
CHAPTER - II

THE ORDER OF MAGNITUDE OF FOURIER COEFFICIENTS 

OP A LACUNARY FOURIER SERIES

1. The study of the order of magnitude of Pourier

coefficients of the lacunary Pourier series (L) began with 

the consideration of the hypothesis to he satisfied by the 

function on a subset of , nQ instead of the whole 

interval jy-n , tiQ. In this direction, Noble [23l proved 

the following result.

If the sequence satisfies the lacunarity

c ondition
limit inf, ~^k _
k->oo logn^ ” ’

where Nk = min (nk - , nk+1 - nk^

and if the function f satisfies the Lipschitz condition 

of order a, 0 < a < 19 in a subinterval I

= i |x - xQ| <: 6^ Of Q-7I , uQ , then

, bn = 0(n/) (k ~> oo ) (2.1)

Purther, he also proved that, if f is of bounded 

variation in I, then

k
(k ~> CD ), (2.2)
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However, later on, It was pointed out by ur'yanov 0 ; p.27(Q 
that, the above results of Noble also hold for slightly weaker 

gap condition

limit inf. 
k->oo

Nk
lognk where

P. B. Kennedy fl7j| employed more powerful method 

due to Paley-Wiener and proved the following result 
(Theorem 2.A) under a still weaker gap condition

^k+l “ nk^ “> 00 as k -> CD (2.3)

THEOREM 2.A. [l7 ; Theorem 7(ii)j , If 
(i) satisfies (2,3)

and (ii) f e Lipoc(I) (0 < a < 1), 
then (2.1) holds.

later on, Kennedy showed that this result
does not hold under the Fabry's gap condition

*> oo SIS k -> oo ,

which is weaker than the gap condition (2.3). However, the 
same author jjL9j has shown that, if a more stringent 

condition (1.2) due to Hadamard is taken in place of the 
lacunarity condition (2,3) then it becomes possible to replace 
the'subinterval I in the above Theorem 2.A by a set E of 

positive measure. More precisely Kennedy proved the following 
theorem;
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THEOREM 2.B.fl9 ; Theorem l]» If

(i) ^n^j satisfies the Hadamard gap condition

—$±1- > A > 1 for all k 6 N , and
k

Cii) f S Lipa(E), 0 < a < 1,
then (2.1) holds.

Now, here we intend to study the order of magnitude 
of Fourier coefficients of the lacunary Fourier series (L), 
hy considering the classes of functions, namely Lip(a,p,l) 
and Lip(a,p,E) which are weaker than the classes lipa(l) 
and Lipa(E), considered hy Kennedy.

It is worthwhile to note that, though we are 
weakening a condition on the function, we do not ask for a 
gap condition stronger than that of Kennedy. More precisely, 
we prove the following theorems.

THEOREM 1. If (i) £n^ satisfies (2.3),

and (ii) f e Lip(a,p,I), 0<a<ljp>2, (2.4)
then (2.1) holds.

It may he observed that Theorem 1 generalizes 
Theorem 2.A, due to Kennedy.
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ftTHEOREM 2. If (i) satisfies the condition Bg

and (ii) f G Lip(a,p,E) , 0<a<l;p>.2,
then (2,1) holds.

It may he observed that Theorem 2 generalizes 
Theorem 2.B due to Kennedy.

Now, the study of the behaviour of Fourier 
coefficients is further done by Tomic jj37j , Kennedy [2CQ , 
M., Izumi and S. Izumi |l5^ . These authors have replaced 
the set of positive measure by a, single point. But in doing 
so, they have retained the Hadamard gap. The same problem 
is further studied by Tomic |]383 * Jia-Amg Chao fjQ and 
J. R. Patadia » considering more general gap condition
and a certain continuity condition on f only at a point.

Kennedy studied this problem, by considering the 
class of functions of bounded variation in I. The following 
result is due to Kennedy.
THEOREM 2.C [17 I Theorem V(i)3 • If 

(1> 1M satisfies (2.3), 

and (ii) f is of bounded variation in I, 

then (2.2) holds.

