
CHAPTER IV

ABSOLUTE CONVERGENCE OP LACUNARY FOURIER 
SERIES OP FUNCTIONS IN Lip(a,p) AND BOUNDED

VARIATION CLASS

1, It is well'lmown that S. Bernstein £2; p,154]}and
Antoni Zygmund |h?,; p, 163.7 did the pioneering work in the 

study of absolute convergence of a Fourier series. The 
following theorem is due to Zygmund. ■

THEOREM 4.A.[2; p,16l] . If

(i) f 6 Lipa , a > 0 , in [-it , teJ ,

and (ii) f is of bounded variation in t* , it
then the Fourier series of f converges absolutely.

'This well, known result of Zygmund is generalized by 
.Z, Waraszkiewicz [*397 and Zygmpnd himself {"41} as under?

THEOREM 4,Bt Under the conditions of Theorem 4.A, the 

series
(| a^-l^ +• |bn|^) < co for all

n=l
p > 2(a + 2) -1 where ®n b_ are the Fouriesrn

coefficients of f.
-1Theorem 4.B does not hold forj3 = 2(a + 2)

■ We also have the following extension of Zygmund’s
theorem
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•1 Let

■S.
k == 1

cos- n. x+ bn,, sin n, x ) ■ - k • k.. . ■ k
(M>

be the Fourier series of a 2^-periodic function f s L { -«, « ] with an. infinity of gaps; 
( n(5. + j)» where { n^ } ( k e Nj is a strictly increasing sequence of natural numbers.

M. Izumi and S. I. Izumi [ 2 ] studied the order of magnitude of Fourier coefficients and the 
absolute convergence of the Fourier series (1-1) with some lacunae, when-the function satisfies 
Lipschitz condition-only at a point.- In-fact, they -Have proved the following theorems : - ..V

THEOREM-A.' [2; Theorem 1], If " : " . ' ‘ .

. . (i) -,nk-> Anj^ ( A is-a-positive constant, 0 < S <1 ) , , . j ( 1 *2 >

- and (ii) f e Lip a at a point x3 e ("~n,-w), 0 <'* < 1,/ .. .. (1\3.)

i.e., | f ( x, +1) - f ( x, ) ' = 0 (11! a ) as t-» 0,

- then

THEOREM B. [ 2; Theorem 2 ]. Let f satisfy the conditions of Theorem A.with. 
0 < [i <1. Then the series ( T1 ) converges absolutely when .

; J~i). - - ' :
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These results are related to the earlier results due to Noble [ 5 ] and, Kennedy [ 3, 4 ]. 
In fact, Theorem A generalizes a part of the theorem due to Kennedy [ 4; Theorem II ] 
relating to the order of magnitude of Fourier coefficients. The particular case for y — 1 and 
r == 0 of the following theorem C due to J. R._ Patadia and V. M. Shah [ 6 ] is a generalization 
of the other part-of Kennedy’s theorem regarding the absolute convergence of ( 1 • 1 ) This 
generalization ensures the absolute convergence of (IT) when « > §(P-1-1), Further, 
the theorem C provides us with a generalization of theorem B also. r

THEOREM C. [6]. Iff satisfies (1-3) and if . ’ ‘‘V, ' .

tnk + l ~ nk) > C nk k ( 0 < P < 1, -r > 0) (1-5)

.where C is a positive constant, then
OO

^ (| aDlr l^ +.lbt.; 1Y) < oo, 0 <y^r (1-6)
k — 1 K K ; .. '

when «PY + «yr > ( l-y)(l-P).

Now, it is quite natural to inquire into the behaviour of the series ( 1 1 ) when 
« < 4 ( P_1 - 1 ). In this regard, we propose to study the absolute summability of the series 
(IT). Let us consider the gap condition

(nk+1 “ nk>h> Ank (0 < P < 1) . . (1-7)

where A is a positive constant to be selected as under. Suppose that M is a positive integer
1 Mgreater than 8, where S = yyj. Let A > 2 . -1. We prove the following theorems.

