CHAPTER = T

INTRODUCT ION

é1. let f be a 2mperiodic function which is Lebesgue
integrable over [~m , ™ 1. A lacunary Fourier series

corresponding to the function £ 1is the trigonometric series

o

<a'ﬂk cos mx + by sin nk@ (L)
. A

t

1

with an infinity of gaps (ny , nk+l) , where {ng} (k €N )
is a strictly increasing sequence  of natufal numbers |
satisfying some condition, called the lacunarity condition

or gap condition or gap hypothesis, such that

(nk_“l - m)——>0 as ke —=00; (1.1)
and
v
ank = %r' g £(t)-cos nkt-dt )
-7
3
b, = L f{(t)+ sin n, t- dt .
Iy T k

-7



The numbers any bnk are called the Fourier

coefficients of the function .

Throughout, the function under consideration is
assumed to be 2m-periodic and Lebesgue integrable over

[« , T ]

The theory of lacunary Fourler series has its origin
in the construction of examples of functions having various
pathological properties. According to Weierstrass [381,
Riemann told his students in 1861 that the function repres-
ented by the lacunary Fourier series :25::§l1(sin'n2 x)/n2
is everywhere continuous but nowhere differentiable. As
Weierstrass was not able to prove this (Hardy [ 141 has later
on proved that this function has no finite differential
coefficient for any irrational value of x ), he gave (1872)
his famous example of such a function whicﬁ is represented
again by the lacunary Fourier series, namely the series
Z,{i’l(an cos b x), where 0<a<1l, b is an odd
integer >3 and ab > 1 + 3w/2 (also refer : [141). In
1892 Hadamard [18J introduced lacunary Fourier series (L),

with .{nk}- satisfying the lacunarity condition

n »
Xt >g>1 forall kEN, (1.2)
K .

known after his name as the Hadamard lacunarity conditien,

for the study of functions that can not be analytically



continued beyond -their circle of convergence ( see also
Fabry [7] 3 »Pélya [27] ). F. Riesz [28] has.used lacunary
series to construct a continuous functien of bounded
variation whose Fourier coefficients are not of order
o(1/n). TFor other such examples refer [2 ; P.242],197,
[33] . In fact, the theory of lacunary Fourier series has
always been not only one of the main tools for proving or
disproving many instances of conjectures in analysis but
also a source of interesting regsults in analysis since its

very appearance in 1861.

The systematic study of the properties of lacunary
Fourier series started from the first decade of this century.
This study can conveniently be divided into two parts. In
the first one the series (L) is considered as a series of
almost independent random vériables, or what is same as a
series of almost independent functions, and the properties
are studied through probabilistic methods by many well known
mathematicians like Kolmogorov, Steinhaus, Kac, Marcigkiewicz,
Zygmund and others. A survey of number of properties in this
direction with an extensive‘bibliography can be found in [161],
{111 . The second part roughly constitutes the study of the
following general problem of Mandlebrojt ﬁ21] : gssume {nk}
is given, suppose we know a property of a function given
by (L) on an interval, or in the neighbourhood of a point,

or on a perfect set without interior points; to what extent
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does it give information on (L) as a whole ? This problem
gives rise to several other ﬁroblems including the problems
of unigueness or continuation of functions. To day number of
properties of lacunary Fourier series are known which are
connected to these problems and there are interesting
applications of the same methods to a series of number theor=-
atic problems. Here one can observe that in many of these »
properties, the'sequence {0x} is assumed to satisfy the
Hadamard lacunarity condition (1.2) and these properties
distinguish themselves greatly from those of the non-lacunary
Fourier series. For example, such a lacunary Fourier series
éonverges almost everywhefe (just as a non=-lacunary Fourier
series can diverge everywhere); if such a trigonometric series
is summgble by a method Tf in a set of positive measure
then it is a Fourier series of a function belonging to P (p > 1)
such a series can not converge to zero in a set of posifive
measure unless all the coefficients are zeroj; properties of
the function represented by such a series can be extended teo
the whole real - axis from a small interval (refer [2] and

[40] also).

