CHAPTER IT

ABSOLUTE CONVERGENCE WEEN THE FUNCTION
SATISFIES SOME HYPOTHESES ON A4 SUBINTERVAL

§1, In this chapter we propose to prove Theorems 9 to 14;
which give gufficiency éonditions for the absolute convergence
of the lacunary Fourier series (L) with {my } satisfying the

gap condition (1.1). These conditions are of this type &

for all functions possessing quadratic modulus of continuity

or quadratic modulus of smoothness or L2-trigonometric best
approximations (all considered only on a subinterval of

(=7 4 m3) tending sufficiently rapidly to zero, it is possible

to secure the absolute convergence of their Foufier series (L).

We have seen in Chapter I that sufficiency conditions
for the absolute convergence of the lacunary Fourier series (LQ,
under different lacunarity conditions and when the underlying ,
function belongs to Lip «(I) or BV(I) or possesses a modulus
of continuity over I satisfying a certain condition, are
studied by Noble [231, Kennedy [17 ; 193, Mazhar [22],
Bojanié and Tomic [4] and others. Noble's method is a kind of
modification of that due to S. Bernsteln[37] . This modific-

ation is based on the fact that
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(with a similar formula for bnk ) for any trigonometric
polynomial P(x) with constant term 1 and of degree less than
min.{nk STy Dy T qé}.. He shows that given n € N
(large" enough) and & >0, one can always choose such a P(x)
so as to be small enough in [-mr , -~ 8IY LS , m3; thus making
lankl and lbnk1 to depend méinly‘on the behaviour of f(x)
over [~ & 4, 81 . Kennedy [17] has employed the more powerful
method of approach to this kind of problems = developed
originally by Paley'and Wiener [24] . The method employed by
Bojanic¢ and Tomic [4] is completely different from‘these and

it depends on various estimates of

-r

W ='-%-;Z oy (| omy | * oy | ) (2= 1250000000
k=1

We observe that while the Noble's method is freely used later on,
for studying the propgrties of lacunary Fourier series, the
method due to Paley_apd Wiener, employed by Kenngdy,ris still
not used to theiyibesti We employ this method for proving ouf

results in this chapter.

82. We need the following lemmas. Lemma 1 is a special
case of a very general theorem due to Paley and Wiener {24 j
Theorem XLII'J . Lemma 2 is a simple consequence of the more

general lemma quoted by Kennedy [17 ; Lemma 11.
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LEMMA 1. If f ¢ LZ(J), where J is an interval, and if
(nk+1 - nk)f-ﬁ»oo in its Fourier series (L) then

fe I? L7,y T].

; ! _ o

LEMMA 2. Iet £ € L (I) and (L) be its Fourier series. Put
a o o 1 .

ng =0, m = -n_ (k<o),Cno~0,an-§(ank-1bnk)

(k >0) and Cp =Cy (k<o). If{m}]satisfies (1.2) and

=k
ka+l - my ) > 8m 6“1 for all k (2.1)
then
w, 2 -1 2 -
E lcnkl <88, |t ax . (2.2)
-0
1

Proof of Lemma 2. Since amy s bnk»——+'0 as k—ro00 ,

{‘an[}is;a bounded sequencejand hence we have

l;ﬂk'

lcnk‘ r < (0<r<1). (2.3)
—c0
If we put )
| =2 E :
¢(r,x) = Cp, T exp (imx) (0 < r < 1) (2.4)
2. .

for all real x , then its existence is assured by (2.3)

and we get
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Since £ € I2(I) and (1.2) holds, therefore f£ & L L=m , )
by Lgmma 1 3 and hence by a known theorem [39 ; P.87] it

follows that

o A :
f(x) = L = limig ¢ (r,x) (x| <7 ) . (2.5)
T

Now, on account of (2.1), (2.3), (2.4) and (2.5), we can
apply the lemma quoted by Kennedy [ 17 ; Lemma 11 to obtain
the inequality (2.2). This completes the proof of Lemma 2.

LEMMA 3. For s €R, s >0, if s < [m| then

rls ]
sinzlnklh dh > --g—s-' )
J ,
or more generally
n/s

o
sin®’ |n | dn >;ﬁﬁi L,

<

where f € N.
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Proof of Lemma 3.
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t dt
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g + nk‘/sj ‘g

- [!nkL/S in® t dt
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using _
1< [Iml/s] <imel/s < [ l/s ]+ 1,
where [ ] denotes the inteéral part.

Also,

/s (nkl/s)”
g 24 lnklh dh = "T”"T*~ J’ t dt

N 1 [Inkf/% .g
1+ [inkt/éj

=
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This completes thé proof of Leméa 3.
Proof of Theorem 9. Put n, =0 , n = =-n_ (k < o)
Oy, = %-(éﬁk - ib5k> (k > 0) and Cpy. = Cn_, (k< o).

