
CHAPTER II

ABSOLUTE CONVERGENCE WHEN THE FUNCTION 
SATISFIES SOME HYPOTHESES ON A SUBINTERVAL

§1* In this chapter we propose to prove Theorems 9 to 14;
which give sufficiency conditions for the absolute convergence
of the lacunary Fourier series (L) with .^n^ ^ satisfying the
gap condition (l.l). These conditions are of this type i

for all functions possessing quadratic modulus of continuity
2or quadratic modulus of smoothness or L -trigonometric best 

approximations Call considered only on a subinterval of 
[,-rr , rr 3 ) tending sufficiently rapidly to zero, it is possible 
to secure the absolute convergence of their Fourier series (L).

We have seen in Chapter I that sufficiency conditions 
for the absolute convergence of the lacunary Fourier series (L), 
under different lacunarity conditions and when the underlying 
function belongs to Lip °c(I) or BVCl) or possesses a modulus 
of continuity over I satisfying a certain condition, are 
studied by Noble £23 3 , Kennedy £17 ; 193 , Mazhar £223 ,
Bojanic and Tomic C4] and others. Noble’s method is a kind of 
modification of that due to S. Bernstein £3 3 . This modific
ation is based on the fact that
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f(x)*P(x)« cos %x-dx

-K

(with a similar formula for "bn^ ) for any trigonometric 

polynomial P(x) with constant term 1 and of degree less than

(lapge". enough) and &> 0 , one can always choose such a P(x) 

so as to be small enough in L-rr , ~ S3 U [6 , irj; thus making 

|an^[ and J^n^J to depend mainly on the behaviour of f(x) 

over C- 6 , & 1 . Kennedy [17] has employed the more powerful 

method of approach to this kind of problems - developed 

originally by Paley and Wiener [243 . The method employed by 

Bojanic and Tornic [43 is completely different from these and 

it depends on various estimates of

f .

We observe that while the Noble’s method is freely used later on, 

for studying the properties of lacunary Fourier series, the 

method due to Paley and Wiener, employed by Kennedy, is still 

not used to their best. We employ this method for proving our 

results in this chapter.

§2- We need the following lemmas. Lemma 1 is a special 

case of a very general theorem due to Paley and Wiener [24 ; 

Theorem XLII* 3 • Lemma 2 is a simple consequence of the more 

general lemma quoted by Kennedy [17 ; Lemma 13 .

( r = 1,2,......... ).

k=l
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LEMMA 1. If f e :l2(j), where J :
^nk+i v-—»-00 in its! Fourier
f 6 L2 C -7T , v 3 .

LEMMA 2. Let f e 2, .L (I) and (L)

n0 = 0 , nk = ~n~k (k < o) ;

(k > o) and o $ ° °n-k (k < o).

Cn- 1
k 2 (ank- i

^nk+l “* nk ) > Qw s for 2111 k

then
OP 2'^__|Cnk| < 8 »l |fW| ^

X-CO

Proof of Lemma 2- Since an^ , b^1---** 0 as k---►oo

\\ G%|}is"a l30Unded sequence; and hence we have

l%l/ JGnkl—ao

< 00 ( 0 < r < 1 ).

If we put
CO n1;.r,x) = y r exp (inkx) (0 < r < 1)
-ao*

for all real x , then its existence is assured by (2. 

and we get

Put
bnlP

2) and

(2.1)

(2.2)

j

(2.3)

(2.4)



<Kr,x)
co .

z:k=i

12 Cank “ il3nir) (cos n-^x + is in n^x) nk
r

+ Hi‘ ibnk^cos nkx ~ isin nkx) ^

k-1

co .= cos nkx + bnk sin nk2^ r ^ • (2*4)#

k=l

Since f 6 L2(l) and (1.2) holds, therefore f G L2 C -rr , rr] 

by Lemma 1 ; and hence by a known theorem £39 ; P.87 J it 

follows that

2 , V . .
f(x) = L — limit (j)(r,x) (|x| < rr ) . (2.5)

- r—»-l

Now, on account of (2.1), (2.3), (2.4) and (2.5), we can 

apply the lemma quoted by Kennedy £17 ; Lemma lJ to obtain 

the inequality (2.2). This completes the proof of Lemma 2.