The study of the absolute convergence of lacunary
Fourier series started with a paper of Fatou [ 8] in which

he proved that if {m} satisfies (1.2) with q > 3 then

an everywhere convergent lacunary Fourier series (L) converges
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absolutely. Later on Sidon showed [2 3 P.246 1 that if (L)
is a Fourier series of a bounded function with {nk}
satisfying (1.2) then it converges absolutely. Here too

the lacunarity condition is the Hadamard one.

32. Noble [23] observed in 1954 that very little
attention has been paid to the effect of a weaker gap
condition than the Hadamard's. He considers well known
theorems of BernSteIn [2 ; P.154, Theorem 1] and Zygmund
[2 ; P.161, Corollary 1] for the absolute convergence of
non-lacunary Fourier series and certain results [2 j; P.269]
concerning the order of magnitude of Fourler coefficients;
and shows that a certain gap condition weaker than the
Hadamard's enables us to replace, in these theorems, the
hypothesis concerning f(x) on the whole interval [-v , 7]
by the same hypothesis on an arbitrary small subinterval of
[-m 4, m]. Since many a times a property of a function is
known only locally, the problem considered by Noble can be
set (on the line of Mandlebrojt's problem) like this: If
the fulfilment of some property of a function £ on the
whole interval [=7 , w] implies certain conclusions
concerning the non=lacunary Fourier series ( (f) of f then
what lacunae in G;(f) guarantees the same conclusions when
the property is fulfilled only locally ? Several mathemati-
cians including Noble [23] , Kennedy [17 ; 18 3 19 ; 2011 ,
Tomid [36 ; 871, M.Izumi and S.I.Izumi [156] , Chao [6]



and others have studied this problem in the recent years
and have bettered the earlier results or obtained new
results by considering weaker and weaker gap conditions
and also by considering the property of a function either
on a subset of positive measure or at an arbitrary fixed

point of [ ~mr , 7 1.

We note that the above referred theorems of Bernitein
and Zygmund have been generalized later on by Bern3tein [2;
P.154, Theorem 21, Szasz [2 ; P.1551 and Stetkin [2 ;
P.155, P.1961 = gll of which give sufficiency conditions
for the absolu£e convergence of non-lacunary Fourier series.
In view of(ﬁhese generalizations, i£ will be interesting to
carry on investigations of the problem studied by Noble by
considering the property of a function in terms of its
modulus of continuity or quadratic modulus of continuity or
modulus of smoothmess of order { ( /€ N ) or quadratic
modulus of smoothness of order A or sz trigonometric best
approximation. The present thesis is the outcome of researches

carried out by the author, mainly regarding these investigations.

This chapter aims at providing the introduction to
the subject matter of the thesis through the recent develop-
ments regarding the concerned aspects of the problem. The |
statements of all the results we have proved in this thesis

are included in this chapter only. It can be noted that all



the lacunarity conditions considered by us in our results

are weaker than the Hadamard's gap condition (1.2).

€3. In order to state the problem more precisely and
to give an account of the results obtained, it will be °
convenient to introduce some definitions and notations at

this stage.

Let Xog € [=m , 7] be an arbitrary fixed point,
and & be an arbii;rary positive real number such that
= [io -8, Xo * 8 ] is a subinterval of t-w , 7. Note
that xo’z‘o and § =1 gives I = [em , 7] . Let
Wu, ) (>0 ,Au € R) denote the modulus of continuity

of the function f over [~m , m] defined by

0< It Lu
x ef-m, 7]

W , £) = su {lf(x +t) - f(x>]} (1.3)

We say that f satisfies a Lipschitz condition of order X,
0<«<1, inf-r , 7] and write f € Lip X [~-7 , 7] if
thére éxists a; coﬁstant M, depending c;nly on T, such that
W(u , ) _<_M°u°(- The médulus, of continuity of f over I,
denoted by (& , £ , I), and the class Lip «(I) of functions
satisfying the Lipschitz condition in I are defined in a
similar way replacing [~m 4 #] by I. If f dis a function

of bounded varistion over I (respectively over E-’~1r , 1)

then we write it as f € BV(I) (respectively f € BV[~7m , 7] ).



