CHAPTER —~ TIT

THE ORDER OF MAGNITUDE OF FOURIER COEFF ICIENTS

OF A TACUNARY FOURIER SERIES

1. The study of the order of magnitude of Fourier
coefficients of the lacunary Fourier series (L) began with
the consideration of the hypothesis to be satisfied by the
function on a subset of E-n; y ﬂ] instead of the whole
interval [-n , n]. In this direction, Noble 23] proved

the following result.

If the sequence Sinﬁ satisfies the lacunarity

condition

limit inf, _ Nk . _
Ke>00 lognk - ?

where N, = min {?11{ "D Pgen T nk‘%

and if the function f satisfies the Lipschitz condition

of 'order oy 0 < o <1, in a subintervagl I

=‘{x: !X—XOIS_S} of E-'m,n:f , then

B i i
o bn = 00n0) (k> @) (2D

Further, he alsc proved that, if f is of bounded

variation in I, then

a, » by = 0(=5=) (k= o). (2.2)

k Pk e
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However, later on, it was pointed out by Ul'yanov Eé ; p.BVQJ

that, the above results of Noble also hold for slightly weaker

gap condition

Cosa s N
limit inf, "k 50
ke>00 10gnk = B, where B Z,fg”“ .

P, B, Kennedy {i?] employed more powerful method
due to Paley.-Wiener and proved the following result

(Theorem 2.A) under a still weaker gap condition

-~

(nk+1 - nk) ~> @ as k -> (2.3)

THEOREM 2.4, [17 ; Theorem V(ii)]. If
(1) {n,} satisfies (2.3)
and  (ii) £ e Lipa(I) (0 < a<1),

then (2.1) holds,

Tater on, Kennedy [18) showed that this result

does not hold wnder the FabrySS gap condition

e

T o> ® as k- w ,

which 1s wesker than the gap condition (2.3). However, the
same author [}é} has shown that, if a more stringent

condition (1.2) due to Hadamard is taken in place of the
lacunarity condition (2,3) then it becomes possible to replace
the subinterval I in the above Theorem 2.4 by a set B of
positive measure, More precisely Kemnedy proved the following

theorem,
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THEOREM 2.B.[19 ; Theorem I} If

(1) §{mY satisfies the Hadamard gap condiftion

n .
&l > 0 >1 forall keN, and
% .

(i1) £ e Lipa(B), 0 < o < 1,
then (2.1) holds,

Now,‘here we intend to study the order of magnitude
of Pourier coefficients of the lacunéry Fourier series (L),
by considering the classes of functions, namely Lip(a,p;I)
and Lip(a,p,B) which are weaker than the classes Lipa(I)

and Lipa(E), considered by Kennedy.

It is worthwhile to note that, though we are
weakening a condition on the function, we do not ask for a
gap condition stronger than that of Kennedy. More precisely,

we prove the following theorems,

THEOREM 1. If (i) {nk’}s sgtisfies (2.3),

and (ii) £ e Lip(ayp,I), O<a <1 ;P> 2, (2.4)
then (2.1) holds.,

It may be observed that Theorem 1 generaligzes

Theorem 2.A. due to Kennedy.
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THEOREM 2. If (i) {n,} sstisfies the condition B,

and (ii) f e Lip(CC9PgE) 9 0 < a <1 3 P .>... 2 ¥
then (2.1) holds,

It may be observed that Theorem 2 generalizes

Theorem 2.B due to Kennedy.

Now, the study of the behaviour of Fourier
coefficients is further done by Tomid (371 , Kennedy [20} ,
M. Izumi and S. Tzumi [@5] . These authors have replaced
the set of positive measure by a single point. But in doing
s0, they have retained the Hadamard gap. The same problem
is further studied by Tomié [38] , Jia-Arng Chao [5] and
J. Re Patadia [27]‘, éonsidering more genersl gap condition

and a certain continuity condition on £ only at a point.

Kennedy studied this problem, by congidering the
class of functions of bounded wvariation in I, The following

result is due to Kennedy.

THEOREM 2.C {17 ; Theorem V(i)}. If

(i) i_nk?‘ satisfies (2.3),
and (ii) f is of bounded wvariation in I,
then (2.2) holds.

