CHAPTER ~ T

INTRODUCTION

1. The present thesis is devoted to the study of
certain problems relating to the order of magnitude of Fourier

coefficients, the absolute convergence and the absolute CesSro

sumability of a lacunary Pourier series,

Let £ be a 2n~periodic function, which is

Lebesgue integrable over [_'_-n ' 71:3. A lacunary Pourier series
corresponding to the function f is the trigonometric series

0o
E : (ank cosny x + bnk sinm, x) (L)
k=1
With an infinity of gaps (nk R nk+1) y where
{nkg (k € N) is a strictly increasing sequence of natural

numbers satisfying some condition, called the lacunarity

condition or gap condition or gap hypothesis, such that

(nk+1 “D) —=> ® as K e> o ; (1.1)

and

n
1
ank == jf(t)-cosnkt at
-T
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T
b, =1 ff(t)-silmkt at ,
nk -7

The numbers ay, and bn are called the Tourier
k k

coefficients of the function f.

The series
fg;m (bnk cosmy X -~ ank sinn, x) (Ll)

is called the conjugate series of the series (L).

The function

- .w®
- 1 f Py
T(x) = = 5 > an‘?% at
. Tt
T e \" 2n 7 tan(t/2) !

where W(t) = f(x + t) = £(x -~ t), is called the conjugate

function of the function f .

The theory of lacunary Fourier series has its
origin in the construction of examples of functions having
various pathological properties. The famous example of
Weierstrass of a continuous and nowhere differentiable
function (1872) is based upon the properties of the lacunary

series



o)
EE (a® cosb™x) , where 0<a <1,

n=1
b is an odd integer ¥ 3 and &b > 1 + o (refer: [10),{40] ).

In 1892 Hadamard Epj introduced the notion of lacunary
Pourier series (L), with é}ﬁc} satisfying the lacunarity

condition

zk"l >8 51 forall xen, (1.2)
K

knowvn after his name as the Hadamard lacunarity condition for
the study of functions that cannot be analytically continued
beyond their circle of convergence (see also Fabry [43 3
PSlya {32} ). F. Riesz [33} has used lacunary series to
construct a continuous function of bounded variation whose
Fourier coefficients are not.of the order o(%). For such
other examples refer [2 ; p.242) , (6], [36]. 1In fact, the
theory of lacunary Fourier series has always been not only one
of -the main tools for proving or disproving many instances

of conjectures in analysis but also a source of interesting

results in analysis since its very appearance in the year 1861,

The systematic gtudy of the properties of lacunary
Fourier series is started from the first decade of this century.
This study can be divided inmto two parts. In the first one,

the series (L) is considered as a series of almost independent
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random variables, or what is same as a series of almost
independent functions, and the properties are studied through
probabilistic methods by many well known mathematicians like
Kolmogorov, Steinhaus, Kac, Marcinkiewicz, Zygmund and
others, A survey of number of properties in this direction
with an extensive bibliography cen be found in {16] and

in [83 « The second part roughly constitutes the study of
the following general problem of Mandlebrojt {éi] :

assume that {n,} is given, suppose we know a property of

a function given by (L) on an interval, or in a neighbour-

hood of a point, or on a perfect set without interior-

points; to what extent does it giver information sgbout

(L) on the whole interval t—n . nJ ? This problem gives
rise to several other problems including the problems of
unigueness or continuation of functions., To day number of
properties of lacunary Fourier series are known which are
commected to these problems and there are interesting
applications of the same methods to a series of number
theoregtic problems. Here one can observe that in many of
these properties, the sequence {nk§ is assumed to satisfy
the Hadamard lacunarity condition (1,.2) and these properties
distinguish themselves greatly from those of the Fourier

series without gaps. For example, such a lacunary Rourier
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series converges almost everywhere (just as a Fourier

series without gaps can diverge everywhere); if such a
trigonometric series is summable by a method T* in g

set of positive . measure then it is a Fourier series of a
function belonging to LY (p > 1); such a series can not
converge to zero in a set of positive measure unless all the
coefficients are zero; properties of the function represented
by such a series can be extended on the whole real line from
a small interval (refer [2] and [44] also). On accownt of
such remarksble features of lacunary Fourier series, one
would like to go into further details of the series and to
dig out more and more interesting properties as and when