As is referred above, Noble { 237 studied the gap

condition

Ny
limit inf. = 00 = - - .
Tog o y Ny = min{nk 1~ Pk oy Dk ) nk-l} (1.4)

which is weaker than the Hadamard lacunarity condition (1.2)
and deducedthe results concerning the order of magnitude off
Fourier coefficients and the absolute convergence of the
lacunary Feurier series (L) with {m} satisfying (1.4).1In
fact, his theorems concerhing the absolute convergence are

as follows;

THEOREM 1. (Noble). If (L) is a Fourier gseries of f with

{7} satisfying (1.4) then
(a). f € Lip «(I) , « > 1/2 , implies
k=1l ‘ ’
(b). £ € Lip <(I}) , « >0, and f € BV(I) implies (1.5).

THEOREM 2. (Noble).(a). If in the hypothesis of Theorem 1(a)

« is restricted by 0 < <« < 1 and B > 2/(2«< + 1) then

Sl ol Jeos o

(b). If in the hypothesis of Theorem 1(b)
« is restricted by 0 < < <1 and g > 2/ (x + 2) then (1.6) .

holds.



In 1956, Kennedy [17] proved Theorem 1 under a
less restrictive gap hypothesis (1.1). Theorem 2 under
the gap condition (1.1) can easily be deduced on the same
line. He then raises the question whether the Theorem 1(a)

holds under a still less stringent gap condition

Dy
% e OO as ki—s00 (1.7)

and answers it in negative [18] .

Theorems 1(b) and 2(b) are generalized also by
relaxing the hypothesis on the function - maintaining gap
condition the same. This result is due to S. M. Mazhar [ 22]
who shows that the condition of bounded variation in these
theorems can be replaced by a weaker condition of bounded pth
variation. Goyal [12] then shows that Theorem 2(b),at the
critical index, that is, when g = 2/(« + 2), holds under the
weaker gap condition (1.1) and when function is of bounded

second variation —= provided-the function satisfies a genera-

liged Lipschitz condition.

It is evident’that Noble's Theorem 1 and 2, and the
subsequent results mentioned above, are gap analogues of the
theorems of BersteIn L2 ; P.154, Theorem 1] , Zygmund [ 2 ;
P.161, Corollary 11 and Szasz [39 ; P.137] . These theorems
of Bernstein and Zygmund are later on generalized by the

authors themselves [2 j P.154 and P.1607 as under.



THEQOREM 3. (Bern3tein). If

[2)

W@Q/n, )
=1 B

then the Fourier series (O (f) of f converges absolutely.

THEOREM 4. (Zygmund). If f(x) is of bounded variation and

< o0

2"’: (W(l/n,f))l/z
N=1 n

then the Fourier series (J (f) of f converges absolutely.

In 1968, Bojanic and Tomid [4] proved the following

'small gap'! analogue of the Theorems 3 and 4.

< oo (1.8)

THEOREM 5. (Bojanid and Tomic). Let I =[- &, 61, (L) be the

Fourier series of f with {ng} satisfying the 'small gap'

o <
5 W/t 5,0 (W 2)/6) + at < oo
: .

or
o0
Sidf(t)i < oo and S&)l/z(l/t,f,l)(N‘Vz (t)/t3/2>-dt < oo
f i , ,

then (1.5) holds.

This theorem generalizes Kennedy's results. We also
refer here to the generalization of Kennedy's results due to

Se~Tin fan [34] who considers the same gap condition (1.1)
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but the hypothesis on the function in a bit general but
complicated way. The results are merely stated, without proof,

together with some two dimensional analogous resultse.

We observe that . . Theorems 3 and 4 are further

generalized by Szhsz and Stedkin[2 ; P.1557.

THEOREM 6. (Szasz). If

2]

W2 /n, 1)
vn

< o0 ] (109)
MN=7

where Q)(z) (1/n,f) is the quadratic modulus of continuity of

f over [-mr , w]given by

~ " 2 \I/2
(L)(2)(l/n,f)= 0<ir$1‘é§./n {(J‘f(xﬂl) - £(x=h) | dx> }, (1.10)
e m— u?‘ i

. 2
then the Fourier series (J (f) of a function f € [~ , 7]

converges absolutely.

