
CHAPTER - V

ABS0LOTE-CQKVER&EM3E OP A LAC,IMARY FOURIER 
SERIES Aim A SERIES ASSOCIATED WITH IT EOR 

EI3NC1IONS IE Lip(g,p) AID BOUNDED rth

VARIATION CLASS

1. In this chapter, we proceed to study the absolute 
convergence of lacunary Eourier series (1) for more general 

classes of. functions than those considered by us in 
Chapter IV. In fact, we consider here, the class of functions

"t Tiof bounded r variation over arbitrary subinterval I of
£•* >x] •

In order to explain the significance of the results 
proved by us in this chapter, we recall here (from Chaptedr IV) 

Theorem 4.E due to Noble and its generalization - Theorem 4.H 
due to Kennedy. We observe that, in Noble's theorem the 
generating function .f is of bounded variation in I (over and 
above that it is in Lipcc(X)}. Replacing the condition of 

bounded variation by a less stringent condition of bounded

variation (r being a positive integer), S, M. Mazhar m obtained the following generalization of Noble's results

THEOREM 5.A \22j, If
(i) k->co “ ?- • where • <5-1)

\ =11111 K+i - nk * ^ -Vi} ■
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(ii) f G Idpa(I) , 0 < a < 1 , (5.2)
"biiand (iii) f is of bounded r variation in I,

then the Fourier series (L) of f convergeg- 
absolutely.

Mazhar also obtained the extensions of his above 
theorem similar to Theorems 4.F and 4.C,

Now, Kennedy’s theorem 4.H requires that the generating 
functiin f is of bounded variation in I as well as in Lipa(l). 

However the gap condition taken by Kennedy is weaker than 
that of Noble. Replacing the condition of Lipa(l) in Kennedy’s 
theorem by a weaker condition of Lip(a,p,l) ,we have studied 
the absolute convergence of (1) in Chapter IV. In this chapter, 
we propose to replace further the condition of bounded vari- 
ation by a weaker condition of bounded r variation. In fapt,

we prove the following theorem.

THEOREM 8. If (i) (nk+1 - nfc) _> co (k -> co ) , (5.3)

(ii) f G Lip(a,p,l) with 0<a<.l;p>2 ; (5..4)
ap > 1 ,

and (iii) f is of bounded r^11 variation in I, (5.5)

then the Fourier series (1) of f converges 
absolutely.

It may be observed that, our theorem 8 is a simulta
neous generalization of Theorem 4.H due to Kennedy and
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Theorem 5.A due to Mazhar. Theorem 4.H is generalized by 

replacing conditions (4.1) and (4.2) with that of, the corres

ponding weaker conditions (5.4) and (5,5). At the same time, 

Theorem 5.1 is generalized by replacing conditions (5.1) and 

(5,2) with that of the corresponding weaker conditions (5.3) 

and (5.4).

further, it is interesting to note that, without the 

lacunarity condition (5.3) and with r = 1, p = oo ,

I = , our Theorem 8 reduces to the classical result

which gives a generalization of the well known theorem of

Zygmund p.lSlQ on absolute convergence. At the same time, 

without the lacunarity condition (5.3) and with r = 1 ,

-i = c-** *3 , Theorem 8 reduces to the classical theorem 

which gives a generalization of the theorem due to Hardy and 

Littlewb'od for p > 2 . tye also have the following

extensions of 'Theorem 8.

THEOREM 9.

(ii) 

and (iii)

If (i) ^n^ satisfies (5.3) ,

f G Idp(a,p,l) with 0<a<.l;p>2,

f satisfies (5.5), 

then

ooV/ ( l&n 1 + '}bn | )< oo for
f k k
k=l

every |3 satisfying 2 > p > fr + ap-3
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THEOREM IQ, Under the hypothesis of Theorem 9,

we have
oo ,

72**. (l%' + I\D <rok=l

for every 'p < *

It is easy to see that, when (3 = 1 Theorem 9 reduces 

to Theorem 8 and when g = 0 , Theorem 10 reduces to Theorem 8.

Further, it may he observed that, our study of the 

properties of lacunary Fourier series (L) depend mainly on two 

things - first, the localness and the type of the hypothesis 

to be satisfied by the underlying function and secondly - the 

kind of gaps in the Fourier series. Usually, when the 

hypothesis on the function is relaxed, the gap condition is 

strengthened to ensure the desired conclusion. However if we 

compare our theorems with 'Kennedy’s theorem 4.H then : we 

find that, it becomes possible for us to obtain Kennedy's 

conclusion by weakening both the conditions on a function 

even without strengthening the gap hypothesis C11^^ ~ n|C) -> oo .

