CHAPTER IV »

ABSOLUTE CONVERGENCE OF TACUNARY FOQURIER

SERIES OF PUNCTIONS IN Tip(a,p) AND BOUNDED

VARTATION CLASS

' W
1. It is well ‘known that S. BernStein {2; p.154 | and
Antoni Zygmund E%; p.16i3 did the pioneering work in the
study of absolute convergence of a Fourier series., The

following theorem is due to Zygmund,

THEORTM 4,4.[2; p.161j . If
(1) feTipg , a > 0 , in [-n,n],

and (ii) f is of bounded variation in [—-ﬁ, , n:] ,

then the Fourier series of £ converges absolutely,

"Thig well known result of Zygmund is generalized by

%, Waraszkiewicz {?Q} and Zygmpnd himself [}i] as under:

THEOREM 4,B, TUnder the conditions of Theorem 4.A, the

serie
ries ©

Z (lan'lﬁ +~!bni6) <o for all

Nn=1
: . o=1
8 >2(a+2) , where a, , b, are the Fourier

,ooefficients of £,

. ~1
Theorem 4,B does not hold for § = 2(x + 2) .

* We also have the following exﬁénsion of Zygmund;s

theorenm,
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B w__z-'h_\ “' . i _,4"}\: . e . : ) _A )
k;'z“"l (gﬁk cosn, X+ bay smnkx)f o ] S o a1
'be the Fourxer series of a anperxodxc function f € L{ —1r ] W1th an. mﬁmty of gaps -
where { . } (ke N) is a'strictly increasing sequence of natural numbers.

L
M. Izumi and S. I‘izumi [21 studxed the order of magmtude of - Fourier ‘coefficients and the
absolute convergence of the Fourier series (1-1) with some lacunae, when. the function satisfies
Lipschitz condmon only ata pomt In.fact, theynhave proved the following theorems : -~ ...~

- o~

: THEOREMA ki 'Theorch] ¥oUes A St
A 1) nk +1 '1k > Ank ( A s a-posmve constant, 0 < 8 < L . kf - (12}
and (ii) f € Lip @ at a point x, e('*ﬂ,‘ﬁ_) o <a<l., .. .. (1-3)

le !f(x,+t) f(xs) -——O(It' )ast-rO
- then

ank,bnk-—~o( u{i) K=172. : S *(1-4')

" THEOREM B [2; Theorem 2] Let f satlsfy the condmous of Theorem Awithe
.0 < P < 1. -Then the series ( 1 l)converge_s absolutely when -

o >Tmin*(“2-16 , é -1 ).’
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These results are related to the earlier results due to Noble [ 5] and.Kennedy [ 3, 4]
In fact, Theorem A generalizes a part of the theorem due to Kennedy [ 4; Theorem I1]
relating to the order of magnitude of Fourier coefficients. The particular case for ¥ == 1 and
r = 0 of the followmg theorem C due to J.R. _Patadia and V. M. Shah [6 ] is a generalization
of the other part.of Kennedy's theorem regarding the absolute convergence of ( 1-1) This
- generalization ensures the absolute convergence of (1:1) whena > § (p~1- 1 ). Further,
the theorem C p10v1des us with a generahzanon of theorem B also.

THEOREM C.{6] If-fsatlsﬁes ( 1 3)and zf : ’
(nk+1 nk)>Cn§k (0<E3<1 1= 0) T ~(1-§)_ ’\

_,where C lsaposmve constant then . , - % -

= (lan 17 “Hb“kl )<oo 0<y<1" Tt C(146)
= ] R - ) -

_wﬁen a@\'+'oc¥r>(1-ﬂ—;—)'(l—£3).

Now, it is quite patural to inquue into the behaviour of the series (1:1) when
< 4 (871-1). In this regard, we propose to study the absolute summability of the series
( 1 1). Let us consider the gap condmon

-4,

(nk+1'—'nk—) > 'Anﬁ (0 < (3 <1)- . o B} B RY))

where A isa positive constant to be selected as under. Suppose that M is a positive integer:

greater than 5, where 6 == I—_l_—g Let A > ZM -1, We prove the following theorems.

