
CHAPTER VI

A THEOREM ON THE ALMOST EVERYWHERE OOMVERG-MCE-OF FOURIER SERIES

The aim of this chapter Is to prove a theorem on the 
almost everywhere convergence of Fourier series. The 
theorem is similar to a theorem of R.P.Boas1^ which in turn 
Is a generalization of a theorem due to A* Beurllng2 * 4 5^ on the 

absolute convergence of Fourier series. Also, it is 
different in character from those of Kolmogorov and 
Sellverstov,^ Pies sner^ and G.H.Hardy and J.E.Littlewood.*^ 

In establishing this theorem we have used the methods of 
Chapter Y (Theorem 13), and hence the justification for the 

Inclusion of this chapter in the thesis. Our theorem is as 
follows*

then the Fourier aeries, of f converges almost everywhere.

1] Boas [5] 2) Beurllng PQ
3} Kolmogorov and Sellverstov [M] , fjE$T4) Plessner5) Hardy and Littlewood jl40
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it follows that
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Then, since ^ is a trigonometrical polynomial,
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Iby Cauchy-Schwarz inequality.
Now
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where A la a constant not necessarily the same in all 

occurrences.
Also, since ^ is a contraction of ^ ,

Parseval'a relation
we have by
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T&erefore from (2), (3) and (4), we get

then we obtain, by partial summation,
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= A(s, +SV), <<W.

The boundedness of St » and » as /V—V ^ » can be shown 
with the help of (1) hy using an argument parallel to that 
of Boas*^ In fact, we have 
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How writing
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*=/
we obtain from the first series of (1)

g ---- - ^ Z,

1) Boas, loc. cit.
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and hence o » as 'h^oo • This proves, in
particular, that 7/ =•0(i') *' For , we see that the 
second series in (1) has decreasing terms which must be 
O('y) • and hence !
Again

— <2 / // / a) ,
The proof is complete •’


