with norm ||A||B(X) =

sup{||A(y)||; y ∈ X&||y|| ≤ 1}

(N7) Cβ([0, T0], X) =
{
x : [0, T0]→ X/cDβx(t) exist and continuous at each

t ∈ [0, T0]
}

with these definitions and properties, sufficient conditions for existence and unique-

ness of solutions are derived as follows:

4.3 Mild Solution

In this section sufficient conditions are derived for existence and uniqueness of mild

solution of the equation (4.0.1).
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Definition 4.3.1. ([88]) A function x(t) ∈ PC([0, T0], X) is a mild solution of the

equation (4.0.1) if it satisfies

x(t) = x0 +
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1A(s)x(s)ds+
1

Γ(β)

∫ t

tk

(t− s)β−1A(s)x(s)ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1f(s, x(s), Tx(s), Sx(s))ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1f(s, x(s), Tx(s), Sx(s))ds+
∑

0<tk<t

Ikx(t−k ).

(4.3.1)

4.3.1 Assumptions

(H1) A(t) : X → X is continuous bounded linear operator and there exists a positive

constant M , such that ||A(t)x− A(t)y||B(X) ≤M ||x− y||, for all x, y ∈ X.

(H2) f : [0, T0]×X ×X ×X → X is continuous and there exists positive constants

L1, L2 and L3, such that ||f(t, x1, x2, x3) − f(t, y1, y2, y3)|| ≤ L1||x1 − y1|| +

L2||x2 − y2||+ L3||x3 − y3|| for all x1, x2, x3, y1, y2 and y3 in X.

(H3) h : D0 × X → X and k : D1 × X → X are continuous and there exists

positive constants H and K, such that ||h(t, s, x)−h(t, s, y)|| ≤ H||x−y|| and

||k(t, s, x)− k(t, s, y)|| ≤ K||x− y|| for all x and y in X.

(H4) The functions Ik : X → X are continuous and there exist positive constants

I∗k for all k = 1, 2, · · · , p, such that ||Ikx− Iky|| ≤ I∗k ||x− y|| for all x and y in

X.

Set, γ =
Tβ0

Γ(β+1)
and further assume that,

(H5) q =

{
γ
[
(p+ 1)[M + L1 + T0HL2 + T0KL3]

]
+
∑
I∗k

}
< 1
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Define F : PC([0, T0], X)→ PC([0, T0], X) by

Fx(t) = x0 +
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1A(s)x(s)ds+
1

Γ(β)

∫ t

tk

(t− s)β−1A(s)x(s)ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1f(s, x(s), Tx(s), Sx(s))ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1f(s, x(s), Tx(s), Sx(s))ds+
∑

0<tk<t

Ikx(t−k ).

(4.3.2)

Thus it can be said that equation (4.3.1) has unique mild solution if F defined by

(4.3.2) has unique fixed point. This means F is well defined bounded operator on

PC([0, T0], X) and F is contraction [23].

Lemma 4.3.1. If the operators A, f, T, S and Ik for k = 1, 2, · · · , p are continuous

then F is bounded operator on PC([0, T0], X).

Proof. Let a sequence {xn} converges to x in PC([0, T0], X). Therefore ||xn−x|| → 0

as n→∞.

Consider,

||Fxn − Fx||PC ≤
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1||A(s)xn(s)− A(s)x(s)||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1||A(s)xn(s)− A(s)x(s)||ds

+
1

Γ(β)

∑
0<tk<t

{∫ tk

tk−1

(tk − s)β−1||f(s, xn(s), Txn(s), Sxn(s))

− f(s, x(s), Tx(s), Sx(s))||ds
}

+
1

Γ(β)

{∫ t

tk

(t− s)β−1||f(s, xn(s), Txn(s), Sxn(s))

− f(s, x(s), Tx(s), Sx(s))||ds
}

+
∑

0<tk<t

||Ikxn(t−k )− Ikx(t−k )||

Assuming the continuity of A, f, T, S and Ik for k = 1, 2, · · · , p the right side of above

expression tends to zero as n → ∞. Therefore F is continuous on PC([0, T0], X)
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and hence F is bounded.

Theorem 4.3.2. If the hypotheses (H1)-(H5) are satisfied, then the fractional impul-

sive integro-differential equation (4.0.1) has unique mild solution in PC([0, T0], X)

for 0 < β ≤ 1.