THEOREM 1. IffeLip«at a point X, € (-w, =) and if {n,} satisfies (17), then

the Fourier series (1-1) of fis abéolutely summable ( C, —%— ) )

(i) foreverya >0 if 8 > %; 1-8
or ( 11) for every « > -3 if § < 3 (1-9)
' 2[3 2 5 A . ’

THEOREM 2. Under the hypothesxs of theorem l the Founer series ( 1+ l Yof fis
absolutely summable ( C,-1) when & > -1 -2,

REMARK. The significance of the concluswn ( 1 9)in theorem 1 could be vxsuahzed
when B > % Because, under this condition, we have

-
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and cbnséquently the aiasolute summability (C, —;—) of the seriés (1-1) is :ensﬁreci ifor the range

3.5 1

Similarly the significance of theorcm 2 could be visualized when B > —;— .

a8 5-1_2 < l (f~1-1) in this case.

2. We need the following lemma, due to J. R. Patadia and V. M. Shah [ 7], the proof
of which is given here for the sake of completeness

LEMMA. If {n,} satisfies (17) then - '

5 S ‘
nk>k forall keN. . ) (2:1)
PROOF. Obviously ni = 18.‘ Suppose 'ni)‘a p3. Then, since M > 8 and since

8‘1—1”%“@ implies 83=258-1wehave by (1.7)

B
np+l >np+Anp

> p¥ +ApF,

ot o IR

C=p+D

Hence the lemma by induction. e T
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Proof of T heorem 1 For a real number Y, other than a negatxve mteger, put
EY (n ‘; Y ) where ne N and E Denotmg the n th Cesaro mean of order 6>-0 by

n (x ) and replacing’ the absent terms in ( 1-1) by zeros, we have [ 1 1

R
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fou1
o
1 b

‘k‘ni; np (a, p ffos‘np.-‘.)_(zi—-bi{;ln'n’éx)‘ S B .

. k. ‘P
<-—L§~A ) ~nk(an cos ;lcx+bﬁ-V~‘s§n hkﬂ‘};—)
. n E 40 Tk kT

U S 1 I L ‘
o p{l Enk'-n -np_;Can co”snpx+b’ sin n

p P Te P ‘”.‘)

. “.: 'a‘m K f . e - :f"
) B froesny "

G e ,_bné-’ 0 ( i;s) k=12, 3 ...... by Theorem A,

. g “1?*\,; . AT
and (111) ‘ k -np[' ) # - 1 X 2 ‘

e Ani, by(1-7) S SR D S

(x)—a' : l(x) B .
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=0 —3 ) o, (n " et nk'-'-“p)
nknk o

k-1 T Clap maply
+ 2 [poaticd By (mp Ao, L
p=_1 {nk npl;l pp _'g:,p ~ )

t-ap, 1 TaeB)
=0 1+e{ kT E@aee) K } :
k P :

'\x’

1 k SRR
-““'O(l)§ 5B B—@8+a{3+0} o
By Mymor L e

= S I ) )
“'0 1) § -k-HS -F&cgs_’: i(%ﬁ ~3P0F aBd + 65 - 1} 3

SRR IR
:=Q(1) 2dﬂ+_1;~}.';36+2a6-—1
kza,-m EICEON )

E w1l T
..f}?ut « >‘2B llmphes 30~ 3 -F) > 1_ aF(d_‘

____' 2084381
>2;3 2“nlls 20-5 "

“Hence, in order to-establish the convergence of

> ' B BN

-

s 1t is suﬁicxent fo have ’

oo
P

(x) 0' 1(x)
'k k

E ‘ 3_54- SRR R :
‘,> -2 > maxizg ,2ﬁ "i }, o :: - ) = :“‘2 .

e~y

‘wmch is ensured in the followmg L RPN I R

) :,fCase (1) Let{'l S
- _:_1-,“.:: 2 3‘_”.:

y e ey

~ RN B o

L t.;l_:..‘-& q =..1.
,as??—»l:_‘_i(3 agd 92
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Ifésﬁthen A

3 5 1 i
2@ ’2‘<;":B"‘1‘<0~< o,

R N
Case (ii) LetB<-§-anda>X3——2-.