On the other hand, by comparing our theorems with Mazhar’s 
theorems jj32j , we find that Mazhar’s conclusion can still 

hold even by weakening the gap hypothesis from (5.1) to (5.3) 

as well as the condition on f too.

2. In this chapter, we also discuss the convergence

of (L), (L^) and the absolute convergence of the series
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k
where (a^ cosn^x + bn sinn^x) and

p=l P P'

S is an appropriate number independent of nfe .

The importance of the study of the series (5,6) as 
regards to its convergence and Oesaro summability was first 
recognized by Hardy and Littlewood [ll] in the context of 
the general Founder series, later on it -was studied by 
Zygmund [43; p.6f] and several other researchers. Considering 
certain conditions on f, Y. M. Shah jj35; Chapter V~J studied 
the convergence of (1), (1^) and absolute convergence of (5.6). 
On account of our Theorems 1, -2 and 3 of Chapter II, it becomes 
possible to take more general conditions on the underlying 
function f than those taken by V. M. Shah. In fact, we prove 

the following theorems;
THEOREM 11. If (i) £n^ • satisfies (5.3),

(ii) f satisfies (5.5),
and (iii) fei2(I), , (5.?)

then the Fourier series (1) is convergent to
jLLStP.) f (x-0)^ a-£ any , where this expression has
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a mining? and the conjugate Fourier series (1^) is convergent 

to f(x) whenever f(x) exists and when x is a point of the 

Lebesgue set.

THEOREM 12;

(ii) 

and (iii)

If (i) ^n^ satisfies (5.3),

f satisfies (5.5) and (5.7), 
co ’ logn,

4 ~ is convergent» (5.8)

then the series (5.6) is absolutely convergent.

THEOREM 13. 

(ii)

and (iii)

n to Ki
f 6 Idp(a,p,l)

03E

k=l

1-a
k

satisfies (5.3),

, 0<a<l;p>2,

is convergent,

(5.9)

(5.10)

then the series (5.6) is absolutely convergent, 

THEOREM 14. If (i) {nk| satisfies Bg condition,

(ii) f G lip(a,p,E) , 0<a<l;p>2,

(E is a set of positive measure)

and (iii) the condition (5.10) holds,
then the series (5.6) is absolutely convergent.

Theorems analogous to Theorems 12, 13 and 14 can be 
stated for the conjugate Fourier series (1^) also.
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REMARK. V. M’i Shall [35 ; p.92 , Theorem 25~j has proved 

a Theorem similar to our theorems 13 and 14, hy taking the

conditions
a) K+1 - v -> ■» aS k ~> « -
(ii) f 6 Lipa(l) 0 < a < 1 ,

and (iii) < oo

It may be observed that, in our theorem 13 condition (5.9) 

is certainly weaker than (ii). Since

1-a 
k___ < j

our condition (5.10) is also weaker than the condition (iii).

3 In order to prove our theorems we need lemmas 2.1,

2.2 and 2.7. These lemmas are given in Chapter II.

Rrnnf of Theorem 8 :

Put
• no = 0 , n^. —

Cn
0
= 0 , GyV “ “

* k ■

0 (k < 0 ). 1
nk n k

(k < o) ,

(<v - AV (k>0) ’

form oo

<r*(f) *
k=-ooVek

inkx



We have
00

k=-oo

C.
V s < CO (0 < s < 1) (5.11)

Put
f(s,x)

in. x 
e (0 < s < 1)

for all real x. The existence of f(s,x) is ensured ty 

(5.11).

