CHAPTER VI

A THEOREM ON THE ALMOST EVERYWHERE
CONVERGENCE OF FOURIER SERIES

The aim of this chapter is to prove a theorem on. the
almost everywhere gonvergence of Fourler series. The

theorem is. similar to.a theorem of R.?.Bogql)

which in turn
is a generalization of 2 theorem due to A. Beurlinge) on the
absolute convergence of Fourier series. Also, it 1s
different in character from those .of Kolmogorov and
Seliverstov,3) Plessnerl’) and G.H.Hardy and J.E.Littlewoed.5)
In establishing this theorem we have used the methods of
6hapter V (Theorem 13), and hence the justification for the
inclu=ion of this. chaﬁter in the thesls. Our theorem 1is as

follows:

THEOREM 1T7. If :F and 7 _eyen functi Lo each
of period 77 , with Fourler cosine coefficlents c‘,‘ a.nd ;3

if .f is a contraction of. ?/ s and if /;ﬁ | & s where { 7,'5

is 2 gequence of positive real numbers such that
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then the Fourler geries of - converges slmost everywhere.

12 Boas. [5] 2) Beurling Y|
3) Kolmogorov and Seliverstov [16] ,

4) Plegsner [24]

) Hardy and Littlewood [14]
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by Cauchy-Schwarz inequality.
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Wwhere A is a constant not necessarily the same in all

occurrences.

Also, since f 1s a contrection df? » We nave by

Parseval's relation
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Tnerefore from (2), (3) and (4}, we get
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Y= y 22l
= A’(51+SL)/ CJA’Y.
The boundedness of 5, , and $L sy 88 N~Y o0, can be shown

with the help of (1) by using en argument parallel to that
of Boas..l) In fact, we hgve
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we obtain from the first series of (1)
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1) Boas, loc. cite
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particular, that 7, =o(/) « For 7; , we see that the
second series in (1) has decreasing terms which must be
( ’), and hence 7" o)+
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' The proof is complete.,