possible,

Fatou (5], in the year 1906, began the study
of the absolute convergence of lacunary Fourier series (I)
by proving that, if {n % satisfies (1.2) with £ > 3 than
an everywhere convergent lacunary Fourier series (L)
converges absolutely., Later on Sidon [2 ; p. 246 ] showed
that if (L) 1is a Fourier seriecs of just a. bounded function
with fn 1 satisfying (1.2) then it converges absolutely.
We observe that Fatou and Sidon both took Hadamard

lacunarity condition,

2 Noble [237] observed in 1954 that very little

attention has been paid to the effect of a gap condition
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weaker than that of Hadamard. He considered the well known
theorems of Bern§%e§n té } P. 154, Theorem 1] and Zygmund
[2; p.161, Corollary 1] for the absclute convergence of a
Pourier series without gaps and certain results{:Z H p.26§]
concerning the order of magnitude of Fouriér coefficients;
and showed that a certain gap condition weaker than the
Hadamard's enables us to replace, in these theorems, the
hypothesis concerning f(x) from thé whole interval [-m , n]
to an arbitrary small subinterval of [ -7 , ﬁj. Since many
a times a property of a function is known only locally, the
problem considered by Noble can be set (on the line of
Mandlebrojt's problem) like this : If the fulfilment of
some property of a function f on the whole interval

== ,‘m] implies certain conclusions concerning the

Fourier geries o(f) (without gaps) of f then what
lacunae in o (f) guarantees the same conclusions when the
property is fulfilled only locally ? Several mathematicians
including WNoble (23], Kemnedy [17, 18, 19, 207},

Tomié {37 , 38) , M. Izumi and S. T. Izumi.[15], Chao (3],
J« R, Patadia and V. M. Shah [?8] and others have studied
this problem in the recent years and have improved upon

the earlier results or obtained new results by congidering
weaker and weaker gap conditions and also by congidering

the property of a function either on a subset of positive
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heasure or at an arbitrary fixed point of {-m , n]f

However, a sharp observation to the above study indicates
that, the underlying function, considered so far, is

either of bounded variation or it satisfies Lipschitz
condition of order ¢ > 0., This suggests that. there is a

good scope of studying the problems of lacunary Fourier
ceries by considering the classes of functions weaker than
the class of functions of bounded varia%ion and the Lipschitz

class of order ¢ > 0 .

Obrechkoff E?é] s considered a class of functions
of bounded rth variation in the year 1924. Later on
Similar but not identical definition of such a class has
been given by Mazhar [22]. It‘can be noted that, this
class of functions of bounded rth variation is more general
than the class of functioﬁs of bounded variation. On the
other hand, in the year 1928, Hardy and TLittlewood (g}
introduced yet another new class of functions, called
Lip(ayp) class, o > 0 5 p 2 1, which also happens to be
more general than the Lipschitz class of order ¢ > O .
Hardy and Littlewood then studied the order of magnitude
of Fourier coefficients and the absolute convergence of
the Fourier serieas of a function belonging to such a class
(refer {12) and (13} ). Their result on absolute

convergence generalizes Zygmumnd's theorem,[2 ; Do 161]
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on absolute convergence, In view of these generalizations,
it will be guite interesting to carry out further investi-
gations of the problem (considered by Noble and Kennedy) by
taking the underlying function f either in Lip(a,p) class

or in bounded‘.rth

variation class, and studying the order
of magnitude gf Fourier coefficients, the absolute convergence
and +the mbsolute summability (c,8) (0 < 8 < 1) of a
lacunary Fourier series, The present thesis is the outcome

of researches carried out by the guthor, mainly in these

directions.

This chapter aims at providing the introduction
to the subject matter of the thesis through the recent
developments regarding the concerned aspects of the problem.
It can be noted that the lacunarity conditions considered
by us in our results are always weaker thah the Hadamard's

gap condition (1.2).

3. Before we discuss the details of the results
established by us, it is desirable to introduce some defi-
nitions and notations at this stage.

Let x, € [on 7&3 be an arbitrary fizxed point
and & Dbe an arbitrary positive real number such that

T=1[x,-8,%,+6] becomes a subinterval of [-m , n7.

