
Chapter 6

Existence Results of
Non-Instantaneous Impulsive
Fractional Integro-differential
Equation

Existence of mild solution for non-instantaneous impulses fractional order integro-

differential equations with local and nonlocal conditions on Banach space is es-

tablished in this chapter. Existence results with local and nonlocal conditions are

obtained through operator semigroup theory using generalized Banach contraction

theorem and Krasnoselkii’s fixed point theorem respectively. Finally, illustration is

discussed to validate derived results.

Considering non-instantaneous impulses fractional order integro-differential equa-

tions

cDβx(t) = Ax(t) + f

(
t, x(t),

∫ t

0

a(t, s, x(s))ds

)
, t ∈ [sk, tk+1), k = 1, 2, · · · , p

x(t) = Ik(k, x(t)), t ∈ [tk, sk)

with local condition x(0) = x0 and nonlocal condition x(0) = x0 + h(x) over the

interval [0, T0] in a Banach space X . Here A : X → X is linear operator, Kx =∫ t
0
a(t, s, x(s))ds is nonlinear Volterra integral oprator on X , f : [0, T0]×X ×X → X

is nonlinear function and Ik : [0, T0] × X are set of nonlinear functions applied in

the interval [tk, sk) for all i = 1, 2, · · · , p.
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6.1 Introduction

Fractional order differential equations have gained lot of attensions to many re-

searchers due to hereditory attributes and long term memory descriptions. In fact,

many models in science and engineering like seepage flow in porous media, anoma-

lous diffusion, the nonlinear oscillations of earthquake, fluid dynamics traffic model,

electromagnetism and population dynamics are now revisited in terms of fractional

differential equations. More details and applications are found in monographs in

[89, 90] and in articles of [7, 8, 9, 10, 11, 12, 13]. Due to wide range of applications

in various fields fractional order differential equations became fertile branch of Ap-

plied Mathematics. The study of existence of mild solutions of fractional differential,

integro-differential and evolution equations using different fixed point theorem were

found in [91, 14, 15].

The extension of classical conditions for Cauchy problem are nonlocal conditions,

which gives better effect than classical conditions in many physical phenomena in the

field of science and engineering [92]. Existence results for nonlocal Cauchy problem

using various techniques are found in [93, 16, 17, 18, 19, 94, 95].

On the other hand, evolutionary processes undergo abrupt change in the state

either at a fixed moment of time or in a small interval of time are modelled into

instantaneous impulsive evolution or non-instantaneous impulsive evolution equa-

tion respectively. Applications of the instantaneous impulsive evolution equation

and existence results for integer order instantaneous impulsive evolution equations

are found in [20, 96, 39, 33]. Existence results for fractional instantaneous impul-

sive equation are found in [40, 41, 42, 21, 22, 43, 73, 74]. In some evolutionary

process non-instantaneous impulses are more accurate instead of instantaneous im-

pulses. Existence of mild solution of non-instantaneous impulsive fractional differen-

tial equation with local initial condition has been studied by Li and Xu [98]. Meraj

and Pandey [99] studied existence of mild solutions of nonlocal semilinear evolution

equation using Krasnoselskii’s fixed point theorem.

76



Chapter-6

6.2 Preliminaries

Basic definitions and theorems of fractional calculus and functional analysis are

discuss in this section, which will help us to prove our main results.

Definition 6.2.1. [5] The Riemann-Liouville fractional integral operator of β > 0,

of function h ∈ L1(R+) is defined as

Jβt0+h(t) =
1

Γ(β)

∫ t

t0

(t− q)β−1h(q)dq,

provided the integral on right side exist. Where, Γ(·) is gamma function.

Definition 6.2.2. [6] The Caputo fractional derivative of order β > 0, n−1 < β <

n, n ∈ N, is defined as

cDβ
t0+h(t) =

1

Γ(n− β)

∫ t

t0

(t− q)n−β−1d
nh(q)

dqn
dq

where, the function h(t) has absolutely continuous derivatives up to order (n− 1).