A glance at the literature of the theory of 
lacunary Pourier series reveals that there is a good scope
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for the study of the behaviour of the Fourier coefficients 
for the class of functions weaker than'the class of functions 
of bounded variation. Hence, it will be quite interesting to 
probe further in this direction. Accordingly, we consider 
here the class of functions of bounded r variation and study 
the behaviour of Fourier coefficients. More precisely, we 
prove the following theorem.

{THEOREM 3. If (I) £1^ satisfies (2.3),,
(ii) f is of bounded r^*1 variation in I, (2.5)

and (iii) fGL2(l), (2.6)

then (2.2) holds.

It may be observed that the conditions (2.5) 
and (2.6) of (Theorem 3 do not imply that the function f is 
of bounded variation in I ; and in this manner, Theorem 3 
generalizes Theorem 2.0 due to Kennedy.

2. Before we.proceed to prove our theorems, we need
the following lemmas, lemma 2.1 is a special case of a very - 
general theorem due to Paley ana Wiener [j25 ; Theorem XLII j[. 
Lemma 2.2 and Lemma 2.3 are due to Kennedy Ql7 ; Lemma 1 
and Lemma 2^j . Lemma 2.4 is proved, though not explicitly 
stated, by Zygmund jj.3 ;'p.l2l] , taking Hadamard gap 
condition (1,2); but' it is easy to see from the proof there
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that we can as well take [nk| satisfying the condition Bg. '

lemma 2.5. is due to J. R. Patadia [263 • I>emma 2,6, which is

proved hero, fe-'an extension -of the result given in the 
introduction of (the paper by Hardy and littlewood) 'j[l4j[.

JzBMAJL&Aj. If f 6 Ii2(I), where I is an interval, and if 

(nk+l ~ nk^ “> 00 in (1) then f e l2 ,113.,

2.2.^ let (i) (- co < k < oo ) be a

sequence of real numbers satisfying *k+1 > ^ („ oo < k < od),

Xk+1 ~Ak "> 00 (W -> ® )» Xk+i-/lk > ,

IAk} <- ® < k < ® ) be a sequence of complex

03 IV, 1
numbers such that y|Ak[ s < co (0 < s < 1),

(iii)
, CD

<Ka,x) = ^

-ten
(0 < s < 1)

for all real, x,

(iv) cf(x) = 1 -limit (j)(s,x) ([x-x | < 6) , where
s -> l o1 —

x0 is fixed and 6 > 0,

Then 5Z1 ’ ^Akl i 86 f |<|>(x)| dx .-00 • , —' ,
x-x0l^6
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1M1MA 2.5 let (i) ^ ^ (- ro < k < oo ) be a sequence

-1
of real numbers satisfying }i^+1 “ Xk > 16n S »

(ii) £ (- oo <k<oo)bea sequence of complex

numbers such that

|Ak| S k < CD (0 < s < 1) ,

-CO
/. ..-s 4/ , lAvl i Akx
(in) (f{ssx) = XI Ak s e x (0 < s < 1)

-00

. for all real x ,

. 2
(iv) (|(x) = 1 -limit (j)(s,x) (jx-x0 | < 6) ,

s ->l ° “

(v) The integers j and K satisfy

—1 —1|>KI > 2% 6 ; 0 < i < l n 6 UKI »

Then SK = f
21 XxIllXklil Xk I

/ -i 2
8 6 14 j(x) | <&c .

|x-x {< 8/2

LEMICA 2.4 let E CZ s be a set of positive measure 

satisfy the condition Bg and nQ 0 , n. n_k(k < 0).

Then there exists with the property ; if (ok"^ (k 6 Z)
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is any sequence of complex numbers, then for I >'Y' 

we have |eJ 3? 2
i% i < icy ,

-T

where = 53 C • Cf ^ exp {^p ~
P»q B

in which the summation is over values of p and q such 

that y < Ip | , (q | < t ana p ^ q. .

1IMMA 2,5 let E, £n^ and "V he1 as in the lemma 2.4,
\

Put C0 = 0, ck = §<3^ - lb^) (k > 0), Ck fe 0^k- (k < 0)

and suppose
0-^=0 for |k| <"Y'. Then

1E2 l^l < ’pj / |f('x)| dx .

-00 E

HMM.. 2.6 let 1 < p < q . If f e lip(asq,E)

then f e lip(a,p,E), where E is a set of positive \ 

measure in ’Q-n: , -jiQ.