& glance at the literature of the theory of

lacunary Fourier series reveals that there is a good scope



for the study of the behaviour of the Fourier coefficients
for the class of functions weaker than the class of functions
of bounded variation. Hence, it will be quite\interesting to
probe further in this direction. Accordingly, we consider
here the class of functions of bounded xﬁhAvériation and study
the behaviour of Fourier coefficients. Morelprecisely, we

prove the following theorem,
THEOREM 3, If (i) {nkjs setisfies (2.3),

(ii) f is of bounded rth variation in I, (2,5)
and (1ii) £ & T2(D), ' (2.6)
then (2.2) holds,

Tt may be observed that the conditions (2.5) ‘
and (2.6) of Theorem 3 do not imply that the function f is
of bounded variation in I ; and in this manner, Theorem 3

generalizes Theorem 2,0 due to Kennedy.

2. Before we proceed to prove our theorems, we need
the following lemmas, Lemma 2.1 is a special case of g very
general theorem due to Paley and Wiener [?5 ; Theorem XLIIE].
Lemma 2.2 and Lemma 2.3 are due to Kennedy Cﬁ? s Lemms 1

and LemmagZZ}. Lemma 2.4 is proved, though not explicitly
stated, by Zygmund [QS ;‘p.l?i] s taking Hadamard gap

condition (1,2); but' it is easy to see from the proof there
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that we can as well tgke {nk} satisfying the condition 82"
Lemna 2.5 is due to J. R. Patadia [26] . Lemma 2,6, which is

proved here; {g-'an extengion .of the result given in the
introduction of (the paper by Hardy and Tittlewood) [_1_43.

LEMA 2.1, If £ € I°(I), where I is an interval, and if

(nk%1 ~m) => ® in (&) then f e L° (= , ).,

(IBA 2.2, Tet (i) {Py} (-@ <k<®) bea
sequence of reagl numbers satisfying }‘k+1 >>\k (-0 <X <o Y,

A1 “Hx > © (k] - o), >ik+1“)ik > ans™t ;

(ii) {Ak} (-® <k<®) be g sequence of complex

2]

®
numbers such that > " Al s <o (0< s <1),
~

‘ D i
(iii) $P(s,x) = Z Ak s’)\kj el?‘kx (0 < s <)
40

for all real x,

(iv)  ¢(x) = 1:2--13‘.mitjL $(s,x) ([x-xof < 8) , where
S =»1

X, 1is fixed and §.> 0,

(0]
© 2 -1 - 2
Then Z 1Al <88 j [d(x)| ax
- :
' 'X"Xo F.S.é



LEIMA 2,3  Tet (i) {A:k} (= ® < k< @) be a sequence

-1
of real numbers satisfying >5k+1 - >\k > 16w § ’

(ii) {Akﬁ (- @ <k < ) be a sequence of complex

numbers such that

:E:: IAk sLAk ® (0 < s <1)

(iii)  d(s,x) = ‘i.‘_g_:Ak sb\k; A" (0 < s <1)

=00
. for all real =x
2 ‘ . -
(iv)  ¢(x) = T -1limit ¢(s,x) (lx=x ] < 8)
s =>1

(v) The integers Jj and K satisfy

~1

-1
Al 28 5 0<3¢

T 8 lAKl s
(vi) ¢j(X) = 0 gix + %%S;T‘i‘ ¢ {X + L%gziTllﬂj
2 -
Then 8 = E ] |4y | ' f]d} (x)l dx .
< 8/2

%I%ﬂﬁmkﬁtht h@x

s

LEMNA 2.4 Let B {-m , n)be a set of positive measure ,

%nkk satisfy the condition B, and n, =0 , n =-n,(k<o0).

Then there exists Y € N with the property s« if {Ckz (k € 2)
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is any sequence of complex numbers, then for T >Y .

We have || T 9
ISpl € =22 1oyl
-1

where Sp = ggg Cp . Ué % exp <i(np - nq)g)dx
b

in which the summation is over values of p and g such

that  Y< lp| , |q] < T amd p #£ q .

LOMA 2.5 Tet B, {m ] and Y be as in the Lemma 2.4.
1 . = .

Put Gy = 0, Cp = E(amk - 1bnk) (x> 0), Cp = Cyp (k < 0)

and suppose
. C

k=0 for [k| <. Then

0 o o o
2olo < L 1ee0] e
=00

LEMMA 2,6  Tet 1 (p<q. If fe Lip(a,q,E)

then f € Lip(a,p,B), where E is é get of positive

measure in [}n 9 nl}.

