CHAPTER - V

ABSOLUTE "CONVERGENCE OF A LACUNARY FOURIER

SERIES AND A SERIES ASSOCIATED WITH IT FOR

FUNCT TONS IN Lip(e,p) AND BOUNDED r'»

VARTAT TON CLASS

Lle In this chapter, #e proceed to study the absolute
convergence of lacunary Fourier éeries (L) for more general
classes of functions than those considered by us in

Chapter IV. In fact, we consider here, the clags of functions

of bounded rth

[Zn, ﬂ] .

In order to explain the significance of the results

variation over arbitrary subinterval T of

proved by us in this chapter, we recall here (from Chapter IV,
Theorem 4,E due to Noble and its generalization - Theorem 4.H
due to Kemmedy., We observe that, in Noble's theorem the
generating function .f is of bounded variation in I (?ver and
above that it is in Tipa(I). Replacing the condition of
bounded variation by a less stringent condition of bounded

th

T’ variation (r being a positive integer), S. M. Mazhar [22]

obtained the following generalization of Noble's result.
THEOREM 5.4 [22]. If
(1y Lim My
k~>00 log n,

N, - mi - -
o = Bin { TS B nk-l} ’

= @, where . (5.1)
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(ii) £ & Tipa(I) , 0 < a <1, ' (5.2)
and  (iii) £ is of bounded T2 varistion in I,
then the Fourier series (L) of f converges.

absolutely.

Mazhsr also obtained the extensions of his above

_theorem similar to Theorems 4,F and 4.G,

Now, Kennedy's theorem 4.H requires that the generating
functién f is of bounded variation in T as well as in Lipa(I).
However the gap condition taken by Kennedy is weaker than
that of Noble. Replacing the condition of Tipa(I) in Kennedyfs
theorem by a weaker condition of Lip(a,p,I) ,we have studied
the absolute convergence of (L) in Chapter IV. In this chapter,
we propose to replace further the condition of bounded varim-

ation by a weaker condition of bounded r' P varistion. In fact,

we prove the following theorem,

THEOREM 8., If (i) (nk+1 - n,) -> oo (k => c0) , (5.3)
(i1) £ € Lip(a,p,I) with 0 < a £ 15 p > 2 3 (5.4)

ap > 1 ,
and  (iii) £ is of bounded r°® varistion in I, (5.5)

then the Fourier series (L) of f converges

absolutely.

It may be observed that, our theorem 8 is a simulta-

neous generalization of Theorem 4,H due to Kennedy and
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Theorem 5,A due to Mazhar, Theorem 4,H is generalized by
replacing conditioné (4,1) and (4.2) with that of the corres-
ponding weaker conditions (5.,4) and (5,5). At the same time,
Theorem 5.4 is generalized by replacing conditions (5.1)'and
(5.2) with that of the corresponding weaker conditions (5.3)

and (5.4).

Further, it is interesting to note that, without the

lacunarity condition (5.3) and with r = 1, p = 00,
I= C—-n ’ nj , our Theorem 8 reduces to the classical result

which gives a generalization of the well known theorem of

Zygmund EZ; p.lGlj on absolute convergence, At the same time,
without the lacunarity condition (5.3) and with r = 1 ,

I= [, 'n] , Theorem 8 reduces to the classical theorem
which gives a generalization of the theorem due to Hardy and
Littlewood ELZ):( for p > 2 . We also have the followirg

extensions of ‘Theorem 8.
THEOREM 9. If (i) {“1& satisfies (5.3) ,
(ii) £ € Tip(a,p,I) with 0 < ¢ <1 5 p> 2,

and (iii) f satisfies (5.5),

then

Q0
NIRRT

é_‘(}ank} + }bnk] )< @  for
=1

. . / 2(p ~ 1) .
every B satisfying 2 > g > 5D 1 op-3
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THEOREM 10, Under the hypothesis of Theorem 9,

= p/2
Y om ey )10y D <o

k=1

we have

for every B < E%%"E"%T :

