CHAPTER -~ TIT

LACUNARY TRICONOMETRIC SERIES AND THE ORDER

OF IS COEFFICIENTS

1. In chapter II, we saw that, a good deal of work
has been done in gtudying the set of necessary conditions
for a given lacunary frigonoﬁetric geries to become the
Fourier serieg of a function which belongs to some Lipschitz
class. Bubt a glance at the literature of the theory of
lacunary Fourier series.reveals that much remains to be

done for studying the sufficient conditions in this regard.
In the present chapter, we shall study the sufficient
conditions under which a given trigonometric series becomes

the Fourier series of a function belonging to some Lipschitz

class.
Here, we consider the‘sequence{;nkg given by
n, = 'Eakr} , where a > 1 and 0 < r £ 1. (3.1)
It can be easily verified that, for
0 <'r <1, “f%ii~ ~-> 1 ask ~-> @

and for » = 1, the sequence‘{nk}'in (3.1) satisfies
Hadamard gap condition

nk+1

Ty

I
g~2"§ 1 for all sufficiently large
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values of k. Thus a seguence {nk}.of the type described

in (3.1) is less restrictive than a Hadamard sequence. It is

also known that for such a sequence

n.
(n - ) > A ==  for all sufficiently
k+1 e KL=T ,

large values of k, where A is a positive constant
independent of k .,

Fupﬁher, while considering the gap condition (3.1)
for studying the estimates of the Fourier coefficients of
functions in Lipa(P), we need the following result due to

Chao [3] ..

THEORTM 3.4 (? : Theorem 11 . If

(i) fe Tipa(P) ., o >0,
and (ii) (nk+1 - nk) 2 A Fxnk) , Wwhere
F(nk)’f ® as kxT o0, F(nk) <my for all Xk

and Ai is a positive constant, then

et ‘
ank 3 bnk = O@(nk)D g k = 192,33:oat °

Using Theorem 3.A for the sequence in (3,1),

we obtain
If £ € Tipa(P) (a >'o) end {nk§ satisfies

the condition (3.,1) then



k(1-T)a ' A
k k ny

We 'now consider the converse problem snd gtate

the result proved by Kennedy £i93 in this regard.

THEOREM 3.B [ 19 ; Theorem I |. If
(1) {nk% is a sequence of nstural numbers satisfying
the Hadamard gap condition (1.2) ,

and (ii) jgéi (gn cosmyx, + b, sinn x ) (3.2)
k:l k k i

is a trigonometric series with

(Y - 4 1
anka bnk =0(n. ") , 0<a <1, (k= o00),

then (3.2) is the Fourier geries of a function belonging

to Lipa(E) , where B is a set of positive measure in
[}n ) n].

While studying the order of magnitude of Fourier
coefficients for more general gap condition than (1.2)
M. Izumi and 8. Tzumi {15 and thereafter Chao [37) obtained
the results similar to that of Theorem 3.B. In fact, |

M. Izumi and S. Izumi proved the following theorem,



THEOREM 3.0, E:LB s Gorollary {[. Tf

(1) f e Lipa(P) (0 < a < 1),
and  {(ii) £ has the Fourier series with the Iladamsrd gap
condition (1.2),
then £ € Lipa in [-m , ] .
Now, our aim here is t¢ replace the Hadamard
gap condition (1.2) in Theorems, 3.3 and 3,0 by'a weaker
gap condition (3.1), In fact, we prove the following theorem

in thigs chapter,
THEOREM 4, If (i) g'ngy is a given increasing sequence

of natural numbers satisfying

T
nk.—_[ak],where a>1l; 0<r<1 (3.3)

k(i‘”r)ﬁ’,

and  (ii) B, bnk =0 (w—w—gm\ ; 0<a<1, (3.4)

l’lk /

then the trigonometric series (3.2) is the Fourier series

of a function belonging to ILip &r % N NS n:lo

Tt may be cbserved that, when r =1 , our theorem
matches with Theorem 3.B due to Kemnedy as well as with

Theorem 3,C due to M. Izumi and S. Tzumi,

Lo In order to prove the theorem, we need the following
lemmg due to Chao E&] .
LEMMA 3,1 If O < qr < 1 then
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Proof of Theorem 4: It follows, from the gap hypothesis
(3.3) thet, given any positive integer m, we have

n > ﬁm for all sufficiently large values of To (3.5)