Kk

e
o2

Cno =0,

We

assume throughout, without loss of generality, that (2.1) holds.

In view of (1.1) this can be achieved, if necessary, by adding

to f(x) a polynomial in exp (imx), a process which affects

neither the hypothesis nor the
Now, put v

g(x) = f(x + h) ~ f(x - h)
and ’ |

* (] > -
an = 21 an sin o, h .

*
Then [anl < Zlcnk] and hence by (2.3) we have

(0<r<1y.
Put

‘ |y |
gr,x) = E *k r & 0<<r<l)

- 00

exp (inkx)

for all real x; then its existence is assured by (2.8)

we have

conclusion of the theorem.

(2.86)

(2.7)

(2.9)

and



§(ryx + 1) = Olryx = B)

i lnkl pr <mk(x+h)>- exp(ln (x~h>>
- (0

oo

E exp (inyx) 21 sin nyh

— 00
= g(r,x).
This identity, together with (2.5) and (2.6) gives

g(x) = Lz-— limit g(r,x) (lz] € ). (2.10)

© P>

It follows from (2.1}, (2.8), (2.9),(2.10) and Lemma 2 that

o0

Z{an! g 6] o - (2.11)

”m

Hence by (2.8) and (2.7) we get
4E lcnk| sin|ny |h ¢ 8 8.7\ [f(x = h) - £(x = n)| ax (2.12)
-4 A

in which the summation is over values of k such that

Nep/ 2 g_(nk{gnT (Texn)

Integrating both the sides of (2.12)~ with respect toh over

(O ; Zn/nT> s we get
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Z{cnk] cin® Imy |0 dn ;
k,T 3
21r/n-_fx
- 2
<287 S dh( glf(zﬁh) - £(x~h) | d.x:) . (2.13)
' 0 T | '

Now, by Lemma 3, taking s =(np / 2) in it, we get

27:'/11T
2 T
i h-dh > =—— as {n > 2).
65 sin lnkl 2 np l kl .._(HT/ )

Then from (2.13) we get

Zicnk <251 2#(@(2)<2”/HT’f’I)>

kT

Therefore

Z Ianlz < C(8) <(‘_)(2?<1 /g, T, 1)> : , (2.14)
k,T S |

using (L)(Z)(A/n , £, I) <0(A) '(A)(2)(1/n s Ty 1)

for XA >0, where C(8) and C(A) are constants depending -

on & and A respectively.

Now let p be a positive integer. Either the set of

+ .
integers k for which Zp < |nk] < Zp 1 is empty or there is



a member of this set, say T = T(P) , which has largest
modulus, and in the later case the set is included in the
set of k for which ng/ 2 ¢ lnk[ < ng . Thus, in either

case we have

=" Jwl® < > |

2® < |n,| 3.2941

< c(s) (w(Z) (1/11'1' y Ty I) )2
: 2
< €(8) (&J,(z)(l/zp y £, D).

Therefore by Cauchy's inequality

e - oy € 6,822 WP, e, D,

P < |y | g,zp+1

and hence
<0 2= (2) /2
E |Orye| < C1(8) E W@, £, D2¥°, (2.18)
=% ~ Tpa1

where C1(8) = (c(é).)yé. But

w(Z)(l/n y£,D /¥ 20



for all n and form a decreasing sequence, hence on account
of (1.13) and Cauchy's condensation test, the series on the

right hand side of (2.15) converges. Therefore

‘Z_:IC%! < @

-0

giving (1.5) and hence the Theorem.

Remark. With I = f-mr , 71 and without the gap condition

(1L.1), Theorem 9 is Theorem 6 due to Sz3sz.

Proof of Theorem 10. We have [ 1 ; Appendix ¢§71

52, 1< o) (.0(2)(1/11 , £, I)
and
n-1
&)(2)(1/ns f, I) S.Cz% E Eliz)(f s I),
k=0

where Cy and Cy are constants depending on Xg - & 5 x5 + 0
and the norm of f. We also have [2 ; P.1601: ifu, >0,

A 203 {un} and {vn} both are decreasing as n—»w,

w, < Cvy and v, <(0/n) > k ouk , then

Z(un n) and Zo.:@n/f

n=1

both converge or diverge together. Since (,{)(2) Q/n, £, I)
and EI‘;Z) (f , I) are non negative and both form a decreasing

sequence, in view of these quoted results Theorem 10 is



obviously proved.