LEMMA 3. For s G R, s > 0 , if s < |nk| then

n/s
j* sin2|nk|h dh > *— ,

o
or more generally

tr/s
J sin2i In^lh dh >-p-1 §■ ,

o
where | G N.



Proof of Lemma 3

9 A

7r/ s
sin2 (nk|h dh - 1

nk|

( |nk[/s )?r

sin^ t dt

[|nk|/s] v
1 1
S 1 + [K|/=]

J sin t dt

TTi -tei/fJL, l sln2 t dt

1 + Dnkl/S]
j Si,

112=! s *2 *2 7T4s ’

using

1 ^ Dnkl/sJ £ l^l/8 < [lnkl/sJ+ 1 ’

where [ J denotes the integral part.

Also.
n/s (1%1/s) 7T

sin2-® |nk|h dh

nr
S' • 28 , .. sin t dt

0%1/s ]
[Ki/s]

n
2 0sin t dt

1 +
o



5J U

V 1 .1 .2$- 1 .21-3 
s 2 2{ 21-2 v

TT
2t+1 s

This completes the proof of Lemma 3.

Proof of Theorem 9. Put nn = 0 , n,, 

1

n-,lC ^ ^ ^ ’

Jn-k 2
(%iv “ il3nk) & > o) and cnv = Gn Ck < o). We% " ^.k

assume throughout, without loss of generality, that (2.1) holds. 

In view of (l.l) this can he achieved, if necessary, by adding 

to f(x) a polynomial in exp (inkx), a process which affects 

neither the hypothesis nor the conclusion of the theorem.
Wow, put

g(x) = f(x + h) - f(x - h) (2.6)

and
= 2i Cn^ sin %h .'It

(2.7)

aj$Then |C^| < 2jcn^| and hence by (2.3) we have

co .
Hisi

nl3
< oo ( 0 < r < 1 )■ (2.8)

-oo
Put

;(r,x) = 'y fyy r k exp (o < r < 1) (2.9)
—co

for all real x; then its existence is assured by (2.8) and

we have
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(jKr,x + h) - (|)(r,x - h)

* Crik ^ (exP (^nk(x+h)^- exp(ink(x-h))^

*~Z~ ao >s *

CO
n-kCn r exp (in^x) 2i sin nkh

-oo

= g(r,x).

This identity, together with (2.5) and (2.6) gives 

i g(x) = L2 —■ limit g(r,x) ( |x| < tr ) . (2

It follows from (2.1), (2.8). (2.9),(2.10) and Lemma 2 that

00 2 C 2* ' < 8 6 1 \ |g(x)| dx

ni^i (2

00 X
Hence hy (2.6) and (2.7) we get

4^) Jcnk| sin2|nkjh < 8 I **(x - h) - f(x - h) | dx

k.T I

in which the summation is over values of k such that 

n^/2 <|nk|<nT ( T 6 N ) .

10)

11)

(2.12)

Integrating both the sides of (2.12) with respect to h over 

(0 , 2m/ nij, } , we get
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2 ir/nT

y-|Cnk| \ sin2 |nk|h ah

k,T

2ir/nj

< 2 $>:
J dh^ £|f(x+h) - f(x-h) |'

dx I • (2.13)

low, "by Lemma 3, taking s =(nj / 2) in it, we get

2v/nn
j" sin2 In^h-db. > g—j- as |nk| >(nT / 2).

Then from (2.13) we get

^X>>/^ f ^<2>Cew2-
k,T

Therefore

Kl ^c(6) ( C0(2 (l / nT » f » O)

k,T

(2.14)

using 60(2) ( A/n , f , l) < G( A) ' U)(2) C !/n » f > l)

for A > 0 , where C(S) and C(A) are constants depending 

on & and A respectively.

low let p be a positive integer. Either the set of 

integers k for which 2p < |n, | <_ 2? is empty or there is



38

a member of this set, say T = T(p) , which has largest 

modulus, and in the later case the set is included in the 
set of k for which n™ / 2 < |n, j < . Thus, in either

. 2 ----, 2C%i - 1^1

k ,T

1 0(8) ( Ct){2)(l/nT , f , I) )2 

< C(6) ( 0)(25(1/2? , f , I) )? 