Theorem 6.2.1. (Banach Fixed Point Theorem)[100] Let E be closed subset of a

Banach Space (X , || · ||) and let T : E → E contraction then, T has unique fixed

point in E.

Theorem 6.2.2. (Krasnoselskii’s Fixed Point Theorem)[100] Let E be closed convex

nonempty subset of a Banach Space (X , || · ||) and P and Q are two operators on E

satisfying:

(1) Px+Qy ∈ E, whenever x, y ∈ E,

(2) P is contraction,

(3) Q is completely continuous

then, the equation Px+Qx = x has unique solution.
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Definition 6.2.3. (Completely Continuous Operator)[108] Let X and Y be Banach

spaces. Then the operator T : D ⊂ X → Y is called completely continuous if it is

continuous and maps any bounded subset of D to relatively compact subset of Y .

6.3 Equation with Local Conditions

Sufficient conditions for the existence and uniqueness of the equation:

cDβx(t) = Ax(t) + f

(
t, x(t),

∫ t

0

a(t, s, x(s))ds

)
, t ∈ [sk, tk+1), i = 1, 2, · · · , p

x(t) = gk(t, x(t)), t ∈ [tk, sk)

x(0) = x0

(6.3.1)

over the interval [0, T ] in the Banach space X , is derived in this section.

Definition 6.3.1. The function x(t) is called mild solution of the impulsive frac-

tional equation (6.3.1) over the interval if x(t) satisfies the integral equation

x(t) =



X(t)x0 +

∫ t

0

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds, t ∈ [0, t1)

gk(t, x(t)), t ∈ [tk, sk)

X(t− sk)gk(sk, x(sk)) +

∫ t

sk

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds, t ∈ [sk, tk+1)

(6.3.2)

where,

Kx(t) =

∫ t

0

a(t, s, x(s))ds, X(t) =

∫ ∞
0

ζβ(θ)S(tβθ)dθ, Y (t) = β

∫ ∞
0

θζβ(θ)S(tβθ)dθ

are the linear operators defined on X . Here, ζβ(θ) is probability density function

over the interval [0,∞) defined by

ζβ(θ) =
1

π

∞∑
n=1

(−1)n−1θ−βn−1 Γ(nβ + 1)

n!
sin(nπβ)
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and the operator S(t) is semi-group generated by evolution operator A.

Assumptions 6.3.1. Assumptions for the existence and uniqueness of the mild

solution of fractional evolution equation with non instantaneous impulses.

(A1) The evolution operator A generates C0 semigroup S(t) for all t ∈ [0, T ].

(A2) The function f : [0, T ] × X × X → X is continuous with respect to t and

there exist a positive constants f ∗1 and f ∗2 such that ||f(t, x1, y1) − f(t, x2, y2)|| ≤

f ∗1 ||x1− y2||+ f ∗2 ||x1− y2|| for x1, y1, x2, y2 ∈ Br0 = {x ∈ X ; ||x|| ≤ r0} for some r0.

(A3) The operator K : [0, T ] × X → X is continuous and there exist a constant k∗

such that ||Kx−Ky|| ≤ k∗||x− y|| for x, y ∈ Br0.

(A4) The functions gk : [tk, sk]×X are continuous and there exist a positive constants

0 < g∗k < 1 such that ||gk(t, x(t))− gk(t, y(t))|| ≤ g∗k||x− y||.

Lemma 6.3.1. ([91])If the evolution operator A generates C0 semi group S(t) then

the operators X(t) and Y (t) are strongly continuous and bounded. This means there

exist positive constant M such that ||X(t)x|| ≤ M ||x|| and ||Y (t)x|| ≤ M
Γ(β)
||x|| for

all t ∈ [0, T ].

Theorem 6.3.2. If assumptions (A1)-(A4) are satisfied, then the semilinear frac-

tional integro-differential equation with non-instantanious impulses (6.3.1) has unique

mild solution.

