CHAPTER TIIT

\
ABSOLUTE CONVERGENCE WHEN THE FUNCTION
SATISFIES SOME HYPOTHESIS ON A SUBSET OF
POSITIVE MEASURE

é1. Concerning the study of the properties of lacunary
‘Fourier series (L), when the underlying function satisfies

some hypothesis on a subset E of [~m , T1of positive measure,
Noble has mentioned in his paper [23] that the subinterval in
some of his results could be rep}aced by a subset E provided
his methods are modified. As we have noted in Chapter I,
Kennedy [19] investigates this possibility and proves that
Noble's Theorem 1(a) holds when the hypothesis is satisfied in
a certain subset E provided a little more stringent gap
condition is considered. We continue the study in this direction
and propose to prove Theorem 16 to 22 in this chapter. The
hypothesis on the function in these theorems is again in terms
of either the quadratic modulus of continuity or the quadratic
modulus of smoothness or the L2~ trigonometric best approxim-
ation. to f - but now they are considered only on an arbitréry
subset E of positive measure, net necessarily a subinterval.
Consequently, for securing the absolute convergence of its
Fourier series (L), we assume that the sequence {my} in (L)

satisfies the condition By - a gap condition stronger than
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(1.1) but still weaker than the Hadamard gap condition (1.2)
(In fact, it is known [ 2 j B.234] that any sea_quenc;e satisfying
the Hadamard gap condition (1.2) satisfies the condition By
but the converse is not true). It can also be noted that,

in .‘view of the corollary to the Zygmunds theorem [2 § P.241]:
'11f the Fourlier series of a function f dis lacunary with

{ny} satisfying the condition By then > :;’1<a§k + bgk) < o,

. 2 cr s
that is, f €L L[~m, 7] 'Y , it is not necessary to assume

fe Lz (E) in the hypotheses of these theorems.

We remark that for proving these theorems, we establish
a Bessel type inequality (3.2) together with some more
inequalities (refer : Lemmas 2 aﬁd 3) involving either the
guadratic modulus eof c;ontinuity or guadratiec modulus of
smoothness or L2 - trigonometric best approximstion, over E

=~ all of which have intrinsic interest in their own right.

82. We need the following lemmas. Lemma 1 is proved by
Zygmund, though not explicitely stated, assuming that the
sequence {np} of natural numbers satisfies the Hadamard gap
condition (1.2) ; but it .is easy to see from the proof there

that we can as well take {nk} satisfying the condition By .

LEMMA 1.[39 ; P.121]. Let EC=[~7m , m]be a set of
positive measure, {m} satisfy the condition By and ny = 0 ,

n =-n_ (k € 0). Then there exists VY € N with the
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property ¢ if {Cy}(k € Z) is any sequence of complex

numbers, then for T > VY we have

T
[ 8ol _<_J.52_L Z !c"kiz , (3.1)

where

in which the summation is over values of p and q such

that
V<ipl, lal T and p#q.

LEMMA 2. Let E, jm3 and y be as in Lemma 1 and | E]

denote the Lebesgue measure of the set E. Put C, = 0 ,
= L aﬁ - iby (k >0), C_=2C (k < 0) and suppose
G = 2\ k Kk T Y-k

that G = O for all k such that |k| < ¥V . Then

S o |? ¢ —2 I'f(x)lz dx 3 (3.2)

s & El |
and E

Zicklz <cC T’gT“ (w<2)<1/p » Ty E))z ,  (3.3)

ki>Pp

or more generally



chklg <C 2 <&)I(2?(1/p y Ty B) )2 , (3.4)

|E|
ki>P

where C is constant, and (dﬁz?(i/p sy £y E) and

(,)!52) G/p 5 £, E) are as in the hypothesis of Theorems 16

and 17 with n replaced by p.

¥

Proof of Lemma 2. We have

S gl Sl g ©<r<D) (3.5)

— 0

and if we put

® |
O(r,x) = E G T nk[ exp(inkx) (0<r<l) (3.6)
=

for all real x, then its existence is assured by (2.5)

and we obviously get

X n

O(r,x) = E <?nk COs Iyx + bnk sin nkéD r k .
k=1

Now, by a corollary to Zygmund's theorem L 2 ; P.241 7]
£fe L? L-r y, ] and hence by a known theorem [39 ; P.877]

it follows 'that

£(x) = 1° — limit ¢(r,x) Clxl ¢ 1r>. (3.7)