Proof of Theorem 1l. Let {m} (k € 2) and {Cp } (k € 2)

be as in the proof of Theorem 9. Assume again that (2.1)

holds. Put
1 1
g(x) = § («1) ' ( ) rlx + (23 =-£)h) (2.8)
j:O ’
and
*
Cn, = Cny exp (~ing {h) (exp(2inh) - 1)

it

7
chnk exp (~iny fh) (~l)ﬂexp(il(nkh~n/2))sinﬂnkh. (2.7)

Then lczkl < 2I|cnk] and hence by (2.3) we have

0 [n
% \Cﬁkl r 5! < o (0<r<i1). (2.8)_'_
-0 :
Put . [ |
n
glr,x) = E C:k r k exp(inkx) (0<r<1) (2.9)'
e .

1]
for all real x , then its existence is assured by (2.8) and

we have

2 (=1) f=3 j’) ¢(r , x + (23 -9)h)

3=
Z(—l)f 3(}) (chk exp(ink(xf(zj—ﬁ)h)))
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: exp(inkx~ink‘2Iﬂ'(ZZ:(-l) * (;? exp(inkah)>

>4 j=o

{
. exp (imx)-exp(~ifn,h) (exp (2iny h) ~l>

H
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g

H
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glr , x) .
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This together with (2.5) and (2.6) gives

2 t
g(x) = L —limit g(r , x) Clzl ¢ 7). (2.10)
r—>1

1 ] .
Tt follows from (2.1), (2.8) , (2.9)' , (2.10) and the
Lemma 2 that

i lcflk‘z <8 %‘,‘15 lg(x)lzdx- | (2.11)"
—roe) - T

! 1
Hence by (2.6) and (2.7) we obtain

PN 2
. ST ol ste® Ingln
k;T

- £ =J 2
<8 6.15 [Z (-1)2 (3?) £(xr(23-Dn) | ax, (2.12)
- -~ I * . »

j=o

where has the same meaning as that in the Inequality
k.T
(2.12). Further, by Lemma 3 , taking s =(np / 2}in it, we have



2n/ny
S sinqunkih dh > —" as [n | 2(q / 2).
o 2 'nT

1
Using this alongwith (2.11) , replacing (,_)(2) Q/n, £, 1)

by w§2) Q/n , £, I) in the proof of Theorem 9 and

proceeding analogously, this theorem is provede.

Remark. With f= 1 , Theorem 11 is Theorem 9. With I =(~7 , 7]

and without the gap condition (1.1) Theorem 10 is Theorem 7

due to Stetkin.

For proving the rest of the results of this chapter we

need the following lemmas. Lemma 4 is due to Steckin [ 32 ;
Lemma 2 J .
LEMMA 4. If uy >0 for all n €N , up O and if the

function F(u) is concave, increasing and such that F(0)=0,

then

o0 o Up *+ Upgq * oeeeeennns
> Fluy) £ 2 E F< n > .
n=1 n=1

LEMMA 5. Under the hypothesis of our Lemma 2 we have

2
> o <o (0P my L2, ), e

Ime| 2y

or more generally
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Z ‘anlz < ¢(8) (('d(lg)@'/np y £, I) )2 , (2.17)
lnk‘ Z,np ’

and
2 (2) 2
z ‘ lcn j gc® (e, (£, 1) , (2.18)
k . P
lnk‘ Z.np
where C(8) is some constant depending on &.

Proof of lemma 5. Let g(x) and cﬁk be as in (2.6) and

(2.7) respectively. Then proceeding as in the proof of Theorem 9
we shall get the inequality (2.11). Using the definition of
g(x) and C;k , we obtain from (2.11)

4> " |ony | sin®Imgln < 8 87| [£(x+h) - £(z~h) | ax. (2.19)
- . I 4
Integrating both the sides of (2.19) with respect to h

over (0 , /1y, ), p EN , we get

00 o W/Tl-p
4 Zlcnkl g sin® |n | an
OO
o
-1 n/np 2
<88 j dh( flf(xi-h)-f(x-h)l a;:). (2.20)
o T

Now, by Lemma 3 , taking s = np in it, we have



‘n‘/np

. 2 . .
S\ sin Inklh ah > Zg;f if || > np . (%)

Y :

Therefore, from (2.20), using

(2)

W2 aAm, £, D < ed) (ny £, 1)

( A>0, C(A) 1is a constant depending on A ), we get

L > [cnk[ <8§ gp(w(2)(n/np,f,1))2

lnk > np

- 2
8 ﬁlf-ﬁ%~c'(w(2?<1/np , £, 1’))

74

from which (2.16) follows.