Therefore by Cauchy's inequality

case we hare

S? < InJ s. ^+1

•k
£. lO(z*Cl/2P , f , l) ,

£ < In*I i sP
+1

and hence

CO 00 r t \ /-T|c%| < 0-^8) 10(2>(V25 , f , i)-$ z , (s
*=ao ' p = lP = 1 

1/2where 0-^(5) = ( C(<5)) • But

C0(2) (l/n , f , I) / >0

.15)
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for all n and. form a decreasing sequence, hence on account 

of (1.13) and Cauchy5s condensation test, the series on the 

right hand side of (2.15) converges. Therefore

co . Cnk| < oo
-CO '

giving (1.5) and hence the Theorem.

Remark. With I = C-tt , ir 3 and without the gap condition 

(l.l), Theorem 9 is Theorem 6 due to Szasz.

Proof of Theorem 10. We have C1 j Appendix <§7 3

S
(2)
n

(f , I) < C1« ti)(2)(l/n , f , i)

and

,(2) n-i
Cl)'" 6/n, f , I) < C2i , I),

where C-j_ and C2 are constants depending on xQ - 6 , x0 + 6

and the norm of f. We also have C2 ; P.160 3 : if un > 0 ,

v >0 ; {%$ and {vn} "both are decreasing as n—>-co,

un < C vn and vn <(G/n) » then

,00-. <X> ■

^ (un / Vn ) and (yn / Vn )

n-=i n=i
hoth converge or diverge together. Since (l/n i f i ^0

(<p\
and E^ (f , I) are non negative and hoth form a decreasing 

sequence, in view of these quoted results Theorem 10 is
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obviously proved.

Proof of Theorem 11. Let £nk y (k 6 Z) and {| (k 6 Z)

be as in the proof of Theorem 9. Assume again that (2.1) 

holds. Put

tg(x) = ]T JM n(-1) ( j ) f (x + (2j i)h) (2.6)

and
* . J

Cnk - Cnk exp (-ink l h) (exp(2inkh) - l)

2^°nk exp(~inkjfh) (-1) exp(ijf(nkh-v/2))sin^nkh. (2.7)

Then £ 2 |Cnk| and hence by (2.3) we have

£i*i n.

-co
Put

oo

lkl

(r,x) = 'y <£ r k' exp(inkx) ( 0 < r < 1 ) (2.9)

< oo ( 0 < r < 1 ). (2.8)

-CO

for all real x , then its existence is assured by (2.8) and 

we have

^r“V(-l/~3( j ) $(r , x + (23 -f)h)
3=0 &

~ X>>' M> ( Xl^k exp Cink (x+ (2 j - j2) h)) 1

j=° -°o
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091 | nk | f $, l«3 p \
°%*r . exp(inkx-ink i (-1) • (f) exp(inkj2h)^

3=°

QQ j | | y. fcCj- • r . exp (inkx)*exp (-ij?nkh) (exp (2inkh) ~l)
— ao1 *

02-. * 1%I
> Gnk r exp (inkx)
—CO

= g(r J x)

This together with (2.5) and (2.6) gives

g
(x) = L2—limit g(r , x) C lxl 1 70* (2.10)

It follows from (2.1), (2.3) , (2.9) , (2.10) and the

Lemma 2 that

4> W ^*"*1 f | | “^2|Cnk| <8 8 1 |g(x) | dx.
— CO t

(2.11)

Hence by (2.6)' and (2.7) we obtain

£ly'. isr ^ inkih

k;T

£8 S’"1 f (-1)^ ^(f) f(x+(2j-^)h) | dx, (2.12)
J iafl 
I

sjzt

3=0

where ]T^ has the same meaning as that in the inequality
k.T

(2.12). Further, by Lemma 3 , talcing s =(nj / 2)in it, we have
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27r/nT
\ sin2^|njJ.jh dh > —jp— as IrijJ >(nT / 2).