Note that x; =0 and & =n gives I = [~n ,. 7] .
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We say that f € Lip(e,p,I); 0 <o £ 1, P2 13

i
{-‘f]f(x+h)-f(x)}pdxj§p = o([h!a), as h => 0 ;
L

and f € Tipa(I) if
|£(x+h) -~ £(x)] = O(%hia) ’

uniformly for x+ h ,, x €I , as h -0 .

Let E [-m , n] be a set of positive measure
and |E| be its measure. We say that £ € Tip(a,p,B);

0<afl1,p>15; or f € Lipa(BE) according as

1
' {f]f(x+h) - f(X)‘de}p = O(’hla)
E

| £(x+h)~ £(x)|= O(lh[(x) ,

oY

uniformly for x € E , as h -> 0 through unrestricted

real values, respectively.

It is known that {13} a function of Lipa
belongs to Lip(a,p) for every p > 1. The class Lipa may
be regarded roughly as the limit of Lip(a,p) as p -=> @ .
This shows that the class Lip(«,p) is weaker than the

class Tipa .

if
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A function f defined in an interval [asb]
is said to be of bounded rﬁh variation (r being a positive

integer), if for every partition
P.ziaz}{o 9x1 9X2, »e 0wy %:b‘%
of [@,b] » With %, , X 5 X5 , s..5x, in arithmetic

Progression, we have

n.‘r

T
E | £}.f(xi)i £ M, where M is a constant
i=0

and

-1 -1
&qf(xi) = A? f(Xi+1) - .&q f(xi)s

ﬁlf(xi) = f(x

141) - £0x;) .
We now consider some of the important properties
of the functions of bounded rth varigtion, with which we are

closely connected,

(a) . It is obvious that ever& function of bounded

variation is also of hounded rth variation; but the"éonverse
is not true, This can be seen by considering the well known
continuous non-differentiable function of Weierstrgss [ﬁd],

namely

OO . Xl n
f(x) = ? b cozdb x, b > 1. (1.3)

n=1



This f satisfies the éandition

[£(x+h) + £(x-h) - 2f(x)| = 0(h), as h => O ,

uniformly in x and therefore it is of bounded second
veriation [4£). But f being nowhere differentiable

function, it is not of bounded variation.

(b) It can also be observed that, on account of
continuity of f (given in (1.3)' ) in any closed interval,
we have f € Lz(I). This éhOWs that, there exists a function
in Lg(I) which is of bounded rth variation (r > 2) in I

but not of bounded variation in I,

(c) As against the fact that,afunction of bounded
variation is bounded, a function of bounded rth variation
1s so much so weak that it is not even bounded. This can

-be observed from the following exemple =
We define f in Eb s i] as
n s when x = % for n an integer

£(x) = p which is not a perfect square,

0 ’ otherwise,

Clearly f is unbounded in [0 , 1. Also for any
partition P =:€O =Xy o5 X o Ko 9 swas X = 1} s Wwith

Xo 1 Xy xé » weey X, are in arithmetic progression, it
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follows that the points Xy v K 2 eeey X, are rational
numbers, This gives f(xi) =0 3, 1=0,152,00..,

which in turn gives

ZlArf(XiH:o.

Therefore f is of bounded rth variation in tb,l} .

After having given the necessary background,

we now turn to the problem studied by us in the thesis.

In chapter II of the thesis, we study the order
of magnitude of Fourier coefficients of the lacunary Fourier
series (L), by considering certain classes of functions
either on an arbitrary subinterval or on an arbitrary subset
of [-xm , n:lof positive measure, under suitable lacunarity
conditions. The classes of functions considered by us in
this respect are —

~ The class of functions belonging to Lip(oa,p,I),

~ The class of functions belonging to TLip(a,p,E) and

- The class of functions of bounded rth variation

over I.

These classes are known to be weaker than the
corresponding class of functions belonging to Lipa(I)

- The class of functions belonging to Lipa(E) and

~ The class of functions of bounded variation over I.



In order to explain the significance of the results
established by us in this chapter, it is desirable to recall
briefly the developments that have been taken place regarding

the study of the behaviour of Fourier coefficients.