Proof. To show equation (4.0.1) has unique mild solution it is sufficient to show F

defined (4.3.2) is contraction. Let x and y in PC([0, T0], X) and consider,

||Fx− Fy||PC ≤
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1||A(s)x(s)− A(s)y(s)||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1||A(s)x(s)− A(s)y(s)||ds

+
1

Γ(β)

∑
0<tk<t

{∫ tk

tk−1

(tk − s)β−1||f(s, x(s), Tx(s), Sx(s))

− f(s, y(s), T y(s), Sy(s))||ds
}

+
1

Γ(β)

{∫ t

tk

(t− s)β−1||f(s, x(s), Tx(s), Sx(s))

− f(s, y(s), T y(s), Sy(s))||ds
}

+
∑

0<tk<t

||Ikx(t−k )− Iky(t−k )||
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Applying hypotheses (H1)-(H4), it leads to

||Fx− Fy|| ≤ 1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1M ||x− y||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1M ||x− y||ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1
{
L1 + T0HL2 + T0KL3

}
||x− y||ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1ds
{
L1 + T0HL2 + T0KL3

}
||x− y||ds

+
∑

0<tk<t

I∗k ||x− y||

≤
{

T β0
Γ(β + 1)

[
(p+ 1)[M + L1 + T0HL2 + T0KL3]

]
+
∑

I∗k

}
||x− y||

=

{
γ
[
(p+ 1)[M + L1 + THL2 + TKL3]

]
+
∑

I∗k

}
||x− y||

Assuming hypotheses (H5) it follows that, ||Fx− Fy||PC ≤ q||x− y|| with

q < 1. Hence, by Banach fixed point theorem [97] the equation (4.0.1) has unique

mild solution.

4.3.2 Remarks

(1) This method suggests not only the existence and uniqueness of mild solution

but it also suggests method to find approximate solution of impulsive fractional

differential equation (4.0.1).

(2) This condition is not necessary condition. This means equation (4.0.1) may

have mild solution if one of the (H1) to (H5) are not satisfied.

(3) If all Ik’s are constants then assumption (H5) can replace by

q =

{
γ
[
(p+ 1)[M + L1 + T0HL2 + T0KL3]

]}
< 1
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4.4 Classical Solution

Definition 4.4.1. A solution x(t) is a classical solution of the equation (4.0.1) for

0 < β < 1 if x(t) ∈ PC([0, T0], X) ∩ Cβ(J ′, X) where, J ′ = [0, T0]− {t1, t2, · · · , tp},

x(t) ∈ D(A) (Domain of A) for t ∈ J ′ and satisfies (4.0.1) on [0, T0].

Lemma 4.4.1. If conditions,

(B1) A : X → X is continuous bounded linear operator and there exists a positive

constant M , such that ||A(t)x− A(t)y||B(X) ≤M ||x− y||, for all x, y ∈ X.

(B2) f ∈ Cβ([0, T0]×X×X×X,X) such that, there exists positive constants L1, L2

and L3, such that ||f(t, x1, x2, x3)− f(t, y1, y2, y3)|| ≤ L1||x1 − y1||

+ L2||x2 − y2||+ L3||x3 − y3||.

(B3) h : D0 × X → X and k : D1 × X → X are continuous and there exists

positive constants H and K, such that ||h(t, s, x)−h(t, s, y)|| ≤ H||x− y|| and

||k(t, s, x)− k(t, s, y)|| ≤ K||x− y|| for all x and y in X.

(B4) Let, γ =
Tβ0

Γ(β+1)
and q =

{
γ
[
(p+ 1)[M + L1 + T0HL2 + T0KL3]

]}
< 1.

(B5) x0 ∈ D(A).

are satisfied then the fractional evolution equation

cDβx(t) = Ax(t) + f(t, x(t), Tx(t), Sx(t))

x(0) = x0

(4.4.1)

(0 < β ≤ 1) has unique classical solution over [0, T0] which satisfies

x(t) = x0+
1

Γ(β)

∫ t

0

(t−s)β−1A(s)x(s)ds+
1

Γ(β)

∫ t

0

(t−s)β−1f(s, x(s), Tx(s), Sx(s))ds.
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Proof. Applying Riemann- Liouville integral operator both side of equation (4.4.1)

to obtain,

x(t) = x0+
1

Γ(β)

∫ t

0

(t−s)β−1A(s)x(s)ds+
1

Γ(β)

∫ t

0

(t−s)β−1f(s, x(s), Tx(s), Sx(s))ds.