J 2 »IViO x

Using this alongwith (2.11) , replacing (l/n , f , i)

by COj^ (l/n , f , i) in the proof of Theorem 9 and 

proceeding analogously, this theorem is proved.

Remark. With J? = 1 , Theorem 11 is Theorem 9. With I = C-tr , n 3 

and without the gap condition (1.1) Theorem 10 is Theorem 7 

due to Steckin.

For proving the rest of the results of this chapter we 

need the following lemmas. Lemma 4 is due to Steckin C32 ; 

Lemma 2 J .

LEMMA 4. If Ujj > 0 for all n S I , un^ 0 and if the

function F(u) is concave, increasing and such that F(0)=0, 

then

°e~, /
> , F(un) < 2 > F ( 
Tl=l 4"“rr*

% + %+l

n
n=i

LEMMA 5. Under the hypothesis of our Lemma 2 we have

•-------- 1 2 / (2) \ 3J> , |Cnkj < C(5)(^W (l/np , f , l) J , (2.16)

inkl i“p

or more generally



(2.17)
____2 / (2) \2> [Cn^l <0(2)^^ (l/Dp,f,l)J ,

l“kl ^"p

and

_< , ,2 /e. ( (2). s \2^ |Cnkl < CCS) (e^ <f , I) j ,

lnkl

where G(6) is some constant depending on 6.

(2.18)

rjw

Proof of Lemma 5. Let g(x) and Cnk "be as in (2.6) and

(2.7) respectively. Then proceeding as in the proof of Theorem 9 

we shall get the inequality (2.11). Using the definition of 

g(x) and (£k , we obtain from (2.11)

CD

•CO

4Z!lCnkrsln2lnklil ~ 8 If(x+h) “ f(x-h)|' dx.

X

(2.19)

Integrating both the sides of (2.19) with respect to h 

over (0 , v/rip ) , p 6 N , we get

(2.20)

Now, by Lemma 3 , talcing s = np in it, we have
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\ sin2 In^lh dh > -21. if |nk| > n3

%J S ir
0

Therefore, from (2.20), using

'(*)

( A> o

Gi/2^(A/n , f , i) < C(A) (x)^ (l/n 

, C(A) is a constant depending on A

, f , i) 

), we get

|=nk|2 < 8 6’1 ( W(Z) (it / np , f , l) f
!%l > np

'(o^kl/llp , f , I )

from which (2.16) follows.

t
Further, if we let g(x) and Cn^. to he as in (2.6) 

and (2.7) respectively then proceeding as in the proof of
tTheorem 11 we shall get the inequality".(2ill) • Again, hy 

Lemma 3, taking s = np in it, we get

Vnr

sin2*|nk|h dh 7T
2»+1nr

if |nk| > np (**)

Using this alongwith (2.11) and proceeding analogously as 

as in the proof of (2.16), the inequality (2.17) is proved.



Finally, let

= ^> <% • exp(imx)

-nB
(2.21)

be any trigonometric polynomial of order not higher than 

rip (p 6 N). If we write

T“P
(r,x) = y.. ' ^ r'm' exp(imx) ( 0 < r < 1 ) (2.22)

for all real x, then since S L C-ir , vj it obviously

follows that

Put

and

Ai
k

2J —limit 
r—*~1

THp(r , x) ( |x •

vl (2.23)

:) = f(x) - (2.24)

, if k # ns and k| < np ,

j °n3 ~ °^rig , if k = ns and |k| < ;

0 , if k * ns and |k| > np ,

V. cn ns , if k » ns and W >«p • (2.25)

Then, for |k| > np , |1 3 0 if k # ns and IA^| = jGn |

if k = ns . Hence by (2.3) we have
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V* Uk| r*k* <00 ( 0 < r < 1 ) , (2.26)

-oo

and if we put

CD I v I
g(r,x) = S A-k- r ezp(ikx) ( 0 < r < 1 ) (2.27)

' / | Jx *

-oo

for all real x, then its existence is assured by (2.26) 

and we get

npop| I nk I y, j m t<j)(r,x)~ Trip(r,x) =5ZGnk r exp(inkx) - r exp(imx)

-Up— OO

OO

Ajj. r exp(ikx)
— DO

= g(r,x).