Proof of Temma 2.6

Since f ¢ Lip(u,q,B) , it follows that

- J15Gan) - 2eofax = o(el*h

uniformly for x € E , as h ~> 0 through unrestricted

regl values,
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Consider the conjugate indicesz % and Eg;“ *

Then by H8lder's inequality, we have

Ef 1 .{1f(x+h) - £(x) |P}ax

=N SRt
< (Ef 1 ax> 9 (Ef | £ (x4h) =£(x) | dx)
T N
< (2m) ( Efgf(mh) - T(x)| dx)
<o (Jn*D |
=0 ("),

uniformly for x € E, as h -> 0 through unrestricted
real values.,

Hence f € Lip(a,p,E). This proves lemms 2.6,
IAMVA 2.7 If f € Tip(a,psB), D2 130 < <1,

) P :
then £ € L (E) , where E is a set of positive measure

il’l '-TC 9 sz L ]

Proof of Lemma 2.7. We select a (small) positive & such

that’ -m { x<x+ h < 7.

We write T = B r}{b,h] .
Since E and Cb,h] are megsurable , ¥, is measurable,

Let |E, | denote the measure of By « Then 0 K |Eyf < h.,



Now, for x € B , we take

4y, = @h(;x) = Tﬁfﬂ" El{ fx+u) du

This ¢y 1is continuous.

We have f - Qh = T—Ei-r Ei(f(x) - f(x+u)}du .

., Hence, by HOlder's inequality,

£ - 0,0 < Ti'th' E}fl]f(mu) - £(x)|au
_5_{ S £ () -£(x) | du)g {E(
1

Where

.QIP—*

il

7
i
= {ﬁi]f(x-l—u%ffx) ]pdu’g‘p 'If%’;l‘f ( lEhi)

5 fw/'
Therefore (

;om-!

J£-Gy |

in

( }1 ) { J/ff(xw) - f(x)] du}
5

- (Tﬁi‘r>% { E{ff(mu) - f(x)ip du}

This gives

ff—(bhip < T%J :( lf({x-f-u) - ;E‘(x)]p du

»QIH

o]l eg



- 39 -

Therefore,
P _— p
[£-¢, 1 ax < j f £ (xu) - £(x)] du; dx
‘J, h IEh] 7
B E %™
e f { 2 - 201"
= e du fix+u) - f(x X
“p B 2
by Tonelli's theorem
= T—AEiT ]u{ap du
By
ap
) Al h

TE T ' Byl as - ul <n

<A , as h->0, where A, , Ay are
constantsg,
Since ¢, is continuous, it follows that

P
fel (B) .

This completes the proof of Lemma 2.7.
It may be observed that Lemma 2,6 and Lemma 2.7

will hold for B = I also.

Proof of Theorem 1. Since, by Lemma 2.6, a function of

Lip (a,q) belongs to Lip (a,p) for 1 £ p < g, it is

sufficient to prove the theorem for the class Lip (a,R) in I.

Putn:o,n‘::..n

o K Xk (k <0)ys3C,=0,

0O
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Cp = 2(a =~ b ) (k> 0), Cp =C . (k<0).

kM -k

Therefore we can write (L) in the form
X in, x
Je=ldoo

We assume that, the integers j and X se.‘ﬁisfy

27 - 1 -1
nK>-=-6—~ ando_gqg_zn &1y

Take fj(x) = f(x 4+ i ) - fx + -(-g-‘lﬁ-‘m )
K

Since ank, bnk -> 0 as k -> o, {}Ckl} is a

bounded sequence ; and hence we have

00 [nkl

> fo,l s <o (0< s < 1),
-0 ’
00 .
Put f(s,x) =E Ck_ s[nkf elr\lkx, (0 <8< 1)
-C0

for all real x. The existence of f(s,x) is ensured by

(2.10).

e get

o9)
f(s,x) = , %(ahk- ib_ ) (cosnkx + isin.nkx)s

k=1 “x

+ z -%—(ank+ ibnk) (cosnkx - isinnkx)s

k=1

n

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

k
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0o nk
T ( cosm X + b sinn x)s o,
w ank e ny k
k=1

, T2
By (2.4) and lemma 2.7, we have £ € T (I).

. 2
Since (2.3) holds, Lemma 2.1 gives £ ¢ L [-m , ﬂ.
Hence by & kmovn theorem [43 ; p.87] it follows that

2
f(x) = L -limit f(s,x) (Ix] ¢ =n). (2.12)

S--')l

Without loss of generality, we assume that

n =1
nogo- O > 18% & for 211 k. , (2.13)

In view of (2.3) this can be achieved, if necessary, by
adding to f(x) a polynomial in exp(inkx), a process which
affects neither the hypothesis nor the conclusion of the

theorenm,

Thus from (2.9), (2.10), (2.11), (2.12) and (2.13),

we see that all. the conditions of Lemma 2.3 are satisfied.