Proof. Define the operator F on X by

Fx(t) =


F1x(t), t ∈ [0, t1)

F2kx(t), t ∈ [tk, sk)

F3kx(t), t ∈ [sk, tk+1)
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where, F1, F2k and F3k are

F1x(t) = X(t)x0 +

∫ t

0

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds, t ∈ [0, t1)

F2kx(t) = gk(t, x(t)), t ∈ [tk, sk)

F3kkx(t) = X(t− sk)gk(sk, x(sk)) +

∫ t

sk

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds, t ∈ [sk, tk+1)

for all k = 1, 2, · · · p.

In view of this operator F , the equation (6.3.2) has unique solution if and only

if the operator equation x(t) = Fx(t) has unique solution. This is possible if and

only if each of x(t) = F1x(t), x(t) = F2kx(t) and x(t) = F3kx(t) has unique solution

over the interval [0, t1), [tk, sk) and [sk, tk+1) for all k = 1, 2, · · · , p respectively.

Consider x1(t), x2k(t) and x3k(t) be the solutions of x(t) = F1x(t), x(t) = F2kx(t)

and x(t) = F3kx(t) respectively. Defining,

x(t) =


x1(t), [0, t1)

x2k(t), [tk, sk)

x3k(t), [sk, tk+1)

then one can easily show that x(t) is unique solution of x(t) = Fx(t).

For all t ∈ [0, t1) and x, y ∈ Br0 ,

||F (n)
1 x(t)−F (n)

1 y(t)||

≤
∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

(t− τ1)β−1(τ1 − τ2)β−1 · · · (τn−1 − s)β−1||Y (t− τ1)||

||Y (τ1 − τ2)|| · · · ||Y (τn−1 − s)||||f(s, x(s), Kx(s))− f(s, y(s), Ky(s))||dsdτn−1 · · · dτ1
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By applying assumption (A1), (A2) and (A3) and lemma 6.3.1 we get,

||F (n)
1 x(t)−F (n)

1 y(t)|| ≤
∫ t1

0

∫ t1

0

· · ·
∫ t1

0

t
n(β−1)
1

Mn

(Γ(β))n
[
f ∗1 ||x− y||+ f ∗2k

∗||x− y||
]
dsdτn−1 · · · dτ1

≤ t
n(β−1)
1 Mn(f ∗1 + f ∗2k

∗)

(n− 1)!(Γ(β))n

∫ t1

0

(t1 − s)n−1ds||x− y||

≤ tnβ1 Mn(f ∗1 + f ∗2k
∗)

n!(Γ(β))n
||x− y||

≤ c∗||x− y||.

Considering supremum over interval [0, t1) we get ||F (n)
1 x−F (n)

1 y| ≤ c∗||x− y|| → 0

for fixed t1. Therefore there exist m such that F (m)
1 is contraction on Br0 . Thus by

general Banach contraction theorem the operator equation x(t) = F1x(t) has unique

solution over the interval [0, t1).

For all k = 1, 2, · · · , p, t ∈ [tk, sk) and u, v ∈ X and assuming (A4)

||F2kx(t)−F2ky(t)|| = ||gk(t, x(t))− gk(t, y(t))|| ≤ g∗k||x− y||.

Then F2k is contraction and by Banach fixed point theorem the operator equation

x(t) = F2kx(t) has unique solution for the interval [tk, sk) for all k = 1, 2, · · · , p.

This means for all k = 1, 2, · · · , p, x(t) = gk(t, x(t)) has unique solution for all

t ∈ [tk, sk). Lipschitz continuity of gk leads to uniqueness of the solution at point sk

also.

For all k = 1, 2, · · · , p, t ∈ [sk, tk+1) and x, y ∈ Br−0,

||F (n)
3k x(t)−F (n)

3k y(t)||

≤
∫ t

sk

∫ τ1

sk

· · ·
∫ τn−1

sk

(t− τ1)β−1(τ1 − τ2)β−1 · · · (τn−1 − s)β−1||Y (t− τ1)||

||Y (τ1 − τ2)|| · · · ||Y (τn−1 − s)||||f(s, x(s), Kx(s))− f(s, y(s), Ky(s))||dsdτn−1 · · · dτ1
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Appalling assumption (A1), (A2) and (A3) and lemma 6.3.1 and we get,

||F (n)
3k x(t)−F (n)