Cre—sl
Again, for T >V , put

T
¢ (r,x,T) = E Cp rlnpl exp (inpx) (0<r<1). (3.8)
-T
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4-25::cp rinpl ¢, r[nqiyyexp(i(npfnq x) dx
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applying the Lemma 1, where E has the same meaning
- 'P)q
as in the Lemma 1. But from (3.5), (3.68) and (3.8) it

follows that for any fixed r(0 < r < 1)
¢(r,X9T)M¢(r,X) as T»———-->~C0

uniformly in E. Therefore, from (3.9), we get

.(lQ(r,x)lzdx 2 1§i-:§::tcp12 r2lnpl . (3.10)
E had # #4



But (3.7) implies that

2
g' q)(I',X) = f(X)I dgx =0 g5 1 ——>1
E

and by Minkowski's inequality

e 2 1{2_ 0Cesm)- X}z% 1/2 I sz 1/2
(éifb( )tdx) <(§¢( )-£(x) d) +<‘§;f(x) d>

as well as

: R B |

Therefore

: 2 \1/2 2 \1/2
0 g’ (S;f(’x)] dx) ' (Egl(b(r,x)l dx) {

2 1/2 .
< (gl@(r,x) - £ (x| d}:) —>0 as r—>1.
B

This implies that

2 2
fl‘p(r,x)f dx ~——~—%-§|f(x)l dx as r—>>1.
r ' B

Hence from (3.10) we get

gff(x)lzdx > LELS g 1
E ~® "
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and hence (3.2) is proved.

Now put
g(x) = f(x +h) - f(x = h) (3.11)
and
Gp=21C sinmh . (3.12)

Then IC;;{ < 2l¢,| and hence by (3.5} we have

2
Ew | G | r‘nk| < ® (0<r<1) (3.13)

Put

o0 ‘n
glr,x) = Z c;; r xl exp (imyx) (0<r<l) (3.14)

-0
for all real =x, then its existence is assured by (3.13)

and we get the identity
glr,x) = ¢(r , x + h))-— ¢(r , x = h)
and from it together with (3.7) and (3.11) we get

g(x) = L2 - limig g(ryx) ( x| € ‘IT). (3.15)
R

%
We now apply (3.2), with C and f(x) replaced by Gy and

g(x) respectively, to get

S’ < g (s@re
b



Hence, by (8.11) and (3.12) we obtain
< 2 2 ) 2

4> 10l - sin”In|n STETJ |f(x + h) =~ f(x = h)| ax . (3.16)
- D E _ . ' .

Integrating both the sides of (8.16) with respect to h
over (0 , m/p) (p €N ), we shall have

r/p
co 2
4> ol Jsinglnk{h dh
-— 0 3
/p o
< T%T' S dh(J]f(x-f—h) ~ f(x~h)]| dx) (3.17)
o E ' ’

Now, by Lemma 3 of Chapter II, taking s = p in it, we get

/p

.. 2 T
S sin® |m |h dn >—ZE when p < [my| .

o

Therefore, from (3.17), using
&)CZ)CR/n , £, E <c(A) w‘z?@/n s £y B

( A> 0 , C(A) is a constant depending on A ), we get

5 2

(2) 2
< T%---—g-«-(@ Gsm, £, E))



from which (3.3) follows.

Further, if we put

b
g(x) = Z 0¥ j) £(x+(25~0)0) (3.11)"
J-O
and
C; = Cy exp (~inyfh) (éxp(Zinkh)-i>

2”ck exp(-ifnkh)(-l)ﬂ exp (i{(mn ~ 7/2)) sinfnkh y (3.12)‘

then lCZ] < 2g|Ck[ and hence by (3.5) we have

(e
> | G| r]nk} < @ (0<r<l). (3.13)
- oo
Put
X, % Iy ‘ 1
Cglryx) = S g o explimx) (0 <r<1) (3.14)
-0 .

'
for all real x, then its existence is assured by (8.13)'

and we get the identity

g .
g(ryx) = ZE:: (“l)q‘a(ﬁ y 0(r, x + (2§ ~4)h).

j:O

1
This together with (3.7) and (3.11) gives

2
g(x) = L = 1m:u:-i g(r,x) Clxl < 7). (3.15)'
r—>
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Then it follows from (3.13)' , (3.14)' and (3.15)' that

we can apply the inequality (8.2), with Cp and f(x)

replaced by C; and g(x) respectively, to get
@ 2 2
2
11 ¢ f|g(x)| ax .
i < e
E
In view of (3.11)' and (3.12)', we obtain from this
2t & 2 2
27 > |¢] sin™ Ingln
~00
< B J'[§f( 1ﬁ~j(i) £(x+(2j~0n) . (318
had - + - . .
S TE] = J xrhed”
E

Further, by Lemma 3 of Chapter II, taking s = p in it,

we have
/P
‘S sin2! Iy [hoan > "Tgi" when p < [my| .
o} 2 P

]
Using this along with (3.16) , replacing w(2) (le O E)
(2) : .
by wf (l/p s T, E) and proceeding analogously as in

the proof of the inequality (8.3), the inequality (3.4) is

proved. This completes the proof of Lemma 2.