THEOREM 7. (Ste®kin). If

oo (2)
; ‘ (£)
< o0 ,
n=l Wn
: (2) L2 ) ) X
where E_~~ (f) dis L -trigonometric best approximation to f

over [~m 4 7] given by

n
(2) ' - ) e (1.11)
E, (£) = ™" [£(x) - Ty(x)] dx .
- n
Al

in which T,(x) is a trigonometric polynomial of order
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not higher than n, then the Fourier series 0 (£) of

fe L2 L=m , m] converges absolutely.

It may be noted that both these theorems ar.e equival~
ent and are included in the following more general theorem

due to SteCkin [2 ; P.196].

THEOREM 8. (SteCkin). If for a given increasing sequence

{nk} of natural numbers, we have

(1)(2) (Unk ’ )
vk

< 00 , (1.12)
k=1 “ '

where &)(2)

(I/ny , £) 1is as in (1.10) with 1/n replaced by
l/nk 5 then (1.5) holds for the Fourier series O"(f) of

feL E'-‘IT’TI‘JQ

Observe that with np = k for all k, Theorem 8 is

Theorem 6.

We see that any kind of gap analogues of these
Theorems 6, 7 and 8 are not available in the literature
concerning the absolute convergence of lacunary Fourier series.
In Chapter II of the present thesis we propose to prove that
if {mY satisfies (1.1) and (L) is a Pourier series of f
then (1.5) holds, that is, (L) c;:nvergeé absolutely, even
when the hypotheses in Theorexﬁs 6 and 7 are satisfied only in
a subinterval of_ [-m, m]. More precisely, we prove the

following theorems.
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THEOREM 9. If

(2)

W 1/n,r,I)

Yn

< oo (1.13)
n=1 ‘
and if {m} satisfies (1.1), then (1.5) holds for the Fourier
2
series (L) of f € L (I), where 60(2)(1/n,f,1) is the quadratic
modulus of continuity of the function f over an interval 1

defined by

2 \l/2
(J.)(Z)(l/n,f‘,l) - Oﬂs}g/ﬁ{(f‘f(x‘kh)ff(x-h)l dx) } (1.14)
I

THEOREM 10. Theorem 9 holds if (1.13) is replaced by the
equivalent condition

o, g2 (£,I)

n .
7 < 0o . (1.15?

n=}1
where EéZ) (f,I) is the trigonometric best approximation

2 R
to f in the space L (I) given by

. 2 /2
EI(12)(f,I) = 1§§f { ( g{f(x) -~ T, (x)| dx) } (1.16)
n . .
I

in which T,(x) is as in Theorem 7.

We then generalize Theorem 2 by considering the

higher order differences of f in the following theorem.

THEOREM 11. Theorem 9 holds if (1.13) is replaced by the

more general condition



14
(2)

= < 00 , (1.17)
A=1 B

(2) , .
where W; " (1/n,f,I) is the quadratic modulus of smoothness

of order { ( f€ N ) over an interval I given.by

1
(2) L 4= 2 \Z
Wy (1/ny£,D)= 452 /n{(ﬂ}:wm : (3’) £+ (23-D)1) | a::) }.(1.1s>
. - =0 :
] I 'J
Further, we prove the following generalizations.oef

these theorems {253,

THEOREM 12. If

2) N
2 (0 g > £ 5 D))
g <

o  (0<g<l) (1.19)

) o

and if {m} satisfies (1.1) then (1.6} holds for the Fourier
2 .

series (L) of £ ¢ L (I), where Q)(Z) (l/nk,f,D is as in (1.14)

with 1/n replaced by 1/ny .

THEOREM 13. Theorem 12 holds if (1.19) is replaced by the

more general condition

B
© . (W @y, £5 D)
<@

b (1020)
B2

k=1
vwhere w](ZZ) (l/nk,f,I) is as in (1.18) with 1/n replaced by

1/ Ny -
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THEOREM 14. Theorem 12 holds if (1.19) is replaced by the

; g
= (:Séi? £, 1?‘>, -

572 < o , + (1.21)
k=1 ' :

condition

(2) ‘ '
where Bpy (f, I) is as in (1.16) with 1/n replaced by 1/ny -

Observe that Theorems 12, 13 and 14 sharpen Theorems

9, 11 and 10 respectively.