Hence : /f

o - 2
_ E oy | <88 1 J 125G ax .

1 Ioslx-x_|<
mpdlm gy TRl 872
We observe that SY IC

This gives TOK f {f (x ){ ax

But condition (8.4) gives
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. 2
f“],fj(x)lzdx = C}((T’EE) Oc) .
I, ‘ ‘

\

Hence it follows that,

2
1
logl = Ot=55) .
Ay

Thus [CKI = C)(«m%mw) as  k -> 00 .
Ay

Therefore (2.1) holds and this completes the proof of

Theorem 1,

Proof of Theorem 2, As mentioned in the proof of Theorem 1,

it is sufficient to prove the theorem for the class
Lip(a,2) in E .
Assume that, the conditions of Lemma 2.5 are

saﬁisfied. Put n, = 0 and n, o= -n_ (k < 0). Therefore

k

we can write (L) in the form (2.7).

Put g(x) = (X + 52 ) = f(x = =L (2.14)
BHK 2nK
* . ) A
and C, = 2i Cy sin n, §E§“ (2.15)

n*
Then [C | < 2|Cy ] and hence by (2.10)

(e8] n ’
we have i ? IC;I sl kj < o (0 < s < 1), (2.18)

-@o
o2 ¥ Ing | inx
Put g(s,x) = E Ckskenk (0 < s <1)
~00

for all real x .
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The existence of g(s,x) is ensured by (2.16).

How if we put

o lme ! an x
d(s,x%) :ﬁ C, s elmk:y (0 < 8 < 1),
=00 ’

then we get the identity

g(s,x) = §(s,x + g%; ) = $(s,x - §§;~ .

(2.17)

Also by a corollary to Zygmund's theorem Cégpizéij

2 i
fetr [}n 5 n] and hence by a known theorem [@5;p.8§} '

it follows that
' 2 . '—
£(x) = T ~limit ¢(s;x) (|x] < ).
s->1 ‘
Therefore from (2.14), (2.17) and (2.18), we obtain
8 .. . .
g(x) = I°-1limit g(s,x) , (|x] ¢ = ).
g-»1

We now apply Lemma £.5 with Oy and f(x) replaced by
% .
G eand g(x) respectively to get

* 2
:?i:‘cki £ T%T .5rig(x)}2dx .

. % 2 ‘f’ e
From this we obtain [C | < T%T' 2 lg(x)] ax.

Therefore (2.15) gives

2
[Cyl

- ) 2
< g(%“r g le(x) | ax.

(2.18)

(2.19) -
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Wow,by (2.14) and winkowski's inequality,

1
{ jﬁfg(x)izdxzf.
B

1 : 1
{ég]f(x + §%E) nf(x)]zdikz +~{é:}f(x - E%E>”f(X);2dxi§ _

we have

[ 72

. o a
T T .
= 0 ( §E§*) + O(2nK } , by the hypothesis

e ‘ f € Lip (a,0,B)y P2 R,

. 2
This together with (2.19), gives JCK{ = 0

Thus |C

e

k

This completes the proof of Theorem 2.

"REMARK : It can be observed that under the conditions of
Theorems 1 and 2 the absolute convergence of the Fourier
series (L) of f can be established fof o > % , . by using
(2.1)

Proof of Theorem 3.

Put ny =0, n =-n, (k<0),

1 . s .
Ong =0, 0 =Blay iy, ) (k>0

= Eh (k < 0). Therefore we can write’

C
e X

(L) in the form
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ink:;x

os)
V(f): C e .
2= Cn
k:—m .
j R FN ,
We have z ooy | s x < 00 (0 <8 <1) (2.20)
k=—m k ‘
? inx  In|
k
Put f(s,x) = ;; . C e s , (0 <8 <1)
) ' | [l Tk
-00

for all real x. The existence of f(s,x) is ensured by
(2.20).
We obviously have

0o
f(s,;x) = E . (an cosny x + b
k=1 k

simm, ¥)s .
Kk k

Since the conditions (2.6) and (2.3) hold ,

. 2
Lemma 2.1 gives £ € L [rﬂ s ﬂ] .

Hence, by a known Theorem [45;p.87?], it
“follows that

2
f(x) = L ~1limit f(§,x) (=l < n) - (2.21)
gS=>1 : '
We assume that the integers J and K satisfy
; ' ' dn
2rT . K
ny > %5 and 0 < J < 55 (2.22).

