
Chapter 5

Congruence between Mild and
Classical Solutions of Generalized
Fractional Impulsive Evolution
Equation

In many physical phenomenon like, motion of a vehicle in traffic or body dynamics of

persons having infectious disease can be modeled in terms of generalized impulsive

evolution equations in which, perturbing forces are different after every impulses.

This chapter, includes existence and uniqueness of mild and classical solution of

generalized fractional order impulsive evolution equations

cDβx(t) = Ax(t) + gk(t, x(t)) t ∈ (tk−1, tk) k = 1, 2, · · · , p

∆x(tk) = Ik(x(tk)), t = tk, k = 1, 2, · · · , p

x(0) = x0

(5.0.1)

in which perturbing force is different after every impulse over the interval [0, T ] on

a Banach space X. A is bounded linear operator on X and Ik : [0, T ]×X → X for

k = 1, 2, · · · , p+ 1. Also established conditions in which mild and classical solutions

are congruent.
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5.1 Introduction

From the past few decades, the theory of impulsive equations is extensively used to

model the phenomena having abrupt changes like removal of insertion of biomass,

abrupt harvesting, satellite motion and many other real world problems in medicine,

biology, mechanics and control theory [59, 60, 61, 62, 106, 64, 20, 65, 66].

Many researchers studied existence and uniqueness of mild and classical solu-

tion of linear integer order impulsive evolution equation with local and non-local

condition by assuming sectorial and semi group properties of evolution equation

[67, 68, 69, 70, 71]. Liu, Anguraj and Arjunan [72, 39] were studied existence and

uniqueness of mild and classical solution of integer order quasi-linear impulsive evo-

lution equation with local and non-local condition and also studied conditions in

which mild and classical solution of impulsive evolution equation are coincides.

Several non-linear integer order model in physical, engineering and biological

sciences are remodel into simpler fractional order model [44, 7, 8, 9, 10, 12, 85, 86,

51]. Due to remodeling of integer order differential equations onto fractional order

differential equation, many mathematicians are interested to study the qualitative

properties viz existence, uniqueness and stability of solution the fractional order

differential equations [11, 15, 5, 6].

Fractional differential operators does not have sectorial as well as semi group

properties. In view of this fact, Balachandran et. al. [21] were studied the exis-

tence and uniqueness of the mild solution of impulsive fractional equation on the

Banach space by inverting differential operator by applying fractional integral opera-

tor. This approach was also studied by Wang et. al. [88]. The system of fractional

order differential equation taken by Balachandran was modified by Kataria and

Prakashkumar by introducing new Fredholm type operator in system and studied

the existence and uniqueness of mild solution of the equation [74]. Kataria and

Prakashkumar [73] introduced the concept of classical solution and discussed exis-

tence and uniqueness of mild and classical solutions of the fractional order impulsive
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evolution with perturbing forces after every impulses.

Recently Shah et. al. [33] derived the integer order model having different perturb-

ing forces after every impulse and discussed existence and uniqueness of classical

and mild solutions of generalized impulsive evolution equation on a Banach space.

To enhance generalized model here studied the existence and uniqueness of solutions

of generalized fractional order evolution equation.

Theorem 5.1.1. (Banach fixed point theorem) [97] If X is Banach space and F :

X → X be a contraction mapping on Banach space X then there exist unique fixed

point x ∈ X, such that Fx = x.

Notations 5.1.1. Following notations are introduced for the convenience.

(N1) X = Banach space and D(A) = Domain of an operator A.

(N2) R+ = [0,∞)

(N3) C([0, T ], X) =
{
x : [0, T ]→ X | x is continuous

}
with norm ||x|| = supt||x(t)||

(N4) PC([0, T ], X) = Closure

({
x : [0, T ]→ X;x ∈ C([tk−1, tk], X), and x(t−k ) and x(t+k )

exist,= 1, 2, · · · , p with x(t−k ) = x(tk)
})

with norm ||x||PC = supt∈[0,T ]||x(t)||

(N5) AC([0, T ], X) =
{
x : [0, T ] → X | x is absolutely continuous

}
with norm

||x|| = supt||x(t)||

(N6) B(X) =
{
A : X → X | A is bouneded and linear

}
with norm ||A||B(X) =

sup{||A(y)||; y ∈ X&||y|| ≤ 1}

(N7) Cβ([0, T ], X) =
{
x : [0, T ]→ X | cDβx(t) exist and continuous at each

t ∈ [0, T ]
}

5.2 Mild Solution

Existence and uniqueness condition of mild solution of equation (5.0.1) discussed in

this section
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Definition 5.2.1. The function x(t) is mild solution of equation (5.0.1) if it satisfies

integral equation of the form:

x(t) = x0 +
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − q)β−1A(q)x(q)dq +
1