The absolute convergence of a lacunary Fourier series
(L), when the underlying function satisfies some hypothesis
in a certain subset B of [-m , 7], not\necessar;ly a sub-
iﬁterval, was studied tirst 5y Kennedy [19 ] . He proved the
following theorem.

1)
THEOREM 15. (Kennedy). If f € Lip <(B) - ,« >0, and

. 2 . ‘ . o
Ec=[~r , m] has positive spread ? and if -{nk} satisfies

1) refer [19] for the definition. It has also been shown
there that there does exist function satisfying a Lipschitz
condition in a set of positive measure without satisfying
such a condition in an interval.

2) refer [19] for the definition. For example, it has been
mentioned there that every set dense, in some subinterval
of [~ 4 mJas well as a subset of positive measure has a
positive spread. There also exists countable nowhere dense
set: which has positive spread.



the gap condition

. * n - n
limit 3*1 kK = oo (¥ is independent of k
ke—>®  pilog n, and 0 < ¥ < 1)

(1.22)

then (1.5) holds for the Fourier series (L) of f provided
2«Y + ¥ > 1 , that is, provided < > %—(Y"l - 1.

Kennedy then conjectures that this theorem remains
true if the factor log n - 1s suppressed from the gap condition
(1.22). He further says that he is unable to decide whether
this theorem remains true at the critical iﬁdex, that is, when
«=% (¥l ~1). studying this V. M. Shah [31] proves. that
Theorem 15 hélds~at the critical index pfovided the function
f satisfies the generalized Lipschitz condition of the form
Q&Y

By fo( e e e e enn o E)

rs

| £(x+h) = (x)]| = (x>0, €50 )  (1.23)

in B as h—=+ 0 through unrestricted real values, where

meN and f(h) = log (e + L/n ) , Jh) = log Log(e™+ /B),...us

Observe that these theorems are a kind of Bern$teln
type theorems [2 ; P.154, Theorem 1] when the function satisfies
the hypothesis on a subset of C-? s T3 of positive spread.
In Chapter III of the present tﬁésisvwe propose to preve certain
theorems concerning the absolute convergence of lacunary Fourier

series (L) when the underlying function satisfies Szasz or
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Stelkin type hypgthesis only in a subset B of [-m , T ]
of positive measure. To state the results obtained by us,

we need the following definition.

DEFINITION.[:2_; P.248]. A strictly increasing sequence {nk}
(k€N ) of naturalmnumbers.is sald to satisfy the condition By

if sup Po(n) is finite, where Py(n) denotes the number of
different representations of an integer n 1in the form

n = E}:.nkl + Einkg (€, 6, = i 15 g ka € {nkg).
We prove the followiﬁg &h;orems[ZGJ.

THEOREM 16. If

0 (2) ‘ ﬁ: ’ )
0]
< (I/n é/g ’ ED) < ® (0<pgl) (1.24)

n=1 n

and if .{nk} satisfies the condition By then (1.6) holds for
the Fourier series (L) of f, where O)(Z)(l/n,f,E) is as in
(1.14) with I replaced by BE.

Considering the higher order differences of £, we

prove the following generalization.

THEOREM 17. Theorem 16 holds when (1.24) is replaced by the

more general condition

(WP am,, 8 )B
7%

o0 .
< o , (1.25)

n=1

#
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where the quadratic modulus of smoothness CQ;Z)(l/n,f,E)
of order § defined over E is as in (1.18) with I

replaced by B.

Taking then the hypothesis on the function in terms
of modu;gs pf coptihgity or modulus of smoéthness, we prove

the following theoremi46l.

THEOREM 18. Theorem 16 holds when (1.24) is replaced either

by

] ) 8
wQ/ f, B

n=1 n

or more generally by

@ . (Wa/n , £ , E) )B

578 < 00 (1.27)

n=1
where ()(1/n,f,E) is the modulus of continuity of f over E
given by
®@/n, 08 = opth/m {If(x+h) - £(x=h) | } (1.28)
x €8
and G&Cl/n,f,E) is the modulus of smoothness of order 1

of £ over E given by

1/, £55) = 0<h<1/’n{]§:<-1> N rGrteg-pm | §. (1.29)
x € R -

Further, the following general results are obtained.
For this purpose, we sharpen the inequalitiés obtained by us

(Chapter ITI, Lemma 2) while proving the above theorems.
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THEOREM 19. Theorem 16 holds if (1.24) is replaced by

the condition

CTEY E))ﬁ
kp/z <

00y (1030)
=1

where Q)(z) (l/nk s T E) is as in (1.14) with I and 1/n

replaced by B and l/nk respectively.