Then certainly B < %—, which shows that

1 3.5
Bl<szm-5<e

This proves that (1-1) is absolutely summable ( ‘C, -:;:-)

Proof of Theorem 2. "Let 6 =].. .Then by using Theorem ‘A and "(2-1), we obtains
* from (2-2),

@=0, @] -

R Uﬁ
< My
1 K
nk(nk‘+ 1) gp_z_:
1k n(lfarsi » o
noop=1 P I

. np (al‘lp CDS‘r?p X + ]?np sin np,x) 5
=Q(1)
1

I

°""§gc«—kﬁ.+-l)} o . -‘yg
e

WBp PR

AR

Sﬁncé :u‘> ﬁ- 1 -;:2, it follbw_s that
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Hence
- .
z Unk,(x) - unk-l. ()
which implies the absolute summability (C, 1) of (1- 1) This completes the proof qf

ithe theorem.

The author is thankful to Professor V.M: -Shah for h1s help and guxdance in the
“preparation of this paper. : .
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THEOREM 4,C. Under the conditions of Theorem 4.4,

8 -
ﬁ n/ﬁ(lan} + |b ) < o0 for

n=1

the - geries

every B <-go .

Considering mcfe general class of functions
belonging to Tip(a,p) than that of Lipe, Hardy and
Littlewood [137} obtained the following generalization of

Zygmund's theorem 4,4,

THEORRM 4.D. [13] If (1) £ € Lip(a,p), _
) O<@ 1 5ap>1 in[-m, @] ;
and (ii) f is of bounded variation over [-m , m] R

then the Fourier series of f converges absolutely.

Thig theorem reduces to Zygmund}s theoren

when p = @ ,

We now look to the relevant development in the
theory of lacunary Fourier series, by considering the paper
due to Noble, which was published in the year- 1954, Noble
[?3] studied a lacunarity condition which enabled him to
deduce results of general character concerning the behéviour
of the Fourier coeffiéients and the absolute couvergence of
the lacunary Fourier series (L) under the assumption that th
corresponding Tunction f has certain property €. being of

bounded variation or belonging to Lipe, in a arbitrary small
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subinterval of the interval of periodicity. Noble's lacunarity
condition makes it possible to relax restrictions on the
behaviour of £, The Tfollowing theorems due to Noble are

nentioned in this regard.

THEOREN 4.F. [23'; Theorem 5] . If

. . N
() 1im Yk .
k->c0  logn, = @, N = min {nk+1 i —nk-i} ?
(ii) £ e Lipa(I), 0 <o <1, - (4.1)
and (iii) f is of bounded variation in T, (4.2)
then - :
) 00 ‘ . \
E (fan‘l-i-lb [y ¢ @ (4.3)
-y k s

J

THEOREM 4.F. [23] . Under the lypothesis of Theorem 4.,

5 (s B o, 1) < ‘
' + o
L...I 8'1’1k Ilk . ’
k=l l .
2
whenever g > Pl

(LHEOREM 4.0; [25] . Tnder the hypothesis of Theorem 4.,

@ ) ‘
B/2
. (lag | #|b, | ) < oo for every g < q.
k=1 S k T

In 1956, Kennedy @’7]113@& more powerful methods

due to Paley and Wiener [251 to give a simple proof of Noble's
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theorems under less restricted gap hypothesis. He proved

the following theorem,

THEORMM 4.H. {17 ; Theorem V (iv) |. If
(1) (Pk*l ~m) -> o as k->o0 (4.4)

and (ii) f satisfies the conditions (4.1) and (4.2),

then (4.3) holds,

Theorems 4.F and 4.¢ ;  under the gap condition

(4.4), can be easily deduced on the same line.

Thus, we observe that, Kennedy studied the absolute
convefgence of the lacunary Fourier series (L), under the
gap condition (4.4), when the hypothésis in the Zygmundfs

theorem 4.A is satisfied only in a subinterval of [}ﬁ . %].

In this chapter, we wish to carry out-a study 6f
the absolute convergence of a lacunary Fpurier'series (1),
keeping in mind the Hardy-Littlewood Theorem 4.D. The
natufe of this study is analogous to the one which was
carried out by Kennedy in case of Zygmund's Thearem 4.A.