It is easy to see that, when 8 = 1 Theorem 9 reduces

to Theorem 8 and when § = 0 , Theorem 10 reduces to Theorem 8,

FPurther, it may be observed that, our study of the
properties of lacunary Fourier series (L) depend mainly on tw»
things - first, the localness and the type of the hypothesis
to be satisfied by the underlying function end secondly - the
kind of gaps in the Fourier series, Usually, when the
hypothesis on the function is relaxed, the gap condition is
strengthened to ensure the desired conclusion., However if we
compare our theorems with Kennedy's theorem 4,H then “ - we
Tind that, it becomes possible for us to obtain Kennedy's
conclusion %y ﬁeakening both the conditions on a function
even without strengthening the gap hypothesis (g = B) => .
On the other hand, by comparing our theorems with Mazhar's
theorems C?23 s we find that Maghar's conclusion can still
hold even by weakening fhg gap hypothesis from (5.1) to (5.3)

as well as the condition om £ +too.

2, In this chapter, we alsc discues the convergence

of (L), (Li) and the absolute convergence of the series



. .
Sn - 8
(mk’m“ 3 ’ (5.6)
Z: My
k=1

k
where S, = E (an cosn X + b, sznnpx) and
k 7 P .

S is an appropriate number independent of . .

The importance of the study of the series (5.6) as
regards to its convergence and Cesdro summability was first
recognized by Hardy and Littlewood [11] in the context of
the general Fourier series. Later on it was studied by
Zygmund [43; p.6§] and several other researchers, Considering
certain conditions on £, V. M. Shah [35; Chapter V | sbudied
the convergence of (L), (Ll) and absolute convergence of (5.6).

On account of our Theorems 1, 2 and 3 of Chapter II, it becomes

possible to take more general conditions on the underlying

function f than those taken by V. M. Shah. In fact, we prove
the following’theorems:
THEORMM 11. If (i) {m ] satisfies (5.3),
(ii) £ satisfies (5.5),
and (iii) f € Lz(I), | (5.7)
then the Fourier series (L) is convergent to

F{x+0) 4= £(x=0)
2

at any - 'podnt where this expression has
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a meaning; and the conjugate Fourier series (L1> is convergent
to T(x) whenever f(x) exists and when x is a point of the
Lebesgue set, ‘ ‘
THEOREM 12. If (i) {m} satisfies (5.3),
(ii) f satisfies (B.5) and (5.7),
o)
and (iii) 10gnk
o M

then the series (5.6) is absolutely convergent.

is convergent, (5.8)

THEOREM 13, If (i) [nk} satisfies (5.3),

(ii) £ € Tip(asp,I) , O0<a <13 pDp22, (5.9)
. % a m 1““ .
and  (iii) E - is convergent, (5.10)
k=1 nk

then the series (5.6) is absolutely convergent,

THEOREM 14, If (i) §nk} satisfies B, condition,

(ii1) £ € Tip(a,psB) , 0<a <1 ;3p22,
(E is a set of positive measure)

and (iii) the condition (5,10) holds,

then the series (5.6) is absolutely convergent.

Theorems analogous to Theorems 12, 13 and 14 can be

gtated for the conjugate Fourier series (Ll) also.
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REMARK. V. M. Shah [35 ; p.92 , Theorem 257) has proved
o Theorem similar to our theorems 13 and 14, b¥ taking the

conditions

(1) (g = D) => @ a8 K= @

(ii) f e Lipa(I) » O < a <1,

and  (iii) E-}—&-—- <o .
e

Tt may be observed that, in our theorem 15 condition (5.9)

is certainly weaker than (ii). Since

1= )
k
< 3
nk n%

our condition (5.10) is also weaker than the condition (iii).

3 Tn order to prove our theorems we need ILemmas 2.1,

2.2 and 2.7. These lemmas are given in Chapter ITI.