Kemmedy [17 ; Theorem V(ii)} proved the following

Theorem,

THEORMM 1, A (Kennedy). If

(i) {nk} satisfics the gap condition (1.1), and

(i1) £ e Lipa(I) (0 < « < 1) , then
ank , bnk = O(n£a3 (k => ) (1.4)
Purther, replacing the subinterval I in

Theorem 1,4 by a set B of positive measure, Kennedy £ﬁ9 ;

Theorem IJ proved the following theorem,

THEOREM 1,B (Kemnedy). TIf

(1) {nk} satisfies the Hadamard gap condition (1.2), and

(ii) f e Lipa(E) , 0 < o < 1,
then (1.4) holds,

Kennedy {17 ; Theorem V(iij also considered the
class of functions of bounded wvariation over I for studying

the same problem and proved the following result.
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THEOREM 1, G (Kenmedy). If

(i) {nk} satisfies (1.1), and

(ii) £ is of bounded variation in I,

then

s by =00 (ke @) (1.5)

All these theorems of Kennedy are related to the
earlier results due to Noble EBB] .

E'E'may be observed that, without the lacunarity
condition and with I = C—n y 1!:3 g B = [—-n 3 'nj s bthe above

Theorems 1,A , 1.B and 1.C are well known classical

results {1 ; .7, 215],.

Now, considering more general classes of functions
than those considered by Kennedy, we propose to prove the

following theorems in’ chapter II,
THEOREM 1. 1If (1) {n,} satisfies .(1.1), and

(ii) £ e Lip(a,p,I) s 0<a<1; p>g,
then (1.4) holds.

It may be observed that Theorem 1 generalizes

Theorem 1.4 due to Kennedy.

To state the next result obtained by us, we need

the following definition,
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DEFINITION, [2 ; p;24é1. A strictly increasing sequence
nk} (k € N) of natural numbers is gaid to satisfy
the condition B, if sup Pz(n) ig finite, where Pg(n)

n

denotes the number of different representations of an

integer mn in the form

I e Y2, (€ 5 €9 =% 1, ny

» T, © 3.

1
Note that gap condition 82 is weaker than Hadamard's gap

condition (1.2).
THEOREM 2. If (i) {nk§ satisfies the condition B, and

(ii) fe Lip (a,p,F), 0<aqa <1 ;p>2,

~

then (1.4) holds.

It may be observed that Theorem 2 generaligzes

Theoren 2.B,
THEOREM 3, If (1) {m ] satisfies (1.1),
(ii) £ is of bounded rth variation in I and
. 2
(iii) £ e I°(1) ,
then (1.5) holds.

It has been already remarked earlier that a
function f of bounded variation in T is always of bounded
th __ . .. . 2
T veriation in I and that such f € L°(I) also, but bthere

. . t f ot .
exists a function of bounded p B variation ( r > 2) in
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2
L (I), which is not of bounded variation in I. In view of
this remark, our Theorem 3 generalizes Theoren 1,C due

to Kennedy,

Further, it is interesting to observe that,
without the lacunarity conditions and with I = E}n ,-n] ;
E = {}n . ni} our Theorems 1 and 2 are reduced to the
classical result due to Hardy and Littlewood [@2 ; Lemma 11}

for p > 2,

Having studied the sufficient conditions for
the order of magnitude of Fourier coefficients of the
lacunary Fourier series (L), we propose to gtudy in
Chapter III, the nature of trigonometric series when the
behaviour of its coefficients under certain gap condition

is known. In fact, the question before us is:

Given a trigonometric series (L). Under what

conditions on 8 s bn and under what lacunae does the
“k k

series (L) become the Fourier series of a function
belonging to some Lipschitz class of order o > 0. This
problem is studied by P. B. Kennedy [19 ; Theorem 1],

M, Izumi and S. Izumi [@51} and Jia-Arng Chao ES] . In fact,

Kennedy proved the following theorem in this regard,



THEOREM 1.D (Kennedy). If

(1) n.1 - is a sequence of natural numbers satisfying
kJ
(1;2)9 and
-
(ii) aﬂkgbnkz()(nk) s 0 < a<1, (k- o)

then the trigonometric series (L) is the Fourier series of
a function which belongs to Lipg in some set of-positive
Measure.