THEOREM 1. If f e Lip « at a point x0 e ( - w, n) and if { n^ } satisfies (1*7), then

the Fourier series (IT) of f is absolutely summable | C, y j
( i ) for every * > 0 if P > -j ; (1-8)

,or ( ii ) for every « > ^ - y if P < y. (1-9)

THEOREM 2. Under the hypothesis of theorem 1, the Fourier series ( IT ) of f is 
absolutely summable ( C, 1 ) when * > P-1 - 2.

REMARK. The significance of the conclusion (1-9 ) in theorem 1 could be visualized 
when P > i. Because, under this condition, we have

3_
2P

5
2 < y (P-1-!)
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and consequently the absolute summability |c, - j) of the series (1*1) is ensured i for the range 

Similarly the significance of theorem 2 could be visualized when P > y ,

as P-1 - 2 < y ( P-1 - 1 ) in this case.

2. We need the following lemma, due to J. R. Patadia and V. M. Shah [ 7 ], the proof 
of which is given here for the sake of completeness.

LEMMA. If {nfc} satisfies (1-7) then 

£n^ > k for all k e N. ( 2*1 >

PROOF. Obviously ni > 1 . Suppose n^ 3* p . Then, since M > 8 and since 

—p implies 8p = 8 - 1 we have by ( 1*7 )

n . , > n + A n P+1 P P

8 I * 3P > p + A p ..

-8(>+f)

=p8['+|[ff)+(^)+- •+(S)]i

= (P+D5

Hence the lemma by induction.
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Proof of Theorem 1. For a real number Y, other than a negative integer, put 
” (n ~n ^ ) where 11 e N and = 1. Denoting the Cesaro mean of order 6>0 by

a ( x ) and replacing the absent terms in ( 1 • 1 ) by zeros, we have [ 1 ]

Ax)nk nk_1

1
■ V n E9 

k;nk

k . ' 9-T , -
'2 E- - n„ ( a ■ cps n„/x + b - sinn_x j 
p=l - nk'np P np . P • np • P .

<-jT 
n. E k n.

n, (a cos n, x + b sinn, x) 
.k n^ k . n^ . k

+.
'k-1• no -1 -. -

2 E . -n -(a cos n x + B sin n„ „ \ 
p.= 1 • k • p F p - . “ P

(2-2)

Let 0 = -j'■

Now

( i ) E9 „0
n--r(e + i) »

■tJH V-V^J
i , k = 1, 2, 3,....... . . by Theorem A,

and _(iii) v I n,. -n

- >T“k“nk'- 11/01 p*~ L2, 3>......—. .k-l

- > A nk , by ( 1*7). 

:Hence,;frpm { 2-.1 ) and ( 2-2 ), we obtain

0 , . 0 ;; xV(X)_ffnk~'l(X)



'■But a

-a

-Hence,

ooE -
■k~l

a

which 

. .’Case. (

'0 (1) -h> {nt(

Vk (

-aP -«P,.”k - -+”k ■ >

1k-1
+ 2 Pi, -n |l-*-V“Pi ii4 ii ip=\ I k p|

- «P , - «pn.(nn +np )

0(1) 1 _ 1-*P ,
l + 0<{ nk. + P (1 
k ( . - nk

i , r-:*P)1^57 •t-v- - i

+ otp p-P0.4-«p + 0
X -it*

°a)[

Q(l)

,08 + «3S.- ’ 8p - §P0 -f «P8 
K .,K

i

+H8-1}

2 *P +1. •' -3P + 2“P - 1
k2(l-ft ,k2Cl-p)

,as 8 =- 1-.P 'and 8

- -1- ; ■,.* -2ap f 1
> _2p ~ 1 implies 2 ^ > l an°

^3 5 7 2«P j- 3P -1 . ,
>2|- 2 implies. 2(I_p) ;> 1.

in order to establish the convergence of

, it is sufficient to have0 0 v \% W-ff _,.(x)
nk nR 1

^ 1-. t 3 5 ?” ““[»2 S'

is ensured in the following.

i).- ;Letp >,^ .