Proof of Tieorem 8 ¢

Pat n, =0, 1y = -0y (k < 0) ,

1 X
C, =0 ,an::-é(ank—-rlbnk) (kx> 0) 4

2
il

[l (k < 0 ). Therefore we can write (L) in the
e Pk

form co

:E:: in x



R - '

We have
0 )
E {cnk[ s!nk{ <o (0<s<1) (5‘1'?)
k=w00
Put {

fon) .
inx |n.
f(sx) =), O, e © s T e <)
Sy ‘

for sll real x. The existence of f(s,x) is ensured by

(5.11).
We obviously have
0, 0,
f(s,x):z:E (an cosm X + by sinnkx)s .
k=1 £ k

Now it follows from the condition (5.4) that f € Lip(a,z,J;)
2
and therefore by Lemma 2.7, £ € T (I), Since (nk+1 - nk) > 00,

by Temms 2.1, we have £ € th}n 5 ﬁjq Hence by a known
theoren [ 43 ; p,s*r], it follows that

f(x) = Lz_limit £(s,x) (Jx| £ ™ (5412)
: 8 ->1

We assume that the integers j and K satisfy

5n
21% . K
ny > =g~ and 0 £ j < 35 (5.13)

Without loss of generality, we assume that r is an even

integer.



Take

f
Y
o~
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+
i\')
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S
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/‘\
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1
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ad

L]

+

oo
ol s
£

1

DD
RIS
=5

+
&l

N

+ (r) £(x + BL- - 2 ) | (5.14)
7 K

T o .
Ak(j> = an (25. Sil'lnk --g%) . €

Since "
lAk(ﬁ)l < ]Gnklz , it follows from (5.11) that

3]
Z: iAk(jplslnkl < o0 (0<s <) (5.15)
k=00

(s,x) = ﬁ Ak(a)s mk (0< s <1) (5.186)

k=0

Put
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We then get the identity

L T . '
— Lin  Ix_ 2ix IZ_ _E_
gj(s,x) = fs,x + g A-ZnK ) - (’1 ) f(s,x + . + 2nK---nK)
+ r’) £(s,x + 2dl- (I 27 )
: , -
2 S
/2 T .
+ v-oo+("1) ( ) f(s,X'}"g‘lnIl;‘-)'*‘ .o
r/2
, T
2in oA T
se s ™ f(sx*-“""-‘_“-n———-—_;}—-——)
r.1) T ng 2op T Ay
('r )
237 T
+ ) £(s,x + =8 o L)
r ’ nK 2nK
and from it together with (5.12) and (5.14) we obtain
2
g.(x) = I -limit g.(s,x) in Jx - x| £ &/2 (5.17)
We assume that
-1
(nk+1 - nk) > 16718 for all %k (5.18)

In view of (5.3), this can be achieved, if necessary, by
adding to f£(x) a polynomial in exp(in x), a process which
affects neither the hypothesis nor the conclusion of the
theoren,

Thus from (5.15), (5.165, (5.17) and (5.18) 4

we see that 2ll the conditions of Lemma 2.2 are satisfied.
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Hence
2. 2 ~1 2

E 14, (] <168 wfﬁ ]gj(x)] ax (5.19)

k=00 ) It |x-x,|< 8/2 :
But ' iszj”

T n, w2 D
D] = [og, | Lol Join T le
r T W
= {anlz sin gnK'~"1

Therefore (5,19) gives,

K 2 2 2 > 2
T ;i r -

i;'*‘z (singr—) 10, ] < kéoo 14, (D]

27K

* 2
< 166"1v5ﬁfgj(x)‘ dx  (5.20)

g ¢ Iny | < my , it follows thab

2r T
. 1 '
(= 55) 2 (3) -

Therefore (5.20) reduces *to

2 -1 2 .
fo, | < 16% Nfllgj(x)1 ax (5.21)
Kk 2 7,

K

Let p' =p-=1.48 Pp>2 ,.p >1. - \
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Let g be a real number such that
1 1

Grrgel

Now (5.21) gives

= 2k 4 2 34
{ i}:‘,cnk’ } < (=) {If\gjm( 'dx} .
27K '