Here, we study a theorem analogous to the-

Theorem 1,D for a less restrictive sequenoe‘an§ defined by
1L
nlr:[a j,where a>land0<ri (1.8)
( {: j}den@tes the integral part).

Tt is known that, if iy 5 satisfies (1,6) and
£ € Lipa(P), that is, f satisfies Lipschitz condition of

order ¢ > 0 at a point X, » hamely,
[£(xg + ©) = £(x )] = 0([t]") as t - 0,

then the Fourier coefficients

b 0 A (k )
ank’ nk" < nix{ => © ).

The following converge theorenm {:31:{ is proved

in this chapter,

THEOREM 4, If (i) %_nk'lS is a given increaging sequence

of natural numbers satisfying
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P ‘
n, = [ék ] ; Where a > 1 ; 0< r<1, gnd

3 : 1-
ti1) ank,bnk=o<-—15§l—§—-ﬁg> , 0<a<1,

then the trigonometric series (L) is the Fourier series

of a function which belongs to Lipar in [~ , wJ.

It may be observed that, When‘r = 1, our theorem
matches with Theorem 1.D due to Kennedy and also with

Corollary 1 due to M. Izumi and S, Izumi {15] .

In the remaining chapters of the thesis, our
aim is to study the convergence aspect of the lacunary
Fourier series (L). In Chapters IV and V, we have studied
the absolute convergence agnd in Chapter VI, we have studied
the absolute summability (c,8) (0 < 8 £ 1) of a lacunary

Fourier series (L),

In order to study the absolute convergence of (L),

we examine the convergence of the series
32 (lay |+ 1oy D
k:'.'l ‘ank‘ l nkl ?

under suitable conditions on the underlying function f and
on ,the gap. Several mathematicians such as Szidon [2;

p. 246 , Noble {23] , Kemnedy [i7 ; 18 ; 18], Mashar [B2],
Maseko Sat$ {34] and Chao [3)] have studied this problem

imposing various conditions on the function as well as on
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the gap, More particularly we refer here the papers due

to P. B. Kennedy {17] and S. M. Mazhar [22] .

In the year 1956, Kemnedy gave the following

theorem on absolute convergence of (L),

THEOREM 1.E (Kennedy),~ If

(1) {}}kk satisfies (1.1),

(ii) £f€Lipa(I), 0 < a <1, . (1.7)
end €iii) f is of bounded variation in 1, (1.8)
then
00 X ,
E (lan | + ank]) < @ (1.9)
k:l k

It may be observed that, without the lacanafity
condition (1.1) and with I = [-n , =], Kennedy's theorem
reduces to thg well known theorem due to Zygmund [2 H p.16i]
on absolute convergence. “hus, we can see that, Kennedy
studied the absolute convergence of lacunary Fourier
series (L), when the hypothesis in the Zygmund's theorem is

satisfied only in a subinterval I of (=%, =] .

Now a look at the hypothesis of Theorem 1.E
leads to the natural question as to whether condition (1.7)
or (1.8) on the function f can be replaced by the weaker
mmﬁxnm&zmﬂmamug<ﬁcmM$m‘meswmg%3mmﬁimn

(1.1). Investigating this aspect, we study in Chapter IV,
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the absolute convergence of lacunary Fourier series,
replacing the condition (1,7) in Kennedy's theorem by a
weaker condition of Tip(a,p,I). In fact, we have proved

the following theorems in this chapter.
THEOREM 5. It (1) In} satisfies (1.1),
(ii) £ e Tipla,p,I) with 0 < ¢ L1i:p>2 ap > 1,

and (iii) f satisfies (1.8),

then (1.9) holds.

~ It may be observed that, without the lacunarity
condition (1,1) and with I = (=7 , ﬁ] , our Theorem 5
reduces to the Theorem due to Hardy snd Littlewood [15]

for p > 2.
THEOREM 6, If (i) ;_nk} satisfies (1.1),

(i) f.€ Lip(e,p,I) with 0<a <1 ;p> 2,

and (iii) £ satisfies (1.8),

then
@ g & |
oo Uay I+ Iy 1) <@ for
k=1 K .
every B satisfying 2 > B > §£D+~a%)— 5

It may be observed that, when 3 = 1, Theorem 6

reduces to Theqrem 5,



THEOREM 7. Under the hypothesis of Theorem 6,

jiik ng/z(ign L+ o |) <@ for
= k x

every B < gap —~ %~ .