We obviously have 

00

f(3,x) = JZ + V
k=l &

k

low it follows from the condition (5.4) that f 6 lip(a,2,l)
2and therefore by lemma 2.7, f G 1 (I). Since (^^ ~ I\) -> oo ,

by lemma 2.1, we have f 6 I , tcJ* Hence by a known 

theorem £43 ; P.87J, it follows that

f(x) = I -limit f(s,x) (|xj < m) 
s ->i

(5.12)

We assume that the integers 3 ahd K satisfy

2rm and 0 < 3 <
6n
8m

(5.13)

Without loss of generality, we assume that r is an even 

integer.
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Take

and

6j(=c)

f (x + g-)
1C 2V (’) It

n.'K

f<x + Sn^“ + )

i... + (-Dr/vr V(x + S^-5
V t/Z }

• » » * •

K

■(L)
4-

f (X + SM-- i=- )
K 2nK

Ak(3) = % (j?1 sinnk '

in^2 jjc

k Srig

Since
1^(3) | < jG 12 , it follows from (5.11) that

J£

00

y . lAjjKd)!
s
Ki <oo (0 < s < 1)

Put
k=-oo

1 u, I in, x
g.(s,x) = Y -A-k(j)s e (0 < s < 1) '

k=-co

(5.14)

(5.15)

(5.16)
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We'then get the identity 

g.(s,x) = f(s,x + }
r

1
f(s,x + 21®“ +

jK
rn n \ 
2n^- n^

+
r‘

2
f(s,x + EM rit 2% s 

2nIC

r/2
+ « « • * + (*”1)

r

r/2
f(s,x + Ms.

“k
) + • * • •

r

r-1
f (s,x %

nK
)

+
r

r
f(s,x + 2 .in rn 

n^. “ 2nK
)

and from it together with (5.12) and (5.14) we obtain 

2g.(x) = L -limit g.(sjx) in ]x - x | < 6/2 (5.17)
3 - s->l 3

We assume that

^+1 “ for all k (5.18)

In view of (5.3), this can he achieved, .if necessary, by 

adding to f(x) a polynomial in e3Q)(inkx), a process which 

affects neither the hypothesis nor the conclusion of the 

theorem,
Thus from (5.15), <5.16), (5.17) and (5.18)'* 

we see that all the conditions of Lemma 2.2 are satisfied.
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Hence
oo

]gj(x)| dx

But

2 *-l|Ak(j),1 <166
k=-oo I^i|x-xQ\< 6/2

in^Bjitr
n,r% .* »-I |e

kr ' ‘ ’ ~“K
K(S)| = Ivl Nr

r r n,%|C» 12 sin -of— . * 1
“k 23V

for every j satisfying (5.13). 
Therefore (5,19) gives,

~J£k- 2r xl% 2r • 22 ( sin — ) |C
oo

(5.19)

2“K V < X, iAfc(i>r
2nK k=-oo

< 166”X j |g,(x)| dx (5.20)

Since
~nK < Jn^j < , it follows that

2r
>1 sin 2nK
* ft)

Therefore (5.20) reduces to

“K

ivi S
2 „ „ „ -1- 166 |gj(x)|

2nK

(5.21)

let p = p - 1 , As p > 2 ,. p >1



- 85 -

Let $ be a real number such that

1:1 .
. 5' + 5 = 1 •

Now (5.21)* gives

_ nf 2
0 I

. nk{rin2 K
2g3(x)| dx ( ,

Taking summation over j, we get

2'r)a/j'|g3wistaj<l

From this we get

% • O 1 r» Q

io i f~i ^ J )
’§ClK d i-

2 1 ^ 
gi(x)| dxV
'.3

2 -) 4
1 gj-(x) | dxC (5.22)

where 0 is some constant depending on 6 and r. Note that 0 
denotes a positive constant which is different at different 
occurances.

Since 2=1+1
= (1 + J,) + J

P
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i

an application of Holder's inequality gives,

1 ff J |gj(x)|2dx 1 =., J|g.(x)| P

*•1. ^ i-L

P +1 1 A 1
’ + ~1 dx

p + 1 , ji
•P X.p- >

UN I-

b<*)i p' ax) v|gj (*) I

1
i

'(f •

Igjto I a*

This combined with. (5.22) gives 

nTr

£

in
21

|C
n-k

^ H{fS lejWi5^ •

3 If

Now condition (5.4) and Minkowski's inequality give

1
r p np
j jg^x)!. dx

/» f(y)-(i) f(y-^ + U f(y- ^

+ ... .+ {—l)
r/2 /r

Sr/2

f(y - i§^ +-....

(5.23)
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where y = x + 2,fg
nK

nt
SnK

j]{(f(y)-f(y ftn, )H ( 1 f (y - gr)-f<y - Is-)
“k / l v 1 ' / \ “k nK

(i)+ *) (f<y " ^ ‘ f(y ' 3ft ) W ....