Y
#e choose m > 1 + &T%ZET . o (3.6)
Then certainly m > iwimngmgi : (3.7)
Now  la, cosmx + b, sinn x|
k k -

5 (!ankT + lbnk,) ,l X € [;% ' ?j

p (1=
o4

"

A k(l-r)a.
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L

j83) .
. : A .
nd - is con en
a E T T e is vergent asg
k=1 k :

my SELDTC gy (5,7)

Hence, by Weierstrass M-test, the series (3.2) converges
uniformly to some function £ in [.m , ﬂj and that it ig a
Fourier series of fo. Therefore

®
f(x) = §* (gn cosm X + b
Y1 k

n, sinngx), x € CT“ . ﬂi}

In order to show that f ¢ Lipar s O0< g <133 0<»r <



= H6m

in E'n . 'n:l, we have to show that
f(x+h) -~ £(x) = 0({k]*") wniformly for x € [-m s n}

as h > 0,

&

It follows from (3.5) that there exists a positive

integer K1 such that np > pm for g1l p > K . o (3.8)

Consider any K > K1 , and then the interval

( 1 9 L ] . Take a real number h sgo small that
nK+1 nK

1 -1
h| € (o= = 1, (3.9)
Il CnK+1 ’ nK]
~ -a {1-v)a n '
Now |f(x+h)~-f(x)]| < A 5 lnp D sin -—g-m |
p=l ‘

where A > 0 is a constant, independent of =x and h.

A{ . ng: lnﬁa (1-x)a sin I-LPEL |

+ p P S
1

i

P= P=K+1

A(S + T) , say (3.10)

i

Since |siny] < ly] for all real Sr,-

K - -
S = Z fn ¢ p(1 v sin il—*gl}«l

2
p=1
X
< S i
p=1- P

<k ZK Y (1-g)  (1-w) |
- 1~0)  {l=r ’
’%fh'{Z.-“L : }np P ) (3.11)

pml 13::K1
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But, by (3,8)
: _ s
m> 1+ ““(““*“‘al_"“ﬁ)

n(g~ar) = (1l-r)a+l
Therefore p 2D
This together With.(3.8) gives
Ao (1~1)a+1

np 2D ‘ for all p> K.

Therefore, on multiplying both the sgides by

1o _4 legr ~1 leag (1-1)a
n, P, weget n, . D ;ﬁnp - D (3.12)
K K ;
(1ee) (=T leqr ~1
Thus z ny P < n, . 0P (3.13)
P=K—l P=K1

Also, by using Archimedean property, we have

X %
_ (1-a) (1-7)a l-gr -1
np <P £ I }E: np ¢ .
p-:l p:l
for some positive integer N. ' (3.14)

Hence, using (3.13) and (3.14), the relation (3.11) gives

. X (1-ar) -1
i .
Cl E - (np r )
. P

leqr '
= O([h{AnK ) ; by Lemma 3.1,

Therefore, by using (3.9) we have

s =.0(|n|¥) . (3.15)
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On the other hand,

f

ce (i-1) '
Z ‘ﬂpa’p ’ gf (3.16)

But by (3.12)

Therefore (3.16) becomes,

X ~qr =1
T < .

Y: :[r)zzr(K%-l)

Y+1( )

_ 4 B (m1)-1
i )T 2]
©Y=0 2" (K+1) P=2" (K+1)

=f5:{n:?r | Q".;"K(Kﬁtl))’?L A (k1) |
Y= ) -

2" (K41

(o8] -
= 1.
\E o7 (K+1)



-59 =

—T ‘ )
- 2LK+1 ) Y
- 1”K+1 {1 * (

o)

K+1

. A—tl)-— } (3.17)

Now it is kmown [ 3 ; p.Slij that, by some modificetions,

o Z_f > 1 for all %k .
k

Therefore (3,17) becomes,

- -@r -2ar
T <n {1+i + ,?. 4 eressa ?j

K+1

The series inside the bracket is a geometric series with
. common ratio less than 1, as «Q > 1 and therefore it is

convergent, This ghows that

T

-
0 (nK+1 )

ar .
o(ln]) ), vy (3.9) . ' (3.18)

it

Hence, from (3.10), (3.15) and (3.18), we have
or
£ (+h)=f(x)| = 0({n| ) umiformly for every

X € E—n 9 n], as h -» 0.4
and therefore f € Lipgr in E—n y 'm] .

This completes the proof of théorem 4.