It may be observed that, when 8 = 0 , Theorem 7

reduceg to Theoren 5.

Further, in Chapter V, we continue our investigation
by replacing both the conditions (1.7) and (1.8) in Kennedy's
theorem by the corresponding weaker conditions of

Lip{a,p,I) and bounded rtn variation over I. In this regard,

we refer the following theorem due to S, M. Mazghar [?2}.

THEOREM 1,F (Mazhar). If

) . N
. 1im k_.
(1) k> 1ognk = 005, (1.10)

where
By = mi“"{(nk;1 -0y (nk'nkml)} ’
(i1) f satisfies (1.7),
and  (iii) f is of bounded »'* variation in I,  (1.11)

then the Fourier series (L) of f converges absolutely.

It can be observedthat, Mazhar weakemed the
condition (1.8) of bounded varistion by teking the condition
(1.11) of bounded r'® varistion in I, but in doing so he

took the gap condition (1.10) which is stronger than (1.1).
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In fact, Mazhar}s aim was to generaslize Noble's theorem

[?3 ; Theorem 5:1 on absolute convergence. While our aim,
in Chapter V, is to generalize Kennedy}s theoremn,
maintaining the gap condition (1.1). Consequently, theorems
Proved here will generalize Mazhar's theorem as also the
results of Chapter IV. Theorems proved in fhis chapter are

as under £
THEOREM 8. Theorem 5 holds if the condition (1.8) is
replaced by the condition (1.i1).

THEOREM 9. Thsorem 6 holds if the condition (1.8) is

replaced by the condition (1.11).

THEORFM 10, Theorem 7 holds if the condition (1.8) is

replaced by the condition (1.11).

Further, in Chapter V, we also study the
convergence of (L), (Li) and the absolute convergence of

the series

€3] 3,
()
e (1.12)
?flk 4

k=1
where
k
Snk = 2 <an cosn X + b, 31nnpx)
and S 1is an appropriate number independent of Ty .

The convergence of the series (1.12) was first studied

by Hardy and Littlewood {11} and the-eafter it was studied



by Zygmund [@3 H p.6§1 and so many others. We, in fact,
prove here, the following theorems in this regard, by taking

more general conditions than those considered by V, M, Shah
E’)S 5 Chapter V:’.

THEOREM 11, TUnder the conditions of Theorem 3, the
£(x+0) £ f(xpo}‘ ot

Fourier series (L) is convergent to
any point where this expression has a meaning; and the
conjugate Fourier series (Ll) is convergent to f(%X) whenever

T(x) exists and x is a point of the Lebesgue set.

THEOREM 12, Suppose the hypothesis of Theorem 3 is
satisfied, If, in addition, the series

58]

1 ogn,.
:E:Z Y is convergent,
k=1 k

then the series (1.12) is absolutely convergent.

THEOREM 1%, Suppose the hypothesis of Theorem 1 is

satisfied., If, in addition, the series

E , £ is convergent, (1.413)

then the series (1.12) is absolutely convergent.

THEOREM 14, Suppose the hypothesis of Theorem 2 is

satisfied, If, in addition, the condition (1.13) holds,

then the series (1.12) is absolutely convergent.
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Finally, in the last chapter of the thesis,
i.e, in chapter VI, we study the absolute summability (c,8)
of the lacunary Fourier series (L) and its conjugate
series (Ll) by considering certain conditions on_a funection
and on a gap under which the absolute convergence of (L) is
not guaranteed, While studying th;s aspect, we have kept
in mind the results on absolute convergence due to J. R,
Patadia and V. M. Shah {287 and P. B, Kemedy {7 ;
Theorem V(iv)J . Recently in the year 1981, J. R. Patadis
and V, M, Shah proved the following theorems

IHEOREM 1.6 (J. R. Patadia and V., M, Shah). If

(1) (g, - n) > adf K (0<p<1, ¥>20), (1.14)

where A is a positive constant,

and (ii) f € Lipa(®) , 0 <~ < 1, (1.15)
then
m m
Z (lag | + 12, [V <@, 0¢<mg 1,
) k e

when ofm + eqm¥ > (1 - %) (1 -8) .