Proof of lemma 2.6

Since f e, lip(a,q,l) , it follows that

/|f(x+h) - f(x)fax = o(Ih|aq) ,
E *

uniformly for x 6 1 , as h -> 0 through unrestricted 

real values.
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Consider the conjugate indices - and
P cl-P

Then by Holder's inequality, we have

(p|f (x+h) - f (x) I Zdx 
JL J

JL
q-ps q—p \ q s \ ■f 1 dx) *( f | f (x+h) -f (x)

< (2n) ^ ^/|f(x+h) - f(x)jq dx^

£
P'P

£
q

dx

P
q

-odun*
= 0 (ih|ap) ,

uniformly for x G E, as h -> 0 through unrestricted 

real values.

Hence f 6 Lip(a,p,E). This proves lemma 2.6,

if f e Lip(a,p,E), P > 1 ; 0 < a < 1 ,

P
then f 6 L (E) , where E is a set of positive measure 

in , 71Q .

Pro of of lemma 2.7. We select a (small) positive h such

that' -n _< x < x + h <_ it.

We write E^ = E .

Since E and C°»h3 are measurable , E^ is measurable.

Eet [E^l denote the measure of . Then 0 <_ |EjJ < h .
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Now, for x 6 E , we take

ti = V*5 = tsj” J f(x+u) iu '

IMS cfh is continuous.

We have f - = •y|r~y— /(f(x) - f(x+ujjdu
Ti

Hence, by Holder’s inequality,

^ - <y <
T®hX" E.

/|f(x+u) - f(x)|du 

'h
1

j* / |f(x+u)~f(x) I 
* Eh

{ J jf (x+u)-f(x) ] du^P -p-j* ( I Eh I)E, • ^h

du

Therefore

'h i ~ (j^r) \ j^if(x+u) - f(x)ip du^j

i •f
p

i
p ^>p^ |f(x+u) - f(x)] duV

\ J

This gives
' -P 1Mhl‘ ^ 1%T / |f(x+u) - f(x)j du .

‘ \
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'1\T du
p|f(x+u) - f(x)| dx ,

*1, E

by Tonelli’s theorem

T\T
. ,ap
u du

%
A^ hap

IB-h1
• i % I as - u < h

< Ag , as ,h -> 0 , where A^ , Ag are
constant^.

Since (j^ is continuous, it follows that
f e h (b)

This completes the proof of Lemma 2.7.

It may -be observed that Lemma 2.6 and Lemma 2.7 
will hold for 1=1 also.

Proof of Theorem 1, 'Since, by Lemma 2.6, a function of

Lip (a»q.) belongs to Lip (a,p) for 1 <, P < q., it is 
sufficient to prove the theorem for the class Lip (a,2) in I.

Put nQ = 0 , nk = - n_k (k < 0} s Qq = 0 ,
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°k = l(V" ibn. ^ (k > 0), Ck = (k < 0).'
Xk ”k

Therefore v/e can 7/rite (L) in the form 

oo
<T(f) = C, e k

m^x

kssfc/00

We assume that, the integers j and K satisfy

47“ UiiK
2tc

xk " TnTr > ~~ and 0 < j < he1 6ix_

Take f.(x) = f(x + ) _ f(x +
K XX-

■K

Since , b -> 0 as k -> oo , (]Ck| } is a

(2.7)

(2.3)

(2.9)

hounded sequence ; and hence we he .ve

oo

z: !ci
nk1

< -oo (0 < s < 1)
■co

oo

-co

(2.10)

Put f(s,x) - °k s ^ e ^ , (0 < s < 1) (2.11)

for all real x. The existence of f(s,x) is ensured by

(2.10).

We get
oo

“XZ* 2^ “ ^-V ) (cosnkx + isinn, x)s k 

k=l k ^ ■ *
00+ X.Z 2^an,+ il3n ^ (cosnkx _ isinn^s3^ 

^ k kk=l
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co, n
= cosl\x + ^ sirmkx)s

k=l

■' 2
By (2.4) and lemma 2.7, we have f 6 1 (i).

. ' 2
Since (2.3) holds, lemma 2.1 gives f C 1 , nj.