(4.4.2)

It can be easily shown that x(t) defined above is in Cβ([0, T0], X). Therefore to show,

x(t) is classical solution, it is sufficient to show that x(t) ∈ D(A) for all t ∈ [0, T0].

Define a sequence xn(t) by,

xn(t) =x0 +
1

Γ(β)

∫ t

0

(t− s)β−1A(s)xn−1(s)ds

+
1

Γ(β)

∫ t

0

(t− s)β−1f(s, xn−1(s), Txn−1(s), Sxn−1(s))ds.

Clearly for each n, xn(t) ∈ D(A) because x0 ∈ D(A) and applying assumptions (B1)

to (B4) the sequence xn converges uniformly to x. Hence, x(t) ∈ D(A) for all t.

Therefore, x(t) is classical solution of (4.4.1) which is of the form (4.4.2) and is also

mild solution of the equation (4.4.1). Moreover, uniqueness of mild solution gives

uniqueness of classical solution. Hence, x(t) is unique classical solution of (4.4.1)

satisfies mild solution (4.4.2).

Next lemma is generalization of the lemma-(4.4.1)

Lemma 4.4.2. If conditions,

(C1) A : X → X is continuous bounded linear operator and there exists a positive

constant M , such that ||A(t)x− A(t)y||B(X) ≤M ||x− y||, for all x, y ∈ X.

(C2) f ∈ Cβ([0, T0]×X×X×X,X) such that, there exists positive constants L1, L2

and L3, such that ||f(t, x1, x2, x3)− f(t, y1, y2, y3)|| ≤ L1||x1 − y1||+

L2||x2 − y2||+ L3||x3 − y3||.

(C3) h : D0 × X → X and k : D1 × X → X are continuous and there exists

positive constants H and K, such that ||h(t, s, x)−h(t, s, y)|| ≤ H||x− y|| and
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||k(t, s, x)− k(t, s, y)|| ≤ K||x− y|| for all x and y in X.

(C4) Let, γ =
uβ0

Γ(β+1)
and q =

{
γ
[
(p + 1)[M + L1 + t0HL2 + t0KL3]

]}
< 1 where,

u0 = (tk − tk−1)

(C5) qk−1 ∈ D(A).

are satisfied then the fractional evolution equation

cDβ
tk−1+x(t) = Ax(t) + f(t, x(t), Tx(t), Sx(t))

x(tk−1) = qk−1

(4.4.3)

(0 < β < 1) and for k = 1, 2, · · · , p has unique classical solution over interval

[tk−1, tk) which satisfies,

x(t) =qk−1 +
1

Γ(β)

∫ t

tk−1

(t− s)β−1A(s)x(s)ds

+
1

Γ(β)

∫ t

tk−1

(t− s)β−1f(s, x(s), Tx(s), Sx(s))ds.

Moreover, one can define x(tk) in such a way that, x(tk) is left continuous and

x(tk) ∈ D(A).

Proof. Replacing 0 by tk−1 and T0) by tk and applying lemma-(4.4.1) we get, equa-

tion (4.4.3) has unique solution which satisfies

x(t) =qk−1 +
1

Γ(β)

∫ tk

tk−1

(tk − s)β−1A(s)x(s)ds

+
1

Γ(β)

∫ tk

tk−1

(tk − s)β−1f(s, x(s), Tx(s), Sx(s))ds..

(4.4.4)

Define,

x(tk) =qk−1 +
1

Γ(β)

∫ tk

qk−1

(t− s)β−1A(s)x(s)ds

+
1

Γ(β)

∫ t

tk−1

(t− s)β−1f(s, x(s), Tx(s), Sx(s))ds,
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then to show, x(tk) is left continuous consider increasing sequence {sm} converges

to tk i.e., ||sm− tk|| → 0 as m→∞. One can easily show that ||x(sm)−x(tk)|| → 0

as m→∞. Hence, x(t) is left continuous at tk and x(tk) ∈ D(A).