1

Taking summation over j, we get
by -r L 3 2 4
2:]%%!} E 666 >{§lgﬂxﬂtk}‘
q I,

0<3i< [HK 2K o<3<[8ﬂ:}

Prom this we get

]l a7 Q
EY
c_ 2. .04
S.."'n";z ;{{'ga(x)l dx} 9 (5.22)

where C is gome constant depending on § and r, Note that C

denotes g positive constant which is different at different

gccurgnees,

Since 2

H]

1+1

(1+%1)+%

i



i
’QF
[IRY

+
o] §od

an application of HSldef's inequality gives,

p'+1A 1 g

a- —_—+ . 1

iSlgj(x)ing} ={S|gj(x}l P qu}

1y L
P41, 1.9\10¢
(oot
' (ﬁga(}{” A
= X\ 1 1

. (flgjmlax)]ﬁ
=l

ol 5

Bho

Y P
i{({‘gi(x){ P dxj
I
‘ D
_ = [(f {gj(x)[ dx)
L
This combined with (5.22) gives

{ Z Icnk] } < -%—-K Z{(f \g‘j(x){ dx} . f!gj(x)]dx} (5.23)‘
Px | 74 o

Now condition (5.4) and Minkowski's inequality give
1

——

[ { 1gj<x>s.pdx]p |

; [;(Hfm-ﬁ(z) -5« (5] 20 )
1

r/2 r TH ., L
+ weeot (=1) (r/z\ (y - ‘%K) + aes
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- (:1>f(y-§§-+2_1<-) + (r)f(y-;- %)}:{p dx:l 5

el

r

2in T

Wherev=x+—‘-—-+——-
nK ZnK

- [ E{ HEw 2w - %)}-(( ) (e - B - )
.,.((D- (i)+ 1) (f(y - %} - £(y - %T-"-;—— )>-

L
P D

..... Ty - g& h’%{‘ y - £(y - %—))H dx]
{2, -2y - -—-) ) - a1<f(y _Eyg(y - 21r))
+ 8,y - By -ty - & )>.~..

- ar_lé(y - %—-&*nﬂg ) - (y - an'-)}} 1pd{;

where ao—.zl, al_-:(l)-i s

r r
azz(g)- (1}4—1 Y eves rlzl are

congtants.

L

o] (=



e Iy

_88&.

ES{ C(Y) - f(y ---)) ] dx]

Ty
+' [I 11<(y-—n-g) ~f(y- )) dx:} .
)

1
1Y
P
_:%E—i> l ax } .
K

<

: {f lop o Elr- 2B+ Bty

a Q
(=E=) 4+ O(=2=) 4 4uuut O(~ig)

T
K X
"‘d‘-n‘v\“‘\ (‘1" -bimeS)
= O(I’lK )
Thus
B -p
‘f Igj(x){ dx = O0(ng ).
I

Also, for |x-x | £ 8/2 and integers j and X satisfying

(5.13), the intervals
ix in T .
\ (y-ﬁi‘{‘ 93""1‘{12""{%‘)9131929--‘91'
are non-~overlapping subintervals of [: -0 4y X+ 6]
Therefore, if V is the total r = variation of f in I, then

it follows from (5.5) that

Z'g3<x)l LV ’ (IX - XOI £ "%“5)‘-
J
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Therefore (5.23) becomes

-apq

ng 5 q ; .-..,,,5.?...,
{O S onqun i ¢ 3 . V;5
DN -
e
' 1

nK 0 )
E ¢ ' 1 —— 5.24
£ l nkl LC (1+a$) ‘ o ( )

Let m be a posgitive integer. Either the set .

of integers- k. for which
2" < |n | ¢ 2™ is empty, or

there is a member of this set, say XK = K(m), which has lérgest
modulus; and in the later case, the set is included in the set
of k for which
L
zog < o] <oy
Thus in either case,

4 -

e

2 2 qg  7p' ’ _
E !anl hY 5 ] 'ant = O(ZlK ) s by (5.24)