In fact, we prove the following theorems.
THEOREM 5. If (i) {n | satisfies  (4.4),

(ii) f e TLip(a,p,T) With 0 < ¢ < 1; P > 2 5 ap > 1,

and (iii) f satisfies (4.2), then the Pourier series (I)

of £ converges absolutely.
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‘ It may be observed tﬁat the at;ove Theorem 5
generalizes Theorem 4.H due to Kennedy. We algo have the
following two extensions of Theorem 5,

THEOREM 6. If (i) { o satisfies (444),
(1i) f e Lip(a,p,;) with 0<acXg 1} P> 2,

and (iii)‘ f sé‘tisfies (4.2),

then
00

B B ’
Z'(Iank; + [bnk[ ) < o for

k=1

2{p =~ 1)

every § satisfying 2 > p > e

It may be observed that, when B=1,

Theorem 6 reduces to Theorem 5.

THEOREM 7., Under the hypothesis of Theorem G,
-2, 8/2 .
, > . (]aﬁrl | + Ibnk-') < o for
k=1 k

. -~ 1
every f < %‘%;:W .
Tt may be observed that, for f'= 0 , Theorem ¥

reduces to Theorem 5.

2 In order to establish our theorems, -we need Lemma 2,1

and Temma 2,3, These lemmas are given in Chapter II.
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Proof of Theorem 5,

Put ny =0 , ny = ~n (k < 0)
C, =0, Cp, =%(an - b ) (x > 0)
o k k k ’

n n

o, = G (k < 0). Therefore we can write (L) in the form
- ] ‘

“k -k
&) in x
G‘(f) = C e nk .
E n
; 2 k .
r:‘_w
We assume that the integers j and XK satisfy’

' 2m I )
g > = and 0 < jJ <z~ &ng

Take f(X) = f(X + m )\ - f(x 4 .KEL;,M ).
J nK ) 'nK
We have N o | 2 < (0 <s<1)
a, S (oo 2Fe .
TE:: oy ? -

-~Q0

put f(s,x) = EO:D: O, sinl‘?] e K0 (s < 1)
-0

for all real x, The existence of f(s,x) is ensured by

(4.7). We obviously have

‘ : n
t 4 k ’
f(s,x) = é (ank cosmy X + bnk alnnkx)s .
k=1

It follows from (4.2) that f is bounded in I. Therefore

2 ,
f € L (I). Since Dyoq = O => ©, it follows from Lemmag £

(4.5)

(4.6)

(4.7)

(4.8)

o1
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thet £ € LZC-TEQTEZ.

Hence by a known theorem [@3; pLBﬁl it follows
that

f(x) = L2~1imit f(s,x) , (|x] < =). . (4.9)
8 ~>1

Without loss of generality, we assume that .

L n, > 161:6"; for all X | (4.10)
In view of (4.4), this can be achieved, if necessary, by
adding to f£(x) a polynomial in exp(inkx), a process which
affects neither the hypo%hesis nor the conclusion of -the

theorem,

Thus from (4.6), (4.7), (4.8), (4.9) and (4.10)

we see that all the conditions of Temma 2.3 are gsatisfied.

‘ ionk[ < 86 f [fj(x)l c:b?., (4.11)

I, |x-x ] 8/

Hence

Let «p' =p-1. As P> 2, p' > 1.

" Let g be a real number such that

Now (4,11) gives,



- 67 -

{' 7 o, ‘%2 }q < (86‘"1)9(-;( |£. (%) dx}q
Ty 1 > J
! !

2 "%

Taking summation over j, we get,

. | L . . :( ) ‘
L‘{L’%@} < Z,Jzirl)q{ J It dx} .
’ %DK 0 < S[Z_T,EL 1
- s
o 2 ‘
From this we get,
X AN W ¥ 2 1a
{ g:'%' } < ():nK {f fj(x.)l dx}‘ ,
- L

j

\)

S*S?Z{ . <x>{2 }q ) | (4.12)

K 3 J

i

where C is some constant depending on 8.
Note that, C denotes a positive constant which is
different at different occurances,

Since 2=14+1

=(1+%-r)+%
- 9
p' q

an application of Holder's inequal‘tv gives

IEE R )

1 ) \
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P+l X, i
wﬁ—"’“fp _]_-_ . q q A}q

s{({tfjém
- {_if{'fj(x)[pdxﬁg" {f 1fj(x){d% 7]