THEOREM 20. Theorem 16 holds if (1.24) is replaced by

the condition

(2) B
= W am £, 89)
kP’ 2 ‘

00 (1.31)
k=1

(2) i e
where (U @/ny , £, B) is as in (1.18) with I and 1/n

replaced by E and 1/my respectively.

PHEOREM 21. Theorem 16 holds if (1.14) is replaced either by

. P B
W3@/n f, B
E << ké/z’ )> <0 (1.32)
: k
k=1

or more generally by

§

(2]

W f, B

( 1@/ s )> < o , (1.83)
E kB/z

k=1

where (M(/m , £, E) and WyQ/n, , £, E) are as in

(1.28) and (1.29) respectively with 1/n replaced by:1/m.



20

Note that Theorems 19, 20 and 21 are the sharpened
versions of Theorems 16, 17 and 18 respectively. Among all
these, Theorem 18 is the most general theorem. Finaliy, in

this chapter, we prove the following theorem.

THEOREM 22. Theorem 16 holds if (1.14) is replaced by the

condition

(2) - B
2, (B (£,B)
k5/2 <. 60 ,

(1.84)
k=1
where Eéi) (f , E) is as in (1.16) with I and n replaced

by B and ny respectively.

In the rest of the chapters of the present thesis we
propose to study the problem under consideration, when the
function satisfies some hypothesis only at a point x5 €EL-7 , 7T]s
The first results regarding such a study concerns the ordér
of magnitude of Fourier coefficients and the absolute conver-
gence of the lacunary Fourier series (1) when the funection
satigfies some continuity condition oniy at a point. These
results are due to Masako Satd [29 ; 30] . In fact, .he

proved the following theorems;

THEQREM 23. [ 29 3 P.4047. Let 0 < « < 1 and 0 < ¥ < min{l~ ,

(2=<)/3} . If (L) is a Fourder series of f with fm} satisfying

&/ (2= - 3Y) S/ (2HeHY) (1.35)

<
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oy = oyl > 4eken (1.36)
and if f satisfies
W _
. |£(t) = £(t * h)|at =:O(h°C ) (1.37)
nY : - )
0
and
t‘ -
1 ~ '
b~ J £(t) = £(t + h)|at = O(l), anif.int>h , (1.38)
o]
then

any 5 by =007 - (1.39)

THEOREM 24.[30 ; P.509]. Iet 1/2<a<«<1,
0¢Y<(2=x)/2 and Y/2<«=2a¢g(2~«=7Y)/4. If (L)

ig a Fourier series of f with {nk} satisfying

D5 e ok/ (2+ +Y
R (2%=22-Y) o /(2 +Y) (1.40)
| ~n| >4ekn ; (1.41)
el T Mk Dy 3 .
and if [ satisfies
T
h ‘ 2
—‘-]-'-:r-glf(t) -t +w| a = 0@™) as p—o0 , (1.42)
h B
0

and
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T
——}F'g‘ |£(t) - £t ih)[zdt = O(l), unif.in T > hY s  (1.43)
0
then (1.5) holds.

We observe that hypothesis of Theorem 24 is more
restrictive than the hypothesis of Theorem 23 and in the proof
of Theorem 24 the conclusion (1.39) of Theorem 23 is used.
Hence it is natural to ask whether Theorem 24 holds only under
the lesgs restrictive hypothesis of Theorem 23. We prove in
Chapter IV of the present thesis that this is indeed the case
eveni 481 o > (1 = Y¥)/2. Our result obviously generalizes
Theorem 24. When’ % £ (1L =¥)/2 we study the convergence
almost everywhere and the absolute sumability ( C,8 ) ,
® > 1/2, of the lacunary Fourier series (L). More precisely

we prove the following theorems.