Theorem 4.4.3. If assumptions (H1)− (H5) is satisfied,

f ∈ Cβ([0, T0]×X ×X ×X,X) and x0 ∈ D(A) then the equation,

cDβx(t) = Ax(t) + f(t, x(t), Tx(t), Sx(t)) t 6= tk, k = 1, 2, · · · , p

∆x(tk) = rk, t = tk, k = 1, 2, · · · , p

x(0) = x0

(4.4.5)

(0 < β < 1) has unique classical solution over the interval [0, T0] which satisfies

x(t) = x0 +
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1A(s)x(s)ds+
1

Γ(β)

∫ t

tk

(t− s)β−1A(s)x(s)ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1f(s, x(s), Tx(s), Sx(s))ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1f(s, x(s), Tx(s), Sx(s))ds+
∑

0<tk<t

rk

(4.4.6)

Proof. Consider the interval I1 = [0, t1) then, the equation (4.4.5) becomes,

cDβx(t) = Ax(t) + f(t, x(t), Tx(t), Sx(t))

x(0) = x0.

(4.4.7)

Using lemma-(4.4.2), equation (4.4.7) has unique classical solution which satisfies

the equation

x1(t) =x0 +
1

Γ(β)

∫ t

0

(t− s)β−1A(s)x(s)ds

+
1

Γ(β)

∫ t

0

(t− s)β−1f(s, x(s), Tx(s), Sx(s))ds

(4.4.8)
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and define, x1(t1) as

x1(t1) =x0 +
1

Γ(β)

∫ t1

0

(t1 − s)β−1A(s)x(s)ds

+
1

Γ(β)

∫ t1

0

(t1 − s)β−1f(s, x(s), Tx(s), Sx(s))ds.

Also, x1(t) is left continuous at t = t1 and x1(t1) ∈ D(A).

On the interval I2 = [t1, t2), the equation (4.4.5) becomes

cDβ
t1+x(t) = Ax(t) + f(t, x(t), Tx(t), Sx(t))

x(t1) = x1(t1) + r1.

(4.4.9)

Since, x1(t) + rk ∈ D(A) therefore applying lemma-(4.4.2) equation (4.4.9) has

unique classical solution which satisfies

x2(t) =[x1(t1) + r1] +
1

Γ(β)

∫ t

t1

(t− s)β−1A(s)x(s)ds

+
1

Γ(β)

∫ t

t1

(t− s)β−1f(s, x(s), Tx(s), Sx(s))ds

(4.4.10)

and define, x2(t2) as

x2(t2) =[x1(t1) + r1] +
1

Γ(β)

∫ t2

t1

(t2 − s)β−1A(s)x(s)ds

+
1

Γ(β)

∫ t2

t1

(t2 − s)β−1f(s, x(s), Tx(s), Sx(s))ds.

Also, x2(t) is left continuous at t = t2 and x2(t2) ∈ D(A).

Continuing this process on Ik = [tk−1, tk), equation (4.4.5) becomes

cDβ
tk−1

x(t) = Ax(t) + f(t, x(t), Tx(t), Sx(t))

x(tk−1) = xk−1(tk−1) + rk−1.

(4.4.11)

and applying lemma-(4.4.2) equation (4.4.11) has unique classical solution which
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satisfies

xk(t) = [xk−1(tk−1) + rk−1] +
1

Γ(β)

∫ t

tk−1

(t− s)β−1A(s)x(s)ds

+
1

Γ(β)

∫ t

tk−1

(t− s)β−1f(s, x(s), Tx(s), Sx(s))ds. (4.4.12)

and define, xk(tk) as

xk(tk) = [xk−1(tk−1) + rk−1] +
1

Γ(β)

∫ tk

tk−1

(tk − s)β−1A(s)x(s)ds

+
1

Γ(β)

∫ tk

tk−1

(tk − s)β−1f(s, x(s), Tx(s), Sx(s))ds.

Also, xk(t) is left continuous at t = tk and xk(tk) ∈ D(A). Now define

x(t) =


x1(t) t ∈ [0, t1)

xk(t) t ∈ [tk−1, tk)

xp+1(t) t ∈ [tp, tp+1]

(4.4.13)

This x(t) define by equation (4.4.13) is unique classical solution of the equation

(4.4.5). Now we prove equation (4.4.13) satisfies (4.4.6). If t ∈ [0, T0] then there

exist k such that t ∈ Ik = [tk−1, tk). Therefore

x(t) = xk(t)

= [xk−1(tk−1) + rk−1] +
1

Γ(β)

∫ t

tk−1

(t− s)β−1A(s)x(s)ds

+
1

Γ(β)

∫ t

tk−1

(t− s)β−1f(s, x(s), Tx(s), Sx(s))ds

Putting value of xk−1(tk−1), xk−2(tk−2), · · · , x1(t1) in above equation and solving to

get, equation (4.4.6). Therefore, under the given assumption equation (4.4.5) has

classical solution which satisfied equation (4.4.6).
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Next theorem shows the existence and uniqueness of classical solution which

derives from mild solution.