If s£> < j then

i - ' ‘-4j ’k
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If y sg P then

Case (ii) Let P < —• and » >

Then certainly P < y, which shows that

1 t 3 5 ^2P " 1 < 2P ~ 2

This proves that (IT) is absolutely summable |c, y J.
Proof of Theorem 2. Let P = 1. ,-Then by using Theorem A and (2* 1), we obtains 

from (2 >2),

a (x) -ff , (x)"k nk_1

nfc (nfc + 1) S n ( a„ cosn, x + b sin n„ x) 
= 1 P np P -np P

1 k (1-«P):°0) 2 27 n
nk;P=1 P

o (1) n\ 'nf-1
k

"=0(1)[7^h)]

°(1)| afiS + S-f }.

. ° ^ J ap + J3 l ’ aS S , 1 - P * "1,1 " P I

Since «.> * - 2, it follows that ~j~y - >1.
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Hence

oo
s

k—1
(x)

k
.< oo,

which implies the absolute summability (C, 1) of (Mj. This completes the proof of 
'■the theorem.

The author is thankful to Professor V.M'.Shah for his help and guidance in the 
. preparation of this paper.
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THEOREM 4.C. Under the conditions of Theorem 4.A, 

the•series
(3/g

n (ja^l +' |bn|) < oo for

n=l

every p < a .

Considering more general class of functions 

■belonging to Lip(a,p) than that of Lipoc, Hardy and 

Littlewood jjjLSj] obtained the following generalization of 

Zygmund's theorem-4. A.

If (i) f 6 lip(a,p),

0 <■*. < 1 ; ap > 1 in , rif] ,

and (ii) f is of bounded variation over £-ti 5 tQ ,

then the Fourier series of f converges absolutely.

- This theorem reduces to Zygmund's theorem 

when p = co .

We now look to the relevant development in the 

theory of’lacunary Fourier series, by considering the paper 

due to Noble, which was published in the year' 1954. Noble 

studied a lacunarity condition which enabled him to 

deduce results of general character concerning the behaviour 

of the Fourier coefficients and the absolute convergence of 

the laeunary Foprier series (L) under the assumption that th< 

corresponding function f has certain property e.g. being of 

bounded variation or belonging to lipcx, In a arbitrary small

THEOREM 4.D.
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subinterval of the interval of periodicity. No bice's lacunarity
*

condition makes -it possible to relax restrictions on the 

behaviour of f. The following theorems due to Noble are 

mentioned in this regard.

1HB0RM 4.E. [23 Theorem 5J . If
(i) lim ^k ' „ , f -

k->oo logn^. ” 00 » Nk “ min lnk+l ” “lc ’ ”k -;nk-l} ’

(ii) f 6 Lipa(I), 0 < a < 1 , ■. (4.1)

and (iii) f is of bounded variation in I, (4.2)

then - ,
00

/- 1 da,, 1 + |b I ) < co 
k=l k ^ (4.3)

SSSpELiiH.* U.fJ . Under the hypothesis of Theorem 4.E,

cb.'
P.L~> (IVI' + lv l ) <

1 k k
k=l

co

whenever (3 > a + 2

[2S3 » Under the hypothesis of Theorem 4.ES 

V2-* 3/2
/—■ nv (Ivl + K ) <oo for every 8 < a.
k=l - k , nk -

In 1956s Kennedy |l7^Jused more powerful methods

due to Paley and Wiener [25] to give a simple proof of Noble's
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theorems under less restricted gap hypothesis. He proved 

the following theorem.
THEOREM 4.H. JjL7 ; Theorem Y (iv)^|- If

(i) '(n^ “ nlc) -> co as k -> oo ' (4.4)

and (ii) f satisfies the' conditions (4.1) and (4*2), 

then (4.3) holds;

Theorems 4.S' and 4.G- , '-under the gap condition 
(4.4), can be easily deduced on the same line.