L
Further, if we et g(x) and Cﬁk to be as in (2.6)
]
and (2.7) respectively then proceeding as in the proof of

) , ¢ ‘
Theorem 11 we shall get the inequality . (2:11) . Again, by

Lemma 3, taking s = np in it, we get

w/ ny,

S sin®!|n, |h an > W ir oyl 21y . (x %)
np
]

. ,
Using this alongwith (2.11) and proceeding analegously as

as in the proof of (2.18), the inequality (2.17) is proved.
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Finglly, let

Tp
Tn, (x) = En €, - exp{imx) (2.21?
-Tp

be any trigonometric polynomial of order not higher than

n, (p € N). If we write

_ Nyp
Tn_p(r,x) = Z <y rlm' exp (imx) (0<r<l1) (2.22)

2
for all real x, then since “.Tnp € L l=m, m] it obviously

follows that

Tnp(x) = 12 —limit Tnp(r yx) Clzl ¢n). (2.23)

1
Put
glx) = £(x) -~ Ty (x) (2.24)
- T
and
A =< Cng = %ng ifk=nsandtkl_<_np;
X
0 y if k # ng and lk|>np,
\cns y if k = ng and |kx| > n, - (2.25)

Then, for |k| >np , |&] =0 if k# ng and [&|=|cy|

if k = ng . Hence by (2.3) we have



= ]
> lagl v < oo (0<r<1), (2.26)
-0 .

and if we put

[sa)
g(r,x) = ZAk rik! exp(ikx) (0<r<1) (2.27)
-

for all real x, then its existence is assured by (2.26)

and we get

0 n Tp
O(r,x)= Tnp(r,x) :Z an :r'l k| exp(inkx) - Zocm r!m!exp(imx)

....np

i

[oe)
Z & rlkl exp(ikx)
-0

glr,z).

i

This, together with (2.5), (2.23) and (2.24), implies

g(x) = 1? — linit g(r,x) Clxl ¢ 7). (2.28)

S e ot B

Now, on account of (2.1), (2.26), (2.27) and (2.28) we can

apply the lemma quoted by Kennedy [17 ; Lemma 1] to obtain

= 2 - 2
E |4 <8 st S lg(zx)] ax . (2.29)
-0 .

I

Therefore, from (2.24) and the definition (2.26) of Ay ,

we get
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2 2
> om| < @ S l£G) = Tp ()] ax . (2.20)

lnk! Z,np T

Since (2.30) holds for arbitrary trigonometric polynomial

Tnp(x) of order not higher than n, , we get the inequality

(2.18). This completes the proof of Lemma 5.

Proof of Theorem 12. Let n, =0, m =-n_ (k<o) ;

Chy =0y COpy = %(?nk - ibnk) (k > 0) and Cp,= Cp

(k < 0).
0 k

We assume throughout, without loss of generality, that (2.1)
holds. In view of (1.1l), this can be achieved, if necessary,
by adding to f(x) a polynomial in exp(imx), a process which
affects neither the hypothesis nor the conclusion of the

theorem. Then putting

gl 2 Np
in the inequality (2.16) of Lemma 5, we get
/2 (2) 4
rip £ C (w (l/np s £y 3:)) , (2.21)

where C is some constant depending on §.

.2
Now, applying the Lemma 4 with w = |Cp | (x € z) and

u{:3/2

and F(u) = , we obtain using (2.31)
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on account of (1.19). Therefore (1.6) holds and this completes

the proof of Theorem 12.

Remark. Withg =1, I =[~r, 7], without the lacunarity
condition and taking {nk} aé an arbitrary sequence of
natural numbers, this theorem reduces to Theerem 8 due to
Steckin. Thus, Theorem 12 tells us that if {ny} satisfies
(1.1) and if (L) is a Fourier series of f then (L) converges
absolutely even when the hypothesis in the Stelkin's Theorem 8

is satisfied only in a subinterval of [=-m , 7].



Proof of Theorems 13 and 14. Applying the inequalities

(2.17) and (2.18) instead of the inequality (2.16) in the
proof of Theorem 12 and proceeding analogously, we get

Theorems 13 and 14 respectively.

Remark. With { =1 , Theorem 13 gives Theorem 12.

Note. | Since &)(_2), ¢, f, I) and &)g_(z? @, f, D

are non-decreasing functions of &, we have

(2)
W (l/nk s Ty I) < w(z?(l/k sy £y I)
and
2 hY
Q); Yoy , £, 1) < 0)1(2)(1/1: y £, 0D
for all Xk € N. Therefore it may be noted that Theorems 12

and 13 generalize Theorems 9 and 11 respectivelye.

Further, the set of all the trigonometric polynomials
of order not higher than n,° contains the set of all the

trigonometric polynomials of order not higher than k. Hence

{(f‘f(x? -'Tk(X)FdX)l/z}c{(jlf(x) - Tnk(x?lzdx )l/z}
T ‘

(2)
giving Eéi)(f y I) < B .(f, I) for all k € N. This

1

shows that Theorem 14 generalizes Theorem 10.



It is quite natural to ask now whether the subinterval
I in our results can be replaced by a subset E of (-7 4, 71
of positive measure. We investigate this problem in the next

chapter.
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