3k y(t)|| ≤
∫ tk+1

sk

∫ tk+1

sk

· · ·
∫ tk+1

sk

(tk+1 − sk)n(β−1) Mn

(Γ(β))n[
f ∗1 ||x− y||+ f ∗2k

∗||x− y||
]
dsdτn−1 · · · dτ1

≤ (tk+1 − sk)n(β−1)Mn(f ∗1 + f ∗2k
∗)

(n− 1)!(Γ(β))n

∫ tk+1

sk

(tk+1 − s)n−1ds||x− y||

≤ (tk+1 − sk)nβMn(f ∗1 + f ∗2k
∗)

n!(Γ(β))n
||x− y||

≤ c∗||x− y||.

Considering supremum over interval [sk, tk+1)

we get ||F (n)
3k x − F

(n)
3k y| ≤ c∗||x − y|| → 0 for fixed sub-interval [sk, tk+1) for all

k = 1, 2, · · · , p. Therefore, there exist m such that F (m)
3k is contraction on Br0 . Thus

by Banach contraction theorem the operator equation x(t) = F3kx(t) has unique

solution over the interval [sk, tk+1) for all k = 1, 2, · · · , p.

Hence, the operator equation x(t) = Fx(t) has unique solution over the interval

[0, T ] which is nonhing but mild solution of the equation (6.3.1).

Example 6.3.2.1. The fractional order integro-differential equation:

cDβ
t x(t, u) = xuu(t, u) + x(t, u)xu(t, u) +

∫ t

0

e−x(s,u)ds, t ∈ [0,
1

3
) ∪ [

2

3
, 1]

x(t, u) =
x(t, u)

2(1 + x(t, u))
, t ∈ [

1

3
,
2

3
)

(6.3.3)

over the interval [0, 1] with initial condition x(0, u) = x0(u) and boundary condition

x(t, 0) = x(t, 1) = 0. The equation (6.3.3) can be reformulated as fractional order

abstract equation in X = L2([0, 1],R) as:

cDβz(t) = Az(t) + f(t, z(t), Kz(t)), t ∈ [0,
1

3
) ∪ [

2

3
, 1]

z(t) = g(t, z(t)) t ∈ [
1

3
,
2

3
)

(6.3.4)

over the interval [0, 1] by defining z(t) = x(t, ·), operator Ax = x′′ (second order
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derivative with respect to x). The functions f and g over respected domains are

defined as f(t, z(t), Kz(t)) = (z2(t))′

2
+
∫ t

0
e−z(s)ds and g(t, z(t)) = z(t)

2(1+z(t))
respectively.

(1) The linear operator A over the domain D(A) =
{
x ∈ X ;x′′ exist and continuous

with x(0) = x(1) = 0
}

is self-adjoint, with compact resolvent and is the infinitesimal

generator of C0 semigroup S(t) over the interval [0, 1] given by

S(t)x =
∞∑
n=1

exp(−n2π2t) < x, φn > φn, (6.3.5)

where φn(s) =
√

2sin(nπs) for all n = 1, 2, · · · is the orthogonal basis for the space

X.

(2) The function K : [0, 1]×[0, 1]×X → X is continuous with respect to t and differ-

entiable with respect to z for all z and hence K is Lipschitz continuous with respect

to z. This means there exist positive constant k∗ such that ||K(t, z1)−K(t, z2)|| ≤

k∗||z1 − z2||.

(3) The function f : [0, 1]× X × X → X is continuous with respect to t and is dif-

ferential with respect to argument z and Kz. Therefore there exist positive constats

f ∗1 and f ∗2 such that ||f(t, z1, Kz1)− f(t, z2, Kz2)|| ≤ f ∗1 ||z1− z2||+ f ∗2 ||Kz1−Kz2||,

z1, z2 ∈ Br0 for some r0.

(4) The impulse g is continuous with respect to t and Lipchitz continous with respect

to z with Lipschitz constant g∗ = 1/2 < 1.