‘ 1
2"¢ |n, [c2™ gl Iy [ <o



‘, (- 1. gp )
= O<%m @ P :> © (5.,25)
Also, by (5.?18), the number of terms in the summation
my1
2 m
E‘ 1 is of 0(2) .
m

2

Hence by Cau(;hy“’s inequality we get,

41 m+1 1 myl L
S 1o, | 5| i DRk
c. 1<) S o - 1
m K { m s -
2 2 | \2

i_goyzn
= 0 2 2

il
<
N

(5.26)

| 00 . . 2'§ "‘@‘?‘E)
2 | nkl L cC :g l (5.27)

m=1

i
o
)
mm/'?
ok} ]
2
Z
| S

and hence

k::-m

Since ap > 1, the series on the right of (5.27), is

convergent,
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@
> (lay, | + [bnkf) <@,
) k
This completes the proof of Theorem 8.

Proof of Theorem 9.

Using (5.25), this theorem can be proved as per
Theorem 6 of Chapter IV,

Proof of Theorem 10.

Using (5.26), this theorem can be proved as per
Theorem 7 of Chapter IV,
Proof of Theorem 11,

If S, are the partial sums and ¥a  are the

arithmetic means of order n for the series

uo+111+u2+aao+1ln+nonnn-,

then

U, 4+ 2Ueg + soeet nﬁi
S . 6o 2%
n n+1

In case of a lacunary series, where in calculating
. . .
Fejer sums it is necessary to replace the absent terms by
zeros, wWe have,

nlun1+ J.’lzunz + eest nkun

-Gh = X
Snk nk nk_'i' 1

Now, we take
U, = cosm X +, b, ~sinn X  in case of the series (L)
e = oy S0P Ay

and
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= b COS, X = gihn,. x in case of the
unk nk nk ank k
series (Ll)'

Under the hypothesis of the theorem, we have by

Theorem 3 of Chapter II,

1 1
%nk nk s o nk
Therefore u = O(‘%*)
k k
and hence,
. unk = 0(1),
This gives,
ALk
18, = Syl & 257
Ny Dy nk+1

< Lk, , Where A is

e

an absolute constesatb,

But -—%; > 0 as k -> 0 , whenever nk‘!‘l - nk —.L> @© .

Tanerefore
‘Snk -~ G—“nkl "') O ©

Now, it is known that the Tourier series (L) is

summable (c,1) to £(x+0) g £(%=0) for every value of x

for which this expression has a meaning. i.e.

. f(x+0) + f(x-0)
Vnk 0} X 5 X A
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Hence S.

L 0) s £ = 0)

for every value of x
for which this expression has a meaning.

It is also knéwﬁ that the series (Li) is
summable (¢,1) to T(x) for every value of x for which T(x)
exists and when x is a point of the Iebesgue set. Hence oy
the same argument as used above,(Ll) converges to f(x)
whenever it exists, and when x is a point of the Lebesgue
set,

Proof of Theorem 12:

Again by Theorem 3 of Chapter II

1
30(_——)0
Ty T
Therefore, -
S "'S u + +0.- + ""S
‘ s ‘_% n, " "ny "y \ (5.28)
= n \ 6
e k .
1
A( --+ =4 oea +n Y+ |8
< 1 2 ) k ,

where A is an absolube constant.

S -8 °
i <1g>

Hence the absolute convergence of the series (5.6)

This gives

follows from (5.8).
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Proof of Theorems 13 and 14:

Under the hypothesis of the theorems,

we have

u:(lk =0 ( ~%~) , by Theorems
n, ‘

1 and 2 of Chagpter II.

Thefefore, using (5.28) we get

' 1 1 1
S, -8 A== + + et === )4|8]
o o a
e | T
s
1 1 1
Am‘l"w‘*‘ ss st + S
(1“ -0 '*l';ac) s |
< V
s
kl—a
20 ()
P

Hence the absolute convergence of the series (5.6) follows

from (5.10),