Γ(β)

∫ t

tk

(t− q)β−1A(q)x(q)dq

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − q)β−1gk(q, x(q))dq +
1

Γ(β)

∫ t

tk

(t− q)β−1gk+1(q, x(q))dq

+
∑

0<tk<t

Ikx(t−k ).

(5.2.1)

for all t ∈ (tk, tk+1).

Assumptions 5.2.1. Presently we have following presumptions for the existence

and uniqueness of mild solution of equation (5.0.1). (i) Let the linear operator A(t)

on X is continuous and bounded. Further there exist a positive constant such that

||A(t)|| ≤M . (ii) Perturbing functions gk’s are Lipschitz continuous with Lipschitz

constant Lk for all k = 1, 2, · · · , p+1. Take L = max{L1, L2, · · · , Lp+1}. (iii) Jumps

Ik’s are such that there exist positive constants Kk’s satisfying ||Ikx(tk)−Iky(tk)|| ≤

Kk||x(tk)− y(tk)||, with K = max{K1, K2, · · · , Kp+1}.

We define an operator F on a Banach space PC([0, T ], X) as follow, and to show

the equation (5.0.1) has unique solution, we have to show F is continuous, bounded

and contraction.

Fx(t) = x0 +
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − q)β−1A(q)x(q)dq +
1

Γ(β)

∫ t

tk

(t− q)β−1A(q)x(q)dq

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − q)β−1gk(q, x(q))dq

+
1

Γ(β)

∫ t

tk

(t− q)β−1gk+1(q, (q))dq +
∑

0<tk<t

Ikx(t−k )

.

(5.2.2)

Theorem 5.2.1. Under the assumptions(5.2.1), then the operator F defined in

(6.3.2) is continuous and bounded on PC([0,T],X)
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Proof. To show continuity of the operator F , let us consider a sequence {xn} con-

verges to x in PC([0, T ], X). i.e. ||xn − x|| → 0 as n→∞.

Consider,

||Fxn − Fx||PC ≤
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − q)β−1||A(q)||||xn(q)− x(q)||dq

+
1

Γ(β)

∫ t

tk

(t− q)β−1||A(q)||||xn(q)− x(q)||dq

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − q)β−1||gk(q, xn(q))− gk(q, x(q))||dq

+
1

Γ(β)

∫ t

tk

(t− q)β−1||gk+1(q, xn(q))− gk+1(q, x(q))||dq

+
∑

0<tk<t

||Ikxn(t−k )− Ikx(t−k )||

By our assumptions(5.2.1) we get, ||Fxn−Fx|| ≤ C||xn−x|| where C = (M+L+K)(p+1)Tβ

Γ(β+1)
.

This gives the continuity of operator F .

Now to show F is bounded on PC([0,T],X) , let us consider arbitrary x(t) ∈ PC([0, T ], X),

|Fx(t)| ≤ 1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − q)β−1|A(q)||x(q)|dq +
1

Γ(β)

∫ t

tk

(t− q)β−1|A(q)||u(q)|dq

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − q)β−1|gk(q, x(q))|dq

+
1

Γ(β)

∫ t

tk

(t− q)β−1|gk+1(q, x(q))|dq +
∑

0<tk<t

|Ikx(t−k )|

By assumptions(5.2.1) we get |Fx(t)| ≤ C||x||. Therefore, F is bounded operator

on PC([0, T ], X).