Hence hy a known theorem C« ! p.87~| it follows that 

2
f(x) = 1 -limit f(s,x) (|x| <_ iz). (2.12)

s -> 1

Without loss of generality, we assume that

■^k+l ” nk ^ % for all k. (2.13)

In view of (2,3) this can he achieved, if necessaryby 

adding to f(x) a polynomial in exp(inkx), a process which 

affects neither the hypothesis nor the conclusion of. the 

theorem.

Thus from (2.9), (2.10), (2.11), (2.12) and (2.13), 

we see that all', the conditions of lemma 2.3 are satisfied.

Hence

ST r"V—'—* 2 ' 2
3K = £__Jckl' <--66 lf-j(^)| .

l:|x-x0|< 6/2 

' 2
We observe that >_ |CgJ

2 f 2
This gives |CKJ <_ 86 J jf.(x)| dx .

But condition (2.4) gives
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/lfj(x)|2ax= OCH^).

X1

Hence it follows that,

I°kI' = * ■
nK

Thus |Cg|

Therefore 

Theorem 1

_ Q (-•--■»—) as k -> oo .

nS
(2.1) holds and this completes the proof of

ZEP-°iLorem 2. .As mentioned in the proof of Theorem 1 , 

it is sufficient to prove the theorem for the class 

lip(a,2) in E .

Assume that, the conditions of Lemma 2.5 are 

satisfied. Put nQ = 0 and n^. = -n (k < 0), Therefore

we can write (1) in the form (2.7).

Put g(x) = f(x + sg- ) - f (x - pj—)

* -rcana Ok = 2i ck sin ^ ^
K

Then Jg^.| <_ 2|C^| and hence by (2.10)

. , *, Inkl
we have |c,J s *■ < oo (0 < s < 1).

-<00

'k

Put
00g(s,x) = C * in 

k
•v I invx ' e 151 (0 < s < 1)

(2.14)

(2.15)

(2.16)

-oo
for all real x .
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The existence of g(s,x) is ensured by (2.16) 

How if we put

(j)(ssx) r
'^k' in^x

Cfe s e (0 < s < 1)
-00

then we get the identity

g(SjX) = (| (S s X 4- ~~ ) - (j>(s,X - ) • (2.17)

Also by a corollary to Zygmundfs theorem £2;p-24l[J
2 ~

f G L {-% , tcJ ana hence'by a known theorem [43;p.87J ,

it follows that
f(x) = L^-limit ^(s,x) (|x| <.7!;). (2.18)

s~>l “

Therefore from (2.14')s (2.17) and (2.18), we obtain 

2g(x) = L -limit g(s,x) , (|x| <_ % ).
s->l

We now apply lemma 2.5 with and f(x) replaced by
#

Ck and g(x) respectively to get

(2.19)
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Sow,by (2.14) .and Minkowski's inequality, 
we have 1

f j~ |gW|2a^ .
L B

1
4/lf(* + g“) -f(x)|2dx^ + {j |f(x -^)-f(x)|"dxj2

= 0 (
IS.

+ 0(__ %
2xik

a) by the hypothesis 

f 6 Lip (ajPj'E),

^ 1This together with (2.19), gives -jC^I = 0(
“k

Thus 10 1 « T). (jj5-> as k ~> oo .
Tc k

p > 2 9

This completes the proof of Theorem 2.

' REMARK ; It can be observed that trader the conditions of 

Theorems 1 and 2 the absolute convergence of the Fourier
3_series (L) of f can be established for a > g, » - by using 

(2.1) .

Proof of Theorem 3.

Put nQ =0 , n^ = ~n^ (k < 0) ,

°“o =0 > \ = h\, - i\.) (k >0)i'

C = G? (k < 0). Therefore we can write' 
^k n-k

(L) in the form
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co. in,x
^T(f) - ^ 0„ e K

n.
k=-oo k

SO,We have iG^js ^ <oo (0 < s < 1)
Z~’ nk (2.20)
k=-oo

t
irux |n, |

0n e * s k , (0 < s < 1)

-00

for all real x. The existence of f(s,x) is ensured by

(2.20).
We obviously have 

co^ni ■■ m

f(s,x) = / (a^ cosn^x + bn sinn^x)
*k

k=l

Since the conditions (2.6) and (2.3) hold 4

Lemma 2.1 gives f 0 L [-m , ttQ .