Theorem 4.4.4. Assume the hypotheses (H1)− (H5) are satisfied. Let x(t) be mild

solution of equation (4.0.1) obtained in theorem-(4.3.2). Assume that x0 ∈ D(A)

and Ikx(tk) ∈ D(A) for k = 1, 2, · · · , p and f ∈ ((0, T0) × X × X × X,X). Then

x(t) give rise to unique classical solution of (4.0.1).

Proof. Let x(t) be mild solution of (4.0.1). Replace, rk = Ikx(tk) for all

k = 1, 2, · · · , p. Also given that, (H1)−(H5) satisfied, x0 and Ikx(tk) ∈ D(A) for all

k = 1, 2, · · · , p. Therefore, by theorem-(4.4.3) equation (4.0.1) has unique classical

solution say y(t) which satisfy equation

y(t) = x0 +
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1A(s)y(s)ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1A(s)y(s)ds

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − s)β−1f(s, y(s), T y(s), Sy(s))ds

+
1

Γ(β)

∫ t

tk

(t− s)β−1f(s, y(s), T y(s), Sy(s))ds+
∑

0<tk<t

Iky(tk).

Set, z(t) = x(t)− y(t) then z(t) satisfies evolution equation cDβz(t) = 0 with initial

condition z(0) = 0 and without impulses. Hence, z(t) ≡ 0 is only solution of the

evolution equation cDβz(t) = 0. Hence, x(t) = y(t) and therefore x(t) give rise to

classical solution of (4.0.1).
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4.5 Example

Consider an evolution equation

cDβx(t) =
1

10

∫ 1

0

(t− s)x(s)ds+
1

10

∫ t

0

se−
x(s)
4 ds+

1

10

∫ 1

0

(t− s)2ex(s)

∆x(
1

2
) =

1

10
x(

1

2

−
)

x(0) = x0

(4.5.1)

over the interval [0, 1]. Then,

f ≡ 1

10

∫ t

0

se−
x(s)
4 ds+

1

10

∫ 1

0

(t− s)2ex(s)

with

Tx(s) =
1

10

∫ t

0

se−
x(s)
4 ds

Sx(s) =
1

10

∫ 1

0

(t− s)2ex(s).

Impulse at

I1x(
1

2
) =

1

10
x(

1

2

−
).

One can easily show that

||Tx− Ty|| ≤ 1

10
||x− y||,

||Sx− Sy|| ≤ 1

10
||x− y||,

and ||I1x(
1

2
)− I1y(

1

2
)|| ≤ 1

10
||x(

1

2
)− y(

1

2
)||.

Therefore ||f(t, x(t), Tx(t), Sx(t)))− f(t, y(t), T y(t), Sy(t)))|| ≤ 1

5
||x(t)− y(t)||.

Hence,q =

{
γ
[
(p+ 1)[M + L1 + T0HL2 + T0KL3]

]
+
∑

I∗k

}
=

1

Γ(β)

6

10
< 1,

for any 0 < β ≤ 1.Thus, equation (5.4.1)has unique mild solution.

Moreover,f ∈ Cβ((0, 1)×X ×X ×X,X) and choosing, x0 ∈ D(A)

one can obtained unique classical solution of equation which is arise from mild solution.
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4.6 Discussion

The work of Aaunguraj and Arjunan [39] modified in this chapter by first order

impulsive evolution equation to fractional order . However they used operator semi-

group theory to prove the results. But, fractional order system does not have semi-

group property so this paper having different approach to prove modified results.

We can also get existence and uniqueness of mild and classical solutions by weaken

Lipschitz type conditions.

4.7 Conclusion

Many researchers discussed existence and uniqueness of mild solutions but only mild

solution is not sufficient in many of the practical situations and requires classical

solution. So there has to be sufficient conditions for classical solutions and conditions

in which mild solution becomes classical solution.
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