Theorem 5.2.2. (Existence and Uniqueness) Under the assumptions(5.2.1) gener-

alize impulsive evolution equation (5.0.1) for 0 < β < 1 has unique mild solution in

PC([0, T ], X) if C = (M+L+K)(p+1)Tβ

Γ(β+1)
< 1.
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Proof. For each x(t), y(t) ∈ PC([0, T ], X) we have,

||Fx− Fy||PC ≤
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − q)β−1||A(q)||||x(q)− y(q)||dq

+
1

Γ(β)

∫ t

tk

(t− q)β−1||A(q)||||x(q)− y(q)||dq

+
1

Γ(β)

∑
0<tk<t

∫ tk

tk−1

(tk − q)β−1||g(q, x(q))− g(q, y(q))||dq

+
1

Γ(β)

∫ t

tk

(t− q)β−1||g(q, x(q))− g(q, y(q))||dq

+
∑

0<tk<t

||Ikx(t−k )− Iky(t−k )||

Again by assumptions(5.2.1) we get ||Fx− Fy|| ≤ C||x− y|| and F is contraction.

Hence by theorem (5.1.1), F has unique fixed point if C < 1. So the sequence

xn+1 = Fxn converges uniformly to x in PC([0, T ], X) which is mild solution of the

equation (5.0.1).

Remark 5.2.2.1. We have

(i) The conditions in the hypotheses of theorem(5.2.2) is not necessary, i.e. equa-

tion (5.0.1) may have mild solution if one of the conditions from the assump-

tions(5.2.1) are not satisfied.

(ii) If all Ik’s are constants then condition on C can be weaker by (M+L)(p+1)Tβ

Γ(β+1)
.

5.3 Classical Solution

Existence and uniqueness conditions of classical solution of generalized fractional

evolution equation (5.0.1) been discussed in this section.

Definition 5.3.1. x(t) is a classical solution of the equation (5.0.1) for 0 < β < 1 if

x(t) ∈ PC([0, T ], X) ∩ Cβ(K ′, X) where, K ′ = [0, T ]− {t1, t2, · · · , tp}, x(t) ∈ D(A)

for t ∈ K ′ and satisfies (5.0.1) on [0, T ].
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Theorem 5.3.1. If ,

(i) A : X → X is continuous bounded linear operator and there exists a positive

constant M , such that ||A(t)|| ≤M .

(ii) gi ∈ Cβ([0, T ] ×X,X) such that, there exists positive constants Li, such that

||gi(t, x(t))− gi(t, y(t))|| ≤ Li||x− y||.

(iii) The number Ci defined by Ci = (M+Li)(ti−ti−1)β

Γ(β+1)
< 1

(iv) ri−1 ∈ D(A).

are satisfied then the fractional evolution equation

cDβ
ti−1+x(t) = A(t)x(t) + gi(t, x(t))

x(ti−1) = ri−1

(5.3.1)

(0 < β < 1) and for i = 1, 2, · · · , p has unique classical solution over interval

[ti−1, ti) which satisfies,

x(t) = ri−1 +
1

Γ(β)

∫ t

ti−1

(t− q)β−1A(q)x(q)dq +
1

Γ(β)

∫ t

ti−1

(t− q)β−1gi(q, x(q))dq.

(5.3.2)

Moreover, we can define x(ti) in such a way that, x(ti) is left continuous and

x(ti) ∈ D(A).

Proof. Defining G on X by

Gx(t) = ri−1 +
1

Γ(β)

∫ t

ti−1

(t− q)β−1A(q)x(q)dq +
1

Γ(β)

∫ t

ti−1

(t− q)β−1gi(q, x(q))dq.

(5.3.3)

Then assuming conditions (i), Lipschitz continuity of gi and (iii) one can easily show

that G is continuous, bounded and contraction. Therefore, by Banach fixed point

theorem G has unique solution in X which is mild solution of the equation (5.3.1).

On the other hand, under the assumptions (i),(ii) and (iv) the function x(t) defined
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by:

x(t) = ri−1 +
1

Γ(β)

∫ t

ti−1

(t− q)β−1A(q)x(q)dq +
1

Γ(β)

∫ t

ti−1

(t− q)β−1gi(q, x(q))dq

in Cβ([ti−1, ti)) and satisfies the equation (5.3.1) with x(t) ∈ D(A) for all

t ∈ [ti−1, ti). Thus, the mild solution (5.3.2) is classical solution of the eqution

(5.3.1). Assuming condition (iii) we get, uniqueness of mild solution and this leads

to uniqueness of classical solution of equation over the interval [ti−1, ti).