Hence, by a known Theorem £*43;p.87, it 

follows that
2

f(x) = L --limit f(s,x) (|xj < it)
s->l

We assume that the integers j and K satisfy

2t% XK ' "T“nTr > and 0 < ,j <
6n.K

Q%

(2.21)

(2.22)

Without loss of generality, we assume that

r is an even integer.
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Take g.(x)

= + + %)-(i) f(x+ X+ *k~Zz5

+ J f-(jr + Ms , £3L _ StL. ) ,
2 j ( *K 2nK ^ } .....

+ (-1)
r/2 / r

f rr

r-1

(r Vf(* +■ &&■
\ r/2 / rlC

fU + p- g-+S-)nK ^nK “K

) + ... .

+ ' r i' f(l * ^L~~ 5

lnk2j-n:
n, it r t, 

and A, (j) = C (21 sin ) f e K
* Tc dnK

(2.23)

* rSince |Ak(j)j <_ jC^ j 2 , it■ follows from (2.20) that

oo

V

Kl
'2^i ]Ak(.j)|s <co (0 < s < 1) 

k=-oo
(2.24)

co
Put g..(s,x) = 22 Ak(j)s 

k=-oo

We then get the identity 

gj(Sjx) = f(s,x + + 2n^ ^

Jn^j inkx
(0 < s < 1) (2.25)'

f(s,x + )
1 > nK aaK nK
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+
/ r \ ^ , 2 in . nt
U )i(s’X + -ir+szr- 2%

hK
+ ... ■. + (—1)

r/2

r/2
r. / *bf|Jl \-f(s,x + -»-£—) +?JJL

”K

2,j-n: rn % ^
■n 9n ‘ *n  'r_l ) f(S’X + ''"k "2nKTlJK

C)n..-s^--g;>

and from it together with (2.21)’ and (2.23) we obtain

2
g.(x) = L -limit g.(s,x) in

s->l

ix - x_| < 6/2 (2.26)

We assume that

.-1(n ^ - n^) > I671: 6"”4' for all k (2.27)

In view'of the gap condition (2.3), this can be achieved, 

if necessary, by adding to f(x) a polynomial in exptin^x), 

a process which affects neither the hypothesis nor the 

conclusion of the theorem.

Now put = Ey 3) , (-co <k<oo)

3
This is a finite summation and therefore (2.24) gives

y |Ak| s K < co , (0 < s < 1 )

(2.28)

k=-oo
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*#r

Put g (S jX)
|n^.j in^x

Tc
k=-co

(0 < s < 1)

3

Therefore, from. (2.26), we get

(2.29)

(2.30)

over-- the range ]x-x0| £ 6/2 .

Thus from (2,27), (2.28), (2.29) and (2.30), we see that 

all the conditions of lemma 2.2 are satisfied. Therefore

oo ^ 2
< E

-oo

\\ < 166”1 / |g*(x)] dx

J
hs ix“X0j< ^

But 4 =

3

= 53 °n (2i)

r/2 _
(-1) 2 C.

n•K
,871 i *

where [ 3 denotes the integral, part.

(2.31)
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Therefore l #2 . r 2r p P 62 nf
l%l > (-D S. (anK+ ^ >

where 0 is some positive constant. 
This gives,

ng2 v,206 -nK aaLK * 22 p6~2r - I % ' ■

On 'the other hand, for jx - x j <_ 6/2 
and integers j and K satisfying (2.22), the intervals

(y in in JL. ^ nTTKy „ + __ , ?K
i = 1,2,..., r Where y = x + +2jn’“K rn?n ’j£

are non-overlapping subintervals offx - 6 , x_ + 6~[.

Therefore, if V is the total r^11 variation of f in I, 

then it follows from the condition (2*5) that

IMx)f i 7 » (|x - x | < -4- >,

(2.32)

lhus |g (x) | < > | gj(x)} Y , which gives

3 • 2 oIS (x)| < TT
Hence from (2.31), (2.32)'and (2.33), we have

n c2 2 206 nK ®n
'K

m2 26~2r < 16 6 r 2Y dx

(2.33)

= 16V



This gives

which in turn implies

Similarly, we get b

This proves Theorem 3.