Proof of Theorem 16. Put ng =0 , mp = -n_,

£

(k < 0);5 Cu =0,

Gy = %—(ank - ibnk> (k >0) , Cx = 6—1: (k < 0). We assume -



throughout, without loss of generality, that ¢ = 0 for
all k such that - |k|] <V , where y is as in the Lemma 1.

Then putting

161"
r. =
P e x

in the inequality (8.3) of Lemma 2, we obtain

@) g
rg/2§_0<w <l/Paf,E)>s

where C 1s some constant depending on E. This implies

i: Gy / P>ﬁ/2‘j’* ©

P=1

on account of (L.24).

Finally,
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$ZOO: (ifckl?!)ﬁ/%(}{z@_—rf/@-ﬁ))1..‘,6./2>

— \VikR k=P
oo
B/2 4 _
< E (?b . ';;5?2) (4 = constant)
P=1
< ® .

Hence (1.8) follows, completing the proof of Theorem 16.

Remark. With g =1, E=[«r , 7] and without the lacunarity
condition, this is Theorem 6 due to Szasz j; while g =1 , E =1
and with the lacunarity condition (L.1), this is Theorem 9 due

to the zuthor.

Proof of Theorem 17. A4pplying the inequality (3.4) instead

of (3.3), replacing w(z?@/p , £, 8 by a)f(Z) Q/p , £, B)
and proceeding analogously as in the proof of Theorem 16, this

theorem 1is proved.

Remark. With { =1 , this is Theorem 16. Withpg =1 , E = 1T
and with lacunarity condition (1.1) instead of the condition Bg

this is Theorem 11 due to the author.

Proof of Theorem 18. Observe thatb

2 \1/2
(O<2) Q/m, £, 8 = *gg_ﬁg,/n {(f{f(mh)-_f&-;h){ dx) } ‘
B

/2
¢ ot { (s Hremm-eem )i

|
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":IEI w(l/'ﬂafaE)-
Similarly; we shgll obtain

2 1/2
w_é )(l/n?f’E)s.lEl wﬂcl/n’f,E)o

Using these and applying Theorems 16 and 17, Theorem 18

follows as a corollary.

Remark. With E=[~r , w1, 8 =1 and without the gap
condit ion, the first part of this theorem is the classical
Theorem 3, due to BernS$teln, for the absolute convergence of

the Fourier series ( (f) of a function f .

We now proceed to prove Theorems 19 to 22. This requires
the sharpened form of the inequalities we have proved in Lemma 2
—iwhich is done by a slight modification in the proof. We~ also
prove a similar inequality involving the trigonometric best
approximation to f in the space I?(E). This, in turn, gives
us the condition on f in terms of thé best approximation to
ensure the absolute convergence of (L). We need the following
lemms. The inequalities (3.19) and (3.20) in this lemma are
the sharpened versions of our inequalities (3.3) and (3.4) of

Lemma 2 and their proofs are merely outlined.

LEMMA 3. Let E , {nk} and V be as in Lemma 1 and |E|

denote the Lebesgue measure of the set E. Put Cp = O ,

On, = $(amy = ibn) (& >0) 5 Cny =Cp_ (k <o) and

k



suppose that an = 0 for all k such that Ikl < Y .

Then
2
3 {anlz < T%T g(f(x)l ax ;3 (3.18)
-0 ®
2
s ki > TE[ D
>p '

Z 10111;‘2 ¢ (wﬂ(z)cl‘/np » T E)) (3.20)
|

Z lan[ < ¢ < (Z)Cf ; E)> (3.21)

2
where C 1is some constant and Eép)(f s E) is as in the

hypothesis of Theorem 22 with k replaced by p.

H
Proof of Lemma 3. We have (2.3), (2.4) and (2.4) . Now,

by a corollary to Zygmund's theorem [ 2 ; P.2411 f € LZE-W , 7]
and hence by a known theorem [39 j; P.871 we get (2;5); Then
the inequality (3.18) is infact the inequality (3.2) of

Lemma 2. Also, proceeding as in the proof of Lemma 2 we shall

obtain the inequality (8.16) with €y now denoted by Cn, .