Therefore by theorem-6.3.2 the equation (6.3.4) has unique solution over [0, 1]. Hence

the equation (6.3.3) has unique solution over the interval [0, 1].
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6.4 Equation with Nonlocal Conditions

Sufficient conditions for the existence of the equation:

cDβx(t) = Ax(t) + f

(
t, x(t),

∫ t

0

a(t, s, x(s))ds

)
, t ∈ [si, ti+1), i = 1, 2, · · · , p

x(t) = gi(t, x(t)), t ∈ [ti, si)

x(0) = x0 + h(x)

(6.4.1)

in the Banach space X , is derived in this section.

Definition 6.4.1. The function x(t) is called mild solution of the impulsive frac-

tional equation (6.3.1) over the interval if x(t) satisfies the integral equation

x(t) =



X(t)(x0 + h(x)) +

∫ t

0

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds, t ∈ [0, t1)

gk(t, x(t)), t ∈ [tk, sk)

X(t− sk)gk(sk, x(sk)) +

∫ t

sk

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds, t ∈ [sk, tk+1)

(6.4.2)

where,

Kx(t) =

∫ t

0

a(t, s, x(s))ds, X(t) =

∫ ∞
0

ζβ(θ)S(tβθ)dθ, Y (t) = β

∫ ∞
0

θζβ(θ)S(tβθ)dθ

are the linear operators defined on X . Here, ζβ(θ) is probability density function

over the interval [0,∞) defined by

ζβ(θ) =
1

π

∞∑
n=1

(−1)n−1θ−βn−1 Γ(nβ + 1)

n!
sin(nπβ)

and the operator S(t) is semi-group generated by evolution operator A.

Assumptions 6.4.1. Assumptions for the existence of the mild solution of frac-

tional evolution equation with non-instantenous impulses.

(B1) The evolution operator A generates C0 semigroup S(t) for all t ∈ [0, T ].
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(B2) The function f(t, ·, ·) is continuous and f(·, x, y) is measurable on [0, T ]. Also

there exist β ∈ (0, β) with mf ∈ L
1
β ([0, T ],R)sx such that |f(t, x, y)| ≤ mf (t) for all

x, y ∈ X .

(B3) The operator K : [0, T ] × X → X is continuous and there exist a constant k∗

such that ||Kx−Ky|| ≤ k∗||x− y||.

(B4) The operator h : X → X is Lipschiz continuous with respect to u with Lipschitz

constant 0 < h∗ ≤ 1.

(B5) The functions gk : [tk, sk]×X are continuous and there exist a positive constants

0 < g∗k < 1 such that ||gk(t, x(t))− gk(t, y(t))|| ≤ g∗k||x− y||.

Theorem 6.4.1. (Existence Theorem)If assumptions (B1)– (B5) are satisfied, then

the nonlocal semi-linear fractional order integro-differential equation (6.4.2) has mild

solution provided Mh∗ < 1 and Mg∗ < 1.

Proof. From the lemma-(6.3.1) ||X(t)|| ≤ M for all x ∈ Bk = {x ∈ X : ||x|| ≤ k}

for any positive constnat k. Therefore,

|X(t)(x0 + h(x))| ≤M(|x0|+ h∗||x||+ |h(0)|). (6.4.3)

According to (B2) f(·, x, y) is measurable on [0, T ] and one can easily shows that

(t− s)β−1 ∈ L
1

1−β [0, t] for all t ∈ [0, T ] and β ∈ (0, β). Let

b =
β − 1

1− β
∈ (−1, 0), M1 = ||mf ||

L
1
β
.

By Holder’s inequality and assumption (B2), for t ∈ [0, T ],

∫ t

0

|(t− s)β−1Y (t− s)f(s, x(s), Kx(s))|ds ≤ M

Γ(β)

(∫ t

0

(t− s)
β−1
1−β ds

)1−β

M1

≤ MM1

Γ(β)(1 + b)1−β T
(1+b)(1−β). (6.4.4)
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For t ∈ [0, t1) and for positive r we define F1 and F2 on Br as,

F1x(t) =X(t)(x0 + h(x))

F2x(t) =

∫ t

0

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds

then, x(t) is mild solution of the semilinear fractional integro-differential equation

if and only if the operator equation x = F1x+F2x has solution for x ∈ Br for some

r. Therefore the existence of a mild solution of (6.3.1) over the interval [0, t1) is

equivalent to determining a positive constant r0, such that F1 +F2 has a fixed point

on Br0 .