This, together with (2.5), (2.23) and (2.24), implies

— limit g(r,x) C Ul £ O (2.28)
i*—»-l

Now, on account of (2.1), (2.26), 

apply the lemma quoted by Kennedy

CO

/ JAkl
-oo

(2.27) and (2.28) we can 

C17 ; Lemma 1J to obtain

2
dx . (2.29)

Therefore, from (2.24) and the definition (2.25) of Aj^ , 

we get
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--- * 2 r 2jc^j < C(6) l |f(x) -Tnp(x)| dx . (2.30)

I I ~ ^ X
Since (2.30) holds for arbitrary trigonometric polynomial 

T^(x) of order not higher than np , we get the inequality

(2.18). This completes the proof of Lemma 5.

Proof of Theorem 12. Let nQ = 0 , nk = ~ n (k < o) ;

0no = 0 ’ °"k = t<5nk “ ittojP <* > o) and 0^= ^_k (k < _o).

We assume throughout, without loss of generality, that (2.1) 

holds. In view of (1.1), this can he achieved, if necessary, 
by adding to f(x) a polynomial in exp(inkx), a process which 

affects neither the hypothesis nor the conclusion of the 

theorem. Then putting

2
l%| > tip

in the inequality (2.16) of Lemma 5, we get

1C (W(2)d/np , f , I))P, (2.31)

where C is some constant depending on 6.
' i2Wow, applying the Lemma 4 with uk = J Pnj^ 1 ^ 6 and

and F(u) = u^^ , we obtain using (2.31)
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oo

yi ic%i = xi i°%ijk!=x

CO

=2 5Z < ki;k*l

oo^ 4 XI f(r /k)

k=l

OO= 4XZ (rnk/k)

k = l

P/2

oo

4 21 (<70
k-l

CO

<0.7"(WC2)(Vnklf ,I))V
kXT 7

P /, p/2
k'

< oo

on account of (1.19). Therefore (1.6) holds and this completes 

the proof of Theorem 12.

Remark. With p = 1 , I = [I-tt , ir J, without the lacunarity 

condition and taking -^n^ as an arbitrary sequence of 

natural numbers, this theorem reduces to Theorem 8 due to 

Steckin. Thus, Theorem 12 tells us that if {n^J. satisfies 

(l.l) and if (L) is a Fourier series of f then (L) converges 

absolutely even when the hypothesis in the Steckin’s Theorem 8 

is satisfied only in a subinterval of t-rr , 7r ] .



Proof of Theorems'13 and 14. Applying the inequalities 
(2.17) and (2.18) instead of the inequality (2.16) in the 
proof of Theorem 12 and proceeding analogously, we get 
Theorems 13 and 14 respectively.

Remark. With j? = 1 , Theorem 13 gives Theorem 12.

Rote. Since Cl/2* (6 , f , l) and (S , f , i)
r

are non-decreasing functions of 6, we have

£t)(2)(l/nk , f , i) 1 6j(2)CVk , f , i)

and
6)|2> (Vn,, , f , I) < (0j2) (Vk , f , I) '

for all k £ I. Therefore it may be noted that Theorems 12 
and 13 generalize Theorems-9 and 11 respectively.

Further, the set of all the trigonometric polynomials 
of order not higher than nk contains the set' of all the 
trigonometric polynomials of order not higher than k. Hence

{(I . ,2 \ 1/2 *) ___ _
)f(x) -Tk(x)| dxj Jc:

2 \l/2|f(x) - Tnk(x)| ^ J

(n) (2)giving (f , I) < E^. . (f , I) for all k 6 1. This

shows that Theorem 14 generalizes Theorem 10



It is quite natural to ask now whether the subinterval 

I in our results can be replaced by a subset E of C-w » it 1 

of positive measure. We investigate this problem in the next

chapter