THEOREM 25. Under the hypothesis of Theorem, 23, if
0<(1=-Y)/2<«<K1 (1.44)

then (1.5) holds.

THEOREM 26. Under the hypothesis of Theorem 23, if
0<(@A=Y)4<KxK1 (1.45)

then (L) converges almost everywhere.

THEOREM 27. Under the hypothesis eof Theorem 28, if
0<(L=-57)/4<«<K1 (1.46)
then (L) is absolutely summable (C,1/2) and if no additional
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condition is imposed on « then (L) is absolutely summable (C,1).

In Chapter V of the present thesis we study the order

of magnitude of Fourier coefficients and then the absolute

convergence of the lacunary Fourier series (L), with {_nk}J

satisfying the lacunarity condition
min.{nk+l ~nyg , oy = nk_l} > CFlny) , (1.47)

where F(my) increases to @ as kwm—s o, F(n) < n for
all k€N and C >0 is a constant, when the fﬁnétion
satisfies a certain'continuity condition only at a point x, .
The' continuity condition considered by us is in terms of a

function G)f(t) s where

®
(1) W) =0 , W) >0 as t—=+0 ,
(ii) W*(t) is an almost increasing fumction in the

ﬂeighbourhood of zero, that is to say,

* %
W) <A @) (tg) as 0 <ty < ty—>0

and
* -
(iii) there exists « > 0 such that {J.(t) . is an
almost deefeasing function, that is to say, '

* =< ooy o=
W 1) t;  >B W.(ty) b5 when 0 < t; <ty ,

in which A and B are constants. In order to explain the
significance of the results established in this chapter, it
is desirable to recall briefly the developments that have taken

place during recent years regarding the study of the behaviour



of Fourier coefficients.
Tomic [36] has proved the following theorem in 1962.

THEOREM 28. (Tomid). If (L) is a Fourier series of f with
{nk} satisfying the Hadamard gap condition (1.2) and if the
modulus of continuity @W( , £, x5 ) of f(x) at the point

Xy s defined by

(WG , £, x,) = {lepm-£(x)| §,  (.48)

su
0<ln]gs
satisries (W , © , Xg) ==O<6-,.°(> (0 <«<1) ,then we have

&y 0 Py T O(n;;e) y 8 =o(2+x). (1.49)

This theorem is related to earlier results due to Noble [23]
and Kennedy [C17 3 191 . Kennedy [20] then sharpens this
estimation (1.49) to

iy, » Do, = OQ) Qog my / nk)cc (1.50)

keeping hypothesis .the same and posing the question if one
can possibly suppress the factor (log nk)cc in (1.50). The
affirmative answer was given by J; P. Kazhane, M. Izumi and

S. I. Izumi [16 ; P.2101. Here we also refer to a paper by
Se , Tin~fan (or Hsieh, Ting-fan) [35_;} who not only gives
affirmative snswer but also proves L35 ; Theorem 1] that under

the hypothesis of Theorem 28 we have By bnk #* 0<n1-{oc >.

TN
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Tomic’CS'?J then proves, utilising the process given
iri his note [36] , the following theorem which generalizes
the above referred result due to J. P. Kahane, M. Izumi and

8. I. Izumi.

THEOREM 29. If{m} satisfies the Hadamard gap condition
(1.2) and
£z, + £) = £(%) = Q@) W (t) as t—>+0,

where (1) (t) is as above, then for the Fourier series (L)
of f we have

oy, » by = O WI/m) , if 0 << <1 in (d1D)5
=0(1)- Log - (§ (/ny), if « = 1 in (1i1). (1.51)

On the other hand M.Izumi and S. I. Izumi have proved

the following theorem under the gap conditien

Y ' ~
D4y ~ D > Any (4ds a constant and 0 <Y 31) (1.52)

which is weaker than the Hadamard gap (1.2), when the function
f € Lip «(P), that is, f satisfies the x~Lipschitz condition

- / . 3
at a point x, , namely,

e
[£(zy + t) = £(x)] <4 |t] as t—>0. (1.53)

THEOREM 30. (Izwui). If{m} satisfies the gap condition
(1.52) and f € Lip «(P) then for the Fourier series (L) of f

we ha{re ‘
ank ’ bnk = O@;; ",(Y>. (1054:)'
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This theorem is a simultaneous generalization of the
Theorem 28 and the result due to Kennedy [19 3 Theorem 27 .
Chao £L61] further generalizes this theorem and proves that

if {m} satisfies (1.47) and f € Lip <(P) then we have
any > by = O (@) )T .