Step:1 ||F1x+ F2y|| ≤ r0 for some positive r0.

Let x, y ∈ Br0 , choose

r0 = M
|x0|+ |h(x)|

1−Mh∗
+

MM1

(1−Mh∗)Γ(β)(1 + b)1−β t
(1+b)(1−β)
1

and consider

|F1x(t) + F2y(t)| ≤
∣∣∣∣X(t)(x0 + h(x))

∣∣∣∣+

∣∣∣∣ ∫ t

0

(t− s)β−1Y (t− s)f(t, y(s), Ky(s))ds

∣∣∣∣
≤M(|x0|+ h∗||x||+ |h(0)|) +

MM1

Γ(β)(1 + b)1−β t
(1+b)(1−β)
1

(using inequalities (6.4.3) and (6.4.4))

≤ r0 (since, Mh∗ < 1)

Therefore, ||F1x+ F2y|| ≤ r0 for every pair x, y ∈ Br0 .

Step: 2 F1 is contraction on Br0 .

For any x, y ∈ Br0 and t ∈ [0, t1), we have |F1x(t)− F1y(t)| ≤ Mh∗||x− y|| Taking

supremum over [0, t1), ||F1x− F1y|| ≤Mh∗||x− y||. Since, Mh∗ < 1, F1 is contrac-

tion.

Step: 3 F2 is completely continuous operator on Br0
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Let {xn} be the sequence in Br0 converging to x ∈ Br0 and consider,

|F2xn(t)− F2x(t)| ≤
∫ t

0

(t− s)β−1|Y (t− s)||f(s, xn(s), Kxn(s))− f(s, x(s), Kx(s))|ds

≤ M

Γ(β)

∫ t

0

(t− s)β−1 sup
s∈[0,t1)

|f(s, xn(s), Kxn(s))− f(s, x(s), Kx(s))|ds

≤ Mtβ1
Γ(β + 1)

sup
s∈[0,t1)

|f(s, xn(s), Kxn(s))− f(s, x(s), Kx(s))|

which implies

||F2un − F2u|| ≤
Mtβ1

Γ(β + 1)
sup

s∈[0,t1)

|f(s, xn(s), Kxn(s))− f(s, x(s), Kx(s))|

Continuity of f and K leads to ||F2xn−F2x|| → 0 as n→∞. Thus F2 is continuous.

To show {F2x(t), x ∈ Br0} is relatively compact it is sufficient to show that the family

of functions {F2x, x ∈ Br0} is uniformly bounded and equicontinuous, and for any

t ∈ [0, t1), {F2x(t), x ∈ Br0} is relatively compact in X.

Clearly for any u ∈ Br0 , ||F2x|| ≤ r0, which means that the family {F2x(t), x ∈ Br0}

is uniformly bounded.
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For any x ∈ Br0 and 0 ≤ τ1 < τ2 < t1,

|F2x(τ2)− F2(τ1)| =
∣∣∣∣ ∫ τ2

0

(τ2 − s)β−1Y (τ2 − s)f(s, x(s), Kx(s))ds

−
∫ τ1

0

(τ1 − s)β−1Y (τ1 − s)f(s, x(s), Kx(s))ds

∣∣∣∣
=

∣∣∣∣ ∫ τ2

τ1

(τ2 − s)β−1Y (τ2 − s)f(s, x(s), Kx(s))ds

+

∫ τ1

0

(τ2 − s)β−1Y (τ2 − s)f(s, x(s), Kx(s))ds

−
∫ τ1

0

(τ1 − s)β−1Y (τ1 − s)f(s, x(s), Kx(s))ds

∣∣∣∣
≤
∣∣∣∣ ∫ τ2

τ1

(τ2 − s)β−1Y (τ2 − s)f(s, x(s), Kx(s))ds

∣∣∣∣
+

∣∣∣∣ ∫ τ1

0

[
(τ2 − s)β−1 − (τ1 − s)β−1

]
Y (τ2 − s)f(s, x(s), Kx(s))ds

∣∣∣∣
+

∣∣∣∣ ∫ τ1

0

(τ1 − s)β−1
[
Y (τ2 − s)− Y (τ1 − s)