Thus, we observe that, Kennedy studied the absolute 
convergence of the lacunary Fourier series (1), under the 
gap condition (4.4), when the hypothesis in the Zygmund's 

theoi’em 4.A is satisfied only in a subinterval of T-tt , nj.
In this chapter, we wish to carry out-a study of 

the absolute convergence of a lacunary Fourier series (1), 

keeping in mind the Hardy-littlewood Theorem 4.D. The 
nature of this study is analogous to the one which was 
carried out by Kennedy' in case of Zygmund's Theorem 4.A.

In fact, we prove the following theorems.

THEOREM 5. If (i) ^n^ satisfies ,(4.4),

(ii) f 6 Lip(cc,p»l) with 0<a<_l?p>2 ? ap > 1,

and (iii) f satisfies (4.2), then the Fourier series (1) 

of f converges absolutely.
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It may be observed that the above Theorem 5 
generalizes Theorem 4.H due to Kennedy. We also have the 
following two extensions of Theorem 5.

THEOREM 6^ If (i) £ n^ satisfies (4,-4),

(ii) f 6 Lip(a,p,l) with 0<a<l;p>2-,

and (iii) f satisfies (4.2),

then
(3 |3> (1^ ) + |b | ) < oo for

L—. k k
k=l

.every 6 satisfying 2 > 8 > l^-13 “ *
• . r jo c 2p 4- ap -3

It may be observed that,, when p = 1,
Theorem 6 reduces to Theorem 5.

THEOREM 7. Under .the hypothesis of Theorem 6,

’ 0/2
nk da^ 1 + |b |) < oo for 

k=l k *

every p .

It may be observed that, for p’= 0 , Theorem 7 
reduces to Theorem 5. .

2, In order to establish our theorems,-we need Lemma 2,1 
and Lemma 2.3..These lemmas are given in Chapter II.
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Proof of Theorem 5.

Put n0 = 0 , n^ = -n^ (k < 0)

°n = ° - V = V ' V (k > 0)o k k k
0^ ^ Si (k < 0). Therefore we can write (L) in the form

• k -k
^(f) ■ £ \elvc 

k=-oo

We assume that the integers 3 and E satisfy' 
nK > f^ alid 0 £ 3 < \ m”4 6nK

Take f .(x) = f(x + — f(x + )#
K K

(4.5)

(4*6)

We have 00 nk'|Cn | s' *' < oo,- (0 < s < 1) .
...-00

(4.?)

_ 00, n, inocPut f (s 5 x) = y C s k e * , (0 < s < 1) (4.8)

for all real xg The existence of f(s,x) is ensured by
(4.7). We obviously have

■ ^oo.., n,(a,
k

f(.s,x) = (a^ oosn^x + simyOs k .
k=l

It follows from (4.2) that f is bounded in I. Therefore 
2f 6 Is (I)._ Since n^. ^ - n^. -> 00 , it follows from lemma 2,1
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Hence by a known, theorem {43; p.87l it follows
that

f(x) = 1 -limit f(s,x) , (|x| < n). . (4 g)
s ->l '

Without loss of generality5 we assume that .

nk+l “ nk > for all k * (4.10)

In view of (4.4), this can be achieved, if necessary, by 
adding to f(x) a polynomial in exp(inkx), a process which 
affects neither the hypothesis nor the conclusion of-the 
theorem.

Thus from (4.6), (4.7), (4.8), (4.9) and (4.10)
we see that all the conditions of Lemma 2.3 are satisfied. 
Hence

, 2 -1 
jO | < 86

k
2fj(x)| dx .

1
2K

^ hJ < ^ ri5 lx“x0ii fi/2

(4.11)

Let .p* = p - 1. As p > 2, p* > l. 

Let q be a real number,such that

How (4.11) gives,
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-n.
■8I1 -l.qf..

k
< (86 ) 1

2 q ' |f'3*(x)'| dx L

Taking summation over j, we get.