#ithout loss of generality, we assume that

r iz an even integer,
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Take gj(x)

= f(x + fjﬂ + 2nT_) (' > fix + 21—-+ 23& gK

r
+( )f‘(X+23'n LR "'zn )+.'coo

2 “K+2nx- Ty

/2 r 2in o
+ (~1) (r/2>.f(x+- g )+ e

' b - .
237 T
— T ( b R, )
(r..1 ) ng ~ Eng T nK

T ' . ' '
(fA > f(x + §A£~ - %%“ ) o (2.23)
r / X X
_ ink23n
. o, 7 r ”*‘ITIE—'*
3 1T
and Ak(g) = an(21 sin o Yy roe .
B o r
Since |A,(3)] < ;cnkg 2 , it follows from (2.20) that
w0 Iy |
E fAk(j)ls < ® (0 <8< 1) (2.24)
k=—m ’
‘ @ In, | in x
Put gj(s,x) = Z Ak(j)s-nk e ¥ , (0 < s <1) (2.25)
k=—o0

We then get the identity -

g . (s x) = f(s,x + 2in

+ w
g 2“1{ )
; .
2in iy T
- fs,x + = b E e )
( 1) T g TRy ny



r °in . rm  om
+ fs,x + ==+ -
(‘2 ) ? Ny BnK Ny

, o s
Foaeen +'(-1)r/ (j - ‘B-f(ss X + Zﬁgw) +

r/2

T .
. 217 py)! T
coonm— f(5,x + o= =52 4 )
(r-l) ? ny 211K Ny

r .
2 )3
¥ ( )f(s’““‘ﬁ‘&‘*ﬁr)
. r X K

and from it together with (2.21) and (2.23) we obtain

2
g.(x) =T -limit g5 (s,x) in
J Sw>1
|x -~ xol < 8/2 (2.26)
We assume that
_1' :
(n,,, -=n) > 16m 8™ for all k (2.27)

In view of the gap condition (2.3), this can be achieved,
if necessary, by adding to f(x) a polynomial in exp(inkx)9
a proéess which affects neither the hypothesis nor the
conclusion of the theorem,

Now put A ji:.&k(a) (- 0 < k < o)
J

This is a finite summation and therefore (2.24) gives

m ' - ) N
E ]A;i slnki <o, (0<s<1) ' (2.28)

k=00



- 48 -

. % in %
Put g*(s,x) = E A:: s{nkl e nk , (0 <8< 1)
k==00

= j;:gj(ssx) (2.29)
J

Therefore, from (2.26), we get

*
Lz—limi‘t g (s,x) = E g.(x)
s->1 ’ 3 J

g (x), say, (2.30)

!

over-- the range |x-x_| < 8/2 .

ol
Thus from (2.27), (2.285, (2.29) and (2.30)y we see that

all the cond;'_ticns of Lenma 2.2 are satisfied, Therefore

2 2 . 2

gl < > gl < e _f g ()] ax (2.31)
~00 : , '

115!X~Xol.<.§2' ‘

But Ay = 3 A (3)
. j .
r
= chx (21)
T

r/2 8
= (-1) " 2" Ong [-é%{-}u

whe:ce[ 1 denotes the integral paxt, '
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Therefore ) o g
A >y 2 + ~ -t
Al 2 o Vg T Py 6457 ’

where C 1is some positive constant.

This gives,

2 2 2
Cé ‘nK 8y * 2
T ZrK < lagl
T 2 - - |

On 'the other hand, for |x - x| < 8/2

and integers j and X satisfying (2.22), the intervals

(v = %EE ¥ - 5%; + fgg )

i1=1,2y00.r Where y = x + 2T + Bl 5

fyp g
are non-overlapping subintervals of[%o -8 X, + 83.
Therefore, if V is the total rtn variation of £ in T,

then it follows from the condition (2:5) that

PIREACIF ST R
J .

Thus {g*(i)[ < j£:|gj(x)['$ V , which gives

le (x)| < v
Hence from (2.31), (2.32) and (2.33), we have

¢ 6% nf a2

K -1 kfm 2
T aEr <166 v odx
N Il

T

2

Il

16V

(2,32)

(2.33)



This gives

2 L
ahK = 0O( nlg{) 3

which in turn implies

1
ank =0 ( s ) (k => o).

Sae

Similarly, we get b 0 (»—%;) (X =5 @ ).

n, =

This proves Theorem 3.