]
f(s, x(s), Kx(s))ds

∣∣∣∣
≤ I1 + I2 + I3,

where,

I1 =

∣∣∣∣ ∫ τ2

τ1

(τ2 − s)β−1Y (τ2 − s)f(s, x(s), Kx(s))ds

∣∣∣∣
≤
∫ τ2

τ1

|(τ2 − s)β−1Y (τ2 − s)f(s, x(s), Kx(s))|ds

≤ MM1

Γ(β)(1 + b)1−β (τ2 − τ1)(1+b)(1−β) (Applying inequality (6.4.4) over interval [τ1, τ2]),
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I2 =

∣∣∣∣ ∫ τ1

0

[
(τ2 − s)β−1 − (τ1 − s)β−1

]
Y (τ2 − s)f(s, x(s), Kx(s))ds

∣∣∣∣
≤ M

Γ(β)

(∫ τ1

0

[
(τ2 − s)β−1 − (τ1 − s)β−1

]
|f(s, x(s), Kx(s))|ds

)
≤ M

Γ(β)

(∫ τ1

0

[
(τ2 − s)β−1 − (τ1 − s)β−1

] 1
1−β ds

)1−β

M1 (Applying Holder inequality)

≤ MM1

Γ(β)

(∫ τ1

0

[
(τ2 − s)b − (τ1 − s)

]
ds

)1−β

≤ MM1

Γ(β)(1 + b)1−β

(
τ 1+b

1 − τ 1+b
2 + (τ2 − τ1)

)1−β

≤ MM1

Γ(β)(1 + b)1−β (τ2 − τ1)(1+b)(1−β)

and

I3 =

∣∣∣∣ ∫ τ1

0

(τ1 − s)β−1
[
Y (τ2 − s)− Y (τ1 − s)

]
f(s, x(s), Kx(s))ds

∣∣∣∣
≤
∫ τ1

0

|(τ1 − s)β−1Y (τ2 − s)− Y (τ1 − s)f(s, x(s), Kx(s))|ds

≤
∫ τ1

0

|(τ1 − s)β−1f(s, x(s), Kx(s))|ds sup
s∈[τ1,τ2]

|Y (τ2 − s)− Y (τ1 − s)|

≤ M1

(1 + b)1−β t
(1+b)(1−β) sup

s∈[τ1,τ2]

|V (τ2 − s)− V (τ1 − s)| (Applying Holder’s inequality).

The integrals I1 and I2 are vanishes if τ1 → τ2 as they contain term (τ2 − τ1). By

assumption (B1), the integral I3 also vanishes as τ1 → τ2. Therefore |F2x(τ2) −

F2(τ1)| tends to zero as τ1 → τ2 for independent choice of x ∈ Br0 . Hence, the

family {F2x, x ∈ Br0} is equicontinuous.

For to show that the family X(t) = {F2x(t), x ∈ Br0} for all t ∈ [0, t1) is relatively

compact. It is obvious that X(0) is relatively compact.

Let t0 ∈ [0, t1) be fixed and for each ε ∈ [0, t1), define an operator Fε on Br0 by

formula

Fεx(t) =

∫ t−ε

0

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds.

Compactness of the operator Y (t) leads to relative compactness of the set

Xε(t) = Fεx(t), x ∈ Br0 in X .
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Moreover,

|F2x(t)− Fεx(t)| =
∣∣ ∫ t

0

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds

−
∫ t−ε

0

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds

∣∣∣∣
≤
∫ t

ε

|(t− s)β−1Y (t− s)f(t, x(s), Kx(s))|ds

≤ MM1

Γ(β)(1 + b)1−β (t− ε)(1+b)(1−β) (Applying inequality (6.4.4)).