1 I

This combined with (4.12) gives

o o | | . ) |
{ ;/I:K—_: Icnk' }q < "%Z’ ?{Q T_g,fj(X)]de >p 'f{ifj(X) ldx‘j'
(4.13)

Now the condition f € Lip(a,p,I) implies that

f ;fj(x);pdx f [£(x + 2Ty _ £(x . -i*?-i-g—ill“)lp dx
T, x | K

i

Ty

i

o EH"™),

and, for }X—XOI < -%-6 and ~i‘n”ce:ge:c's i, K satisfying (4.5),

the intervals
. 237
x + (2;] ,_1)“75-” X + -_.':L.g.
( nK ’ nK >

are non-overlapping subintervals of [Xo -8, X, + 63.

Therefore, if V is the total variation of £ in lx=x, | < 8,

we have

Zlfa(x)[ L V\ (fX - Xol i%& ) .
3

Therefore (4.13) becomes



I’lK . ' (xp$

> e, | [ v
1 o
EDK o 1
’ = & - - - 3 ™
(1+ £234 )
1Y
which in turn gives, )
I]K ' 2 ‘ ' s - . g - :
E lc. | ¢o 1 . (2.14)
T s (é 5 %3) : o
- 2% & '

Tet m be a positive integer. Bither the set of

integers k forx which

2™ < n | < 2™ i empty, or there is a member
of this seb, say K = K(m), vhich has largest modulus; and
in the later case the set is included in the set of k for
" which | |
Sy < Ingl <

Thus; in either case,

" S %
o 2 2 T o
Z- fcnki 'S' N tanl = O(nK )9 b.,v (4.14)
2m<1nktﬁ o+l %ﬂK < [nk‘£ ng e
n(d - oy ‘
=o(z * Py, (a18)



Also,. by (4.10), the number of terms in the surmstion

2m+1 :

> ) m ‘
E : 1 is of  0(2),
.

2
Hence by Cauchy's inequality we get,

. 1
2m+1 : 2m+1 o 1 2m+1 )
}jlcnaaq}:‘mns}- S5 }
: k
m gm
2 2
5-$% g
] O 2 » 2
%(1 - % - %v)
= 0 3
3 (2l l
and hence .
nel - ap
)O I< . &0] 22,( pv ) ‘
- iz:: .. 4.1%
 k=-00 ‘ILK m=1 ( )

Since ap > 1, the series on the right of (4.17) is

convergent, This completes the proof of Theoren 5.

Proof of Theoren 8,

The proof of this theorem reseﬁbles’the proof of

Theoram 5.
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2y -1)
Leb «Y‘— 2p + ap -~ 3 °

Tt is clear that 0 < g < 2.
We obser%e, from (4.185), that

ey ey

ankﬁ:()é g p' >
2 4

Lpplying Holder's inequality, we obtain

m+1 m+1 , m+1 :
2 - 5 2 o\ B2 2 1~
E a Z a . z 1 '
m‘ l nk’ .S. R : n},{{ B }
zm n .
2 2
{ m(- 5 - %-%’-)% ( m)l - 8/2 }
= 0 2 {2

J
4
Sincep =p - 1 alld""%?“‘!;%:l ,
it follows that,
m+1 : ‘
2 B m(1 - B/op)
> e I =0 ).
k o
m
2

oo
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Since 8 >Y , we have 1 - %; ¢ 0 an¢ therefore,

the series
©. 8
E ]anl is convergent. .0
00
Hence

<, B B
;é;:<1§nkk + [bnkp .> < w.

This completes the proof of Theorem 6,

Proof of Theorem 7.

By (4.16), we obtain

1 .
e %(l-gv@))
Z icn | =04 2 x
mo K J
2
Henee m+1 m+1
2 .. B/2 o | i 6/2 LA o |
el "
o m
2
(ms1)8/2  BESTD)
= 0 2 ¢ 2
J



" myl - o
ST + 28)
= 0 2 .
Thus
mel = op
i 10%1 < E 2
k“-—"i m=1

Since p < %%EEI% , it follows that

1 = o 7
Emfwfg +.28 < 0 and therefore

2. /2 :
B (‘Gnki <.%

k=1

’ 2
iee, j{:%i{ (}ank‘ + 1bnk¥) < o .

This proves Theorem 7.