Finally, by defining x(t) at t−i by

x(t−i ) = ri−1 +
1

Γ(β)

∫ ti

ti−1

(ti − q)β−1A(q)x(q)dq +
1

Γ(β)

∫ ti

ti−1

(t− q)β−1gi(q, x(q))dq,

we get left continuity of the function x(t) at point t = ti.

Following theorem for existence and uniqueness of classical solution of equation

(5.0.1) on the Banach space with ∆x(tk) = rk.

Theorem 5.3.2. If ,

(i) A : X → X is continuous bounded linear operator and there exists a positive

constant M , such that ||A(t)|| ≤M over the interval [0, T ].

(ii) gi ∈ Cβ([0, T ]×X,X) such that, there exists positive constants Lk, such that

||gk(t, x(t))− gk(t, y(t))|| ≤ Lk||x−y|| for each k = 1, 2, · · · p, p+ 1. Here force

gk is applied over the interval [tp, T ].

(iii) The number Ck defined by Ck = (M+Lk)(tk−tk−1)β

Γ(β+1)
< 1 for all

k = 1, 2, · · · , p, p+ 1.

(iv) rk−1 ∈ D(A) for all k = 1, 2, · · · , k.
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then the impulsive fractional evolution equation

cDβ
tk−1+x(t) = Ax(t) + gk(t, x(t))

∆x(tk) = rk

x(0) = x0

(5.3.4)

(0 < β < 1) and for i = 1, 2, · · · , p has unique classical solution over interval [0, T ]

Proof. I1 = [0, t1) the equation (5.3.4) becomes,

cDβ
0x(t) = Ax(t) + g1(t, x(t))

x(t0) = x0

Applying conditions of the theorem (5.3.1) and (5.3.2), the above equation has

unique classical solution satisfying

x(t) = x0 +
1

Γ(β)

∫ t

t0

(t− q)β−1A(q)x(q)dq +
1

Γ(β)

∫ t

t0

(t− q)β−1g1(q, x(q))dq

Define x1(t) = x(t) for all t ∈ [0, t1) then x1(t) is left continuous at t = t1 therefore

x1(t−1 ) ∈ D(A).

Over the interval [t1, t2) the equation (5.3.4) becomes,

cDβ
t1x(t) = Ax(t) + g2(t, x(t))

x(t1) = x1 = x(t−1 ) + r1

Since, x(t−1 ) and r1 is in D(A) therefore x(t1) = x1 ∈ D(A) and applying conditions

of the theorem (5.3.1) and (5.3.2), above equation has unique classical solution

satisfying

x(t) = x1 +
1

Γ(β)

∫ t

t1

(t− q)β−1A(q)x(q)dq +
1

Γ(β)

∫ t

t1

(t− q)β−1g1(q, x(q))dq
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Defining x2(t) = x(t) for t ∈ [t1, t2) then x(t) is left continuous and x(t−2 ) ∈ D(A).

Continuing this process we arrived at

cDβ
tk−1

u(t) = Ax(t) + gi(t, x(t))

x(tk−1) = x1 = x(t−k−1) + rk−1.

over the interval [tk−1, tk) for all k = 1, 2, · · · , p + 1 and applying conditions of the

theorem (5.3.1) and (5.3.2), the equation has unique classical solution satisfying

x(t) = xk−1 +
1

Γ(β)

∫ t

tk−1

(t− q)β−1A(q)x(q)dq +
1

Γ(β)

∫ t

tk−1

(t− q)β−1gk(q, x(q))dq

and defining xk(t) = x(t) for all t ∈ [tk−1, tk) then xk(t) is left continuous so

x(t−k−1) ∈ D(A).

Define,

x(t) =



x1(t), t ∈ [0, t1)

x2(t), t ∈ [t1, t2)

· · ·

xk(t), t ∈ [tk−1, tk)

· · ·

xp+1(t), t ∈ [tp, T ]

(5.3.5)

then it can be easily prove that x(t) ∈ PC([0, T ], X) ∩ Cβ(K ′, X) and x(t) ∈ D(A)

for all t ∈ [0, T ] , x(t) is classical solution of (5.3.4).