Therefore, X(t) is relatively compact as it is very closed to relatively compact set

Xε(t). Thus, by Ascoli-Arzela theorem the operator F2 is completely continous on

Br0 . Hence, using Krasnoselskii’s fixed point theorem F1 +F2 has fixed point on Br0

which is mild solution of the equation (6.4.1) over the interval [0, t1).

On the interval [tk, sk) for all k = 1, 2, · · · , p and for positive r we define F1 and F2

on Br as,

F1x(t) =gk(t, x(t))

F2x(t) =0

then, x(t) is mild solution of the semi linear fractional integro-differential equation

if and only if the operator equation x = F1x+F2x has solution for x ∈ Br for some

r. Therefore the existence of a mild solution of (6.3.1) over the interval [tk, sk) is

equivalent to determining a positive constant r0, such that F1 +F2 has a fixed point

on Br0 . In fact, it is obvious due to assumption (B5). On the interval [sk, tk+1) for

all k = 1, 2, · · · , p and for positive r we define F1 and F2 on Br as,

F1x(t) =X(t− sk)gk(sk, x(sk))

F2x(t) =

∫ t

sk

(t− s)β−1Y (t− s)f(t, x(s), Kx(s))ds

then, x(t) is mild solution of the semilinear fractional integro-differential equation

if and only if the operator equation x = F1x+F2x has solution for x ∈ Br for some

r. Therefore the existence of a mild solution of (6.3.1) over the interval [sk, tk+1) is
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equivalent to determining a positive constant r0, such that F1 +F2 has a fixed point

on Br0 .

Selecting,

r0 = M
|x0|+ |g(·, z)|

1−Mg∗
+

MM1

(1−Mg∗)Γ(β)(1 + b)1−β (t− sk)(1+b)(1−β)

and using similar arguments for interval [0, t1) and by Krasnoselskii’s fixed point

theorem F1 +F2 has fixed point on Br0 which is mild solution of the equation (6.4.1)

over the interval [sk, tk+1).

Example 6.4.1.1. Fractional partial integro-differential system with nonlocal con-

ditions:

cD
1
2x(t, u) = xuu(t, u) +

1

50

∫ t

0

e−x(s,u)ds, t ∈ [0,
1

3
) ∪ [

2

3
, 1]

x(t, u) =
x(t, u)

10(1 + x(t, u))
, t ∈ [

1

3
,
2

3
)

(6.4.5)

over the interval [0, 1] with initial condition x(0, u) = x0(u) +
∑2

i=1
1
3i
x(1/i, u) and

boundary condition x(t, 0) = x(t, 1) = 0.

The equation (6.4.5) can be reformulated as fractional order abstract equation in

X = L2([0, 1],R) as:

cDβz(t) = Az(t) + f(t, z(t), Kz(t)), t ∈ [0,
1

3
) ∪ [

2

3
, 1]

z(t) = g(t, z(t)) t ∈ [
1

3
,
2

3
)

(6.4.6)

over the interval [0, 1] by defining z(t) = x(t, ·), operator Ax = x′′ (second order

derivative with respect to x). The functions f and g over respected domains are

defined as f(t, z(t), Kz(t)) = 1
50

∫ t
0
e−z(s)ds and g(t, z(t)) = z(t)

10(1+z(t))
respectively.

The equation (6.4.6) satisfies the conditions (B1-B5) of the hypothesis with Mh∗ < 1

and Mg∗ < 1. Hence the equation (6.4.6) has a mild solution over the interval [0, 1].
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6.5 Conclusion

Existence of mild solution of non-instantaneous impulses semilinear fractional evolu-

tion equation with local and nonlocal conditions over the Banach space is established

in this chapter. The result of local evolution equation is obtained through gen-

eral Banach contraction theorem while, for nonlocal evolution equation is obtained

through Krasnoselskii’s fixed point theorem.
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