We observe that under the Hadamard gap hypothesis
(1.2), Theorem 29 is the most general theorem available in
the iiterature and in so much as weaker gap coﬁditions are
concerned the result due to Chao is general most known theorem.
We prove the following theorem which is & kind of bridge between

these two theorems, thus generalizing all the above theorems. We

do not know whether our result is the best possible.

THEOREM 31. If
P(xg £ ) = £(x) = O@ W (t) as t—>+ 0, (1.55)
wnere (J.(t) is as in Theorem 29 and if § m ] satisfies (1.47)

then
iy, 5 by, =0 (0N Q/Fly) ) (1.56)

We also prove in this chapter the following theorem
concerning the absolute convergence of lacunary Fourier series
(L), with .{nk} satisfying the gap condition (1.47), when the
function satisfies a certain hypothesis in terms of Ldf(t).

In fact, our theorem is as follows.

THEOREM 32. If{nk} satisfies (1.47) , f satisfies (1.55) and
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| i—: W asrmy ) )

— < 0 1), .
n@/z(:zr(n) )175 (5] (;pg) . (1.57)

n=1

then (1.6) holds for the Fourier series (L) of f.

« * ’
We then show that with & (t) = &' y 0< <1,
the estimation (1.56} gives the resuit concerniﬂg absolute
convergence due to Chao [6 3 Theorem 2] and Theorem 32 gives

that due to M. Izumi and S. I. Izumi {15 §; Theorem 21.

A look at the hypothesis of Theorem 32 leads to the
* '
natural question whether W.(/F(n) ) can be replaced by the
modulus of continuity O (/F() , £, ;co) of f considered at

a point x. in (1.57). Investigating thié question, we prove

(o]
in Chapter VI of the bresent thesis that the absolute convergence
of lacunary Fourier series (L) is assured when the function

satisfies Berniteln type condition in terms of either the modulus
of continuity or the modulus of smoothness of order { considered

only at a peint =x_ . The gap condition considered by us is

o
(4 -my ) > c-F(nk} ) ‘ (1.58)

where F(nk) and ¢ are as in (l.;?:‘?). Let § = 87/(0 F(ng) ),

where T is ;1 natural number, and put I = [;co -8, x5 + 81

We then prove the following theorems.

THEOREM 33. If

B
®, Whrey) , £, x5) )
B/2 ‘

<o (0<p 1) (1.59)
k=1 -



28

and if fm 3 satisfies (1.58) then (1.6) holds for the Fourier

series (L) of f € L2(I) (for some I), where &)(A/F(nk),f,xa>

1s the modulus of continuity of f at the point Xo defined

as in (1.48) with & replaced by A/F(nmy), 4 = 247/C + 7 .

THEQOREM 34. Theorem 33 holds if (1.59) is replaced by the

condition
g
< 00 (1.60)
k5/2
k=1

where (L)R(B/F(nk), £, XO> is the modulus of smoothness of

order f of f at the point x, , defined by

L0
WGE/rt),eix) = su {3%(71? ' (§>f(xo+<zj-o>h>]}

<h<B/F ()

in which B = 8n/C + 7 and { is an odd natural number.

The following theorem follows from Theorem 34.

THEOREM 35. 1If

jfi;<hv®ﬁi’f’1%>>ﬁ < o
k=1

k;3/2

and if‘{nk}.satisfies the Hadamard gap condition (1.2) then

o .
(1.8) holds for the TFourier series (L) of £ € L (I)(for some I).

We then show that Kennedy's Theorem 15 holds even if the

set E dis replaced by a single point and log e is suppressed from
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the gap condition (1.22); thus giving something more than

the answer to the question raiséd by him. Finally, before
concluding the chagpter, we also investigate his second question
about the validity of his theorem at the critical index and

obtain a condition on f guaranteeing it.