”K
Thu*t 21 q

V ' 1 -i'q.

O < 3 <

(86 x) 
~8nK' 
i4tc -

|f^(x)| dx

0 < D <

From this we get.

c{ c.
2iq

n.
K T -v

/■*
< n. IK j

f.(x)| • dx
J

CL

(4.12)

‘1
where 0 is some constant depending on 6.
Note that, C denotes a positive constant which is 

different at different oeeurancesi 
Since 2=1+1

= (1 + ^r) + —
v p ; q.

_ p* + i j. i
~ i + ’

p q.
an application of Holder's inequality gives

f 2 1 qj ]f.(x)| dx I^U)'
p +1 + 1“TT“ i dx
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P’+l
P’ ;'P 1 1 y. „ 1 iq.ta)p' ax)

£ J~ |f j(x) |Pax^p |fj(x)|dx^

This combined with (4.12) gives

nKp%l (!f3(x)|Pto)p .J|f.(x)|axJ.

3 h

(4.13)

how the condition f e Lip(a,p,I) implies that

,PC |f .(x)| dx = C"' |f(x + “tP” ) — f(x + j dx
i- d V ■ K K

/ <rr cep„= o((-^) ),

*1 • -and, for |x-x0| < ??6 and integers j, K' satisfying (4.5) 

the intervals

(x + (23 ?
K K

are non-overlapping sub intervals of |jcQ - 6, xQ + 6^J» 

Therefore, if 7 is the total variation of f in ]x-x0| < 8,

we have'

I i. v , ( lx “ x0 I 1 gs ) •

(4.13) becomesTherefore
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ap.q
0 / n ,, P V.5

rt 0 (1+ SM. sn^. p' }

which in turn gives,

(i Jm m.)
(4.14)

Let m be a positive integer. Either the set of 

integers k for which
ILL i j Urf J.2 < l^l i 2 is empty, or there is a member

of this set, say K = K(m), which has largest modulus; and 
in the later case the set is included in the set of k for 
which

2“k ~ Inkl 1 nK *
Thus* in either case,

(4.15)
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Also,, by (4*10), tlie number of terms'in the summation

gltt+l
TZ 1 is of' 0(2*“). 
. m 2

Hence by Cauchy’s inequality we get.

,m+l ■,m+l 12 ^
-M+1

n.
m

• S 1
m _m

and hence 

00nk=-oo

* 0 i 2 .2

0

m

l
(l _ — _V q p»'

0 2

00 m.

% < C
2V p’

m=l

'(4.16)

(4.1?)

Since ap > 1, the series on the right of (4.17) is 

convergent. This completes the proof of Theorem 5.

Proof of Theorem 6.

The proof of this theorem resembles the proof of

Theorem 5
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Let y = ,p - l) 
2p + ap - 3

It is clear that 0 < g < 2. 

We observe; from' (4.15), that
3m+l

ii'v =°(2m = 0 (2 }
Applying Holder's inequality; we obtain

m+1 m+1
... .

m
nk

P/2 m+1
|0“ic

/ 2-
/ z—
V m2

= 0 i 2 , * / 2
z m(z n.. ffPP + 1 +1

H 2q '2p + 1 2>
2= 01

Since p* = p - 1 and --~t + “• = 1
Jr Q.

it follows that 
m+1 / m(i - P/y) vZZ -0 <s /

m
Hence

1C
■00 V

to, m(l_|3/y) < C y^2 7
m=l
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Since p >Y s we have 
the series

-j _ < or

convergent.

and therefore5

Hence

This completes the proof of Theorem 6. 

Proof of Theorem 7,

By (4,16), we obtain



Thus

v- P/24—*nk 
k=l

|C-
CD

m=l

m/i - pep2^“p - 1
2

Since 13 < Ife-TT it follows that

+ .2(3 < 0 and therefore

< co

i.e. + |b |) < go . 
k

This proves Theorem 7