It can be observed that Theorem 1.¢ extends the
regions of absolute convergence obtained by M, Izumi and
S. Izumi [iS : Theqrem é} and Chao Y% : Theorem‘éz . Thig
can be observed by considering the following particular

cases of Theorem 1.G. For m = 1 and Y = 0 Theorem 1.G
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ensures the absolubte convergence of (L) when o > §(B - 1),

under the gap condition

B
(nlm -m) > anp (0 < B < 1), (1.16)
(A is o positive congtant)

At the same time, for m = 1 Theorem 1.G ensures the
absolute convergence of (L) when

af + oY > 51~ 8)
under the gap condition (1.14). Here it is worthwhile %o

note that, when
1
af + Y =~§(1 - B8)
then also the absolute convergence of (L) is established
by J. R. Patadia and V. M. Shah [29] . But in that case, the

condition taken on f happens to be stronger than Lipg(P).

In view of this situation, it is quite natural
to inquire into the behaviour of the lacunary Fourier series

~1
() of a function in Lipa(P) when o i-%(B ~ 1) and more

generally when of + a“{§: %(1 - B), by taking the gap
conditions (1.16) and (1.14) respectively. Hence, in this

direction, the following theorems are proved in this chapter,

THEOR®M 15[30]., If (i) {nd satisfies (1.16)
with some suitable constant A, =znd (ii) f satisfies (1.18),

then the Fourier series (L) of £ is absolutely sumngble

N

.



(e, %)
(1) for every «a > 0 if 8 > % ;
or (ii) for every o > “%g -‘g if g« % .
THEOREM 16 [30]. Under the hypothesis of Theorem 15, the

Fourier seriem (L) of f is absolutely summable (c,1) when

a>ptozg )

THEORML 17. If (1) {n} satisfics the gep condition
(1.14) with some suitable constant A, and (ii) f satisfies
condition (1.15), then the Fourier series {i) of f is

absolutely summable (c,8) (0 < © < 1) when

£ o :
4> max 1-5-9-""6,2~OB~Y+B6-—8}'
B+Y B+ BY
It may be observed that Theorem 17 is a generalized

form of Theorems 15 and 16.

It is also interesting to observe that when Y= 1,
Theorem 17 gives the absolute summability (c,1) of (L)
for every o ¥ O ; and that, ﬁhen Y = g , we get the
absolute summability (c,‘%) of (L) for every o > O.

We further continue our study on absolute summability
by considering Theorer 1.E on absolute convergence due to
P, B. Kennedy {éjj . Heré it is known that, it does not become
possible to dropout, either the condition‘(l.V) or (1.8) to
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ensure the absolute convergence of (L), Keeping this fact

in mind, the behaviour of (L) and its conjugate series (Li)

is studied by V. M. Shah [35 ; Chapter VI| . Here we study the
same problem, by taking a set of conditions on a function
weaker than those considered by V. M. Shah, This study
becomes possible on account of our Theorems 1, 2 and 3 of
Chapter II., In fact, we prove the following theorems in this

chapter.

THEOREM 18, Suppose the hypothesis of Theorem 3 is

satisfied, If, in addition, the series

o
E A “%“ is convergent,
k=1 k

then the Fourier series (L) and (Ll) are everywhere ’L
; (1.17)
i

absolutely summadle (c,1).

THEOREM 1g, If

. Tlim i
D S%  Teg =3.3>0,

(11) £ is of bounded r*® variation in I, and
(i11) £ e 1%(1) ,

then the conclusion (1.17) holds.
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IHEOREM 20, If (i) {mn, | satisfies (1.1),

(11) £ e Tip(a,p,I) with 0< a2 1D 3 2,
( )}"m ‘
and (iii D, + Ny + sueot 00
‘{ L 2 5 3 } is convergent, (1.18)

1
k=1 k

then the conelusion (1.17) holds.

IHEORWM 21, If (i)§n_| satisfies the gap condition By

(11) £ € Dip(e,p,B) with 0 <a <% ;P 2,

and (iii) +the condition (1.18) holds,

then the conclusion (1.17) holds.,