Moreover, if y(t) is another classical solution of (5.3.4) then one can easily show

that w(t) = x(t) − y(t) is solution of cDβw(t) = 0 with initial condition w(0) = 0

without impulses. This leads to w(t) = 0 for all t ∈ [0, T ]. i.e. equation (5.3.4) has

unique classical solution over the interval [0, T ].

Remark 5.3.2.1. One can easily see that the classical solution (5.3.5) of (5.0.1)

72



Chapter-5

defined in Theorem-(5.3.2) also satisfies the equation:

x(t) = x0 +
1

Γ(β)

∑
0<tk≤ti

∫ tk

tk−1

(tk − q)β−1A(q)x(q)dq +
1

Γ(β)

∫ t

ti

(t− q)β−1A(q)x(q)dq

+
1

Γ(β)

∑
0<tk≤ti

∫ tk

tk−1

(tk − q)β−1gk(q, x(q))dq +
1

Γ(β)

∫ t

ti

(t− q)β−1gi+1(s, x(s))ds

+
∑

0<tk≤ti

qk

(5.3.6)

and replacing rk with Ik(x(tk)), we can obtain unique classical solution of (5.0.1)

satisfying

x(t) = x0 +
1

Γ(β)

∑
0<tk≤ti

∫ tk

tk−1

(tk − q)β−1A(q)x(q)dq +
1

Γ(β)

∫ t

ti

(t− q)β−1A(q)x(q)dq

+
1

Γ(β)

∑
0<tk≤ti

∫ tk

tk−1

(tk − q)β−1gk(q, x(q))dq +
1

Γ(β)

∫ t

ti

(t− q)β−1gi+1(q, x(q))dq

+
∑

0<tk≤ti

Ikx(tk).

(5.3.7)

5.4 Congruence between Classical and Mild So-

lutions

Theorem 5.4.1. If

(i) Assumptions-5.2.1,

(ii) Perturbed operators gk ∈ Cβ([0, T ]×X,X) for all k = 1, 2, · · · , p+ 1,

(iii) x0 and Ik ∈ D(A) for all k = 1, 2, · · · , p

(iv) The positive integer (M+L+K)(p+1)Tβ

Γ(β+1)
< 1

then the classical and mild solutions of the equation (5.0.1) are coincides.
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Proof. Since Ck = (M+Lk)(tk−tk−1)β

Γ(β+1)
≤ (M+L+K)(p+1)Tβ

Γ(β+1)
< 1. Moreover the perturbed

operators gk ∈ Cβ([0, T ]×X,X) and x0 and Ik ∈ D(A) for all k = 1, 2, · · · , p+1 and

by Theorem (5.3.2) the equation (5.0.1) has unique classical solution over interval

[0, T ] satisfying the equation (5.3.7).

On the other hand condition (i) and (iv) are satisfies so equation (5.0.1) has unique

mild solution say y(t). Apart from this conditions (ii) and (iii) are also satisfied

i.e. CDβx(t) exist for all t ∈ K ′. therefore y(t) is also classical solution of equation

(5.0.1). But classical solution is unique under given conditions therefore x(t) = y(t)

for all t ∈ [0, T ], hence mild and classical solutions of the equations (5.0.1) are

coincides.

Example 5.4.1.1. Consider an evolution equation

cDβx(t) =
1

10

∫ 1

0

(t− q)x(q)dq + gk(t, x(t)), k = 1, 2

∆x(
1

2
) =

1

5
x(

1

2

−
)

x(0) = x0

(5.4.1)

over the interval [0, 1]. Where g1(t, x) = te−
x(t)
5 and g2(t, x) = 1

5
sin(x). Then M =

1
20
, L1 = 1

5
, L2 = 1

5
and J1 = 1

5
. Therefore L = 1

5
, K = 15 and C = 1

10 Γβ+1
< 1.

By theorem(5.2.2), (5.4.1) has unique mild solution.

Moreover, g ∈ Cβ((0, 1) × X,X) and choosing x0 ∈ D(A) we get unique classical

solution of equation which is arise from mild solution.

From theorem (5.4.1) we can conclude that

(i) Obtained conditions are sufficient but not necessary for existence and unique-

ness of classical solution.

(ii) Conditions obtained for congruence of mild and classical solutions are also

sufficient conditions.
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