Instead of integrating both the sides of (3.16) with respect

to h over (0, w/p) , p € N, we now integrate them over

(, 7/n,) . Then, observing that lk| >p dmplies |my| >n, ,
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in view of (%) of Chapter II we see that the inequality
(3.19) is profed proceeding as in the proof of the inequality
(3.3) of Lemma 2. Similarly, we shall also get the inequality
(3.16)' with G denoted by Cp_ . Integrabing both the

sides of (3.16)' now over @ , w/nﬁ) and observing (#%) of
Chapter II we see that the inequality (8.20) is proved
proceeding as in the proof of the inequality (3.19) and replacing

COCZ) (;L/np , T ,‘E> by (,)52) (1/np , £, E) throughout.

Finally, let ‘l‘np(x) and Tnp(r,x) be as in (2.21) and

(2.22) respectively. We shall then get (2.23). Putting g(x),
Ay and glr,x) as in (2.24), (2.25) and (2.27) respectively,
we shall get (2.26) and (2.28) proceeding analoéously. Then,
instead of applying the Ilemma quoted by Kennedy, if we now

apply the inequality (3.18) we shall get

x| >p

‘ 2 o ( - 2
E {cnk! < Tﬂjlf X) - Tnp(r,x)l dx - (3.22)
B

since (3.22) holds for arbitrary trigonometric polynomial of

order not higher than n; , we get the inequality (3.21).
This completes the proof of Lemma 3.
Remark. The inequalities (3.19) and (3.20) generalize our

inequalities (2.16) and (2.17) respectively, of Lemma 5 ,
Chapter II. Observe that in the inequalities (2.16} and (2.17)

cA
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the gap condition involved is (1.1) and the quadratic modulus
of ‘continuity or the quadratic quulus of smoothness is
considered on a subinterval I j; while in the inequalities (3.19)
and (3.20) we consider the gap condition as the condition By
but the gquadratic modulus of continuity or the quadratic modulus
of smoothness is considered on a subset E of[-m , w3 of
positive measure. It may be noted here that any sequence
satisfying the Hadamard gap condition (1.2) satisfies the

condition B, as well as the gap condition (1.1).

Proof of Theorem 19. Define {my{ (k € Z) and {Cp § (k€ 2)

as in the hypothesis of Lemma 3. We assume throughout, without

loss of generality, that an = 0 for all k such that

k] < V¥ , where Y is as in Lemma 1. Then putting

To, T :EE::: lanlg

x| >p

in the inequality (3.19) of Lemma 3, we obtain /

Dp

/2 2 B
P <G (w‘ )(l/np , T E}) , : (3.23)
where C d1s some constant depending on E.

Then, using (3.23) and (1.30) instead of (2.31) and
(1.19) respectively and proceeding as in the proof of Theorem 12,

Chapter II, this theorem is proved.
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Proof of Theorems 20 and 22. Applying the inequalities

(3.20) and (3.21) instead of the inequality (3.19), throughout
replacing w(z) (Unk s £ 5B by Q)EZ)(l/nk , £ 5 E) and

Eéi)(f , E) respectively and proceeding analogously as in
the proof of Theorem 12, this theorem is proved.

Remark. With (=1 Theorem 20 is Theorem 19.

Proof of Theorem 2l. As in the proof of Theorem 18, we have

1/2
. (x)(2)(1/nk y £, B <IEl WQ/my , £, B
and
(2) /2
Wy @my s £, 8 <8l Wy, £, B.

Hence, applying now Theorems.. 19 ana,2Q,STheorem 21 follows

immediately.
- 4 (2)
Note: 1In view of the fact that ()'“°(¢ , £, E) and

Qg2)<5 y Ty E) are non-decreasing functions of & , it may

be noted that Theorems 19, 20 and 21 are sharpened versions of

Theorems 16, 17 and 18.

Remark 1. With E = I and with the gap condition (1.1) instead
of the condition By , Theorems 19, 20 and 21 are our Theorems

12, 13 and 14 respectively. ‘



Remark 2. With (=g =1 , E=[-r, 7], without the
gap condition and taking {nk} as an arbitrary sequence

of natural numbers, Theorem 20 is Theorem 8 due to Stedkin.
This means ''if {m} satisfies the condition By and (L) is
a Fourier series of f then (L) converges absolutely evenwhen
the hypothesis in SteCkin's theorem is satisfied only in a

subset B of [~m 4 m] of positive measure.
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