... -^(y rn , n:+ *- ) - f (y - f21-)
nK n.K

P -,P
taj

j" j{a0(f(y)-f(y - %) ) - ^(fty - % >-f<y -

+ a2(f(y - §-) -f 1ty - £->)-..........

- a,
r-1 (?(y -^“+^ ) - f(y - n

£ /J
dx

1
P

where aQ = 1, a1 =

ar
-0-

a^ jt11 are r-1

constants.

w
it-

.



Thus

_ «o(^) + ..+ 0(-£-)
nK

(r

a

times)

P -ap
dx = 0 (nK ).

Also, for |x-x0( < 8/2 

(5*13), the intervals

(y - n » y nK
175
n■K

and integers j and K satisfying

+ =r- ) , i = 1,2, ... ,r“K

are non-overlapping sub intervals of jj£0 -6 » xQ .+ 6

*fc h,Therefore, if Y is the total r variation of f in I, then 

it follows from (5,5) that

g-j(x) I < v » (lx - xQ | < \ 8)\

3
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Therefore (5,23) becomes

nK 1
- <

-otpi
1?~

?,6

(1+^)
\ p

which in turn gives

(5.24)

let m be a positive integer. Either the set „ 

of integers- k. for which

2m < |njJ < 2m+1 is empty, or

there is a member of this set, say K = K(m), which has largest 

modulus; and in the later case, the se,t is included in the set 

of k for which

2nK 1 lnki -- ‘

Thus in either case,

2m< jnfc |<2m+-'1 2nK-Ink*-nK

mp«
) by (5.24)



Also, by (5.i8), the number of terms in the summation

2m+i
jr* i is of o(2m) .

m

Hence by Cauchy1 s inequality we get,
,m+l

nk'
2

11 Ml
m+1

_m

12 ? 2
c.n.

m k

,m+l
r 2y i

rtii i ^

1
2

0
f (JL SE’I s m SK q p*> 2 2 I

2 • 2

and hence

f my., 1 2 ll“ q
0 ‘

£CP\ P’}

Oh
, mr .1-ccP \ 
2

ooI
k=~oo V

CO—
< 0 7

m=l

W)

(5.26)

(5.27)

Since ap > 1, the series on the right of (5.27),' is 
convergent.
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Hence
CD

)< CO .

THls completes the proof of Theorem 8.

Proof of Theorem 9.

Using (5,25), this theorem can he proved as per 

Theorem 6 of Chapter- IT,

Proof of Theorem 10,

Using (5.26), this theorem can he proved as per 
Theorem 7 of Chapter IV,
Proof of Theorem 11,

If Sn are the partial sums and $n are the 

arithmetic means of order n for the series

4- ug + «•» + + •#•••• ,

then
Sn

<Tn = + 2Ug
’1TTT

+

In case of a lacunary series, where in calculating 
Pejer sums it is necessary to replace the absent terms hy 

zeros, we have,

*k tPri”k
“l^ n2ung + •••+ nkunk

Now, we take

u cosn^x +, h.n.
si:

and

in case of the series (1)
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X b colln, sn^x - a^ sinn^:sihn. x in case of the

series (ip.

Under the hypothesis of the theorem, we have by 

theorem 3 of Chapter II,

a* = 0(-£-) , b =
^k nk nk Tc

Therefore u = 0(-~i-) 
k k

and hence,

n,. u„ = 0(1) o

This gives,

nk
A k
5T+1

< 4JL_ 5 where A is 
Tc

an absolute constant,
V

But -g- -> 0 as k -> oo , whenever nfc+1 - nk -> ® 
xk

Therefore
l% - 'TJ -> o

low, it is known that the Courier series (L) is 

summable (c,l) to for every value of x

for which this expression has a meaning. i»e,

r, \ f (x-j-0)  f(x~0j
IX- it1* lfu    1 r"llllrn " O
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Hence S, -> £i2L±-P-).£., £.(i.r..P,.i for every value of x
_nk 8

for which this expression has. a meaning.

It is also known that the series (1^) is 
summable (c',1) to f(x) for every value of x for which f(x) 
exists and when x is a point of the Xebesgue set. Hence o,y 
the same argument as used above^(L^) converges to f(x) 
whenever it exists, and when x is a point of the Hebeague 
set.
Proof of Theorem 12:

Again by Theorem 3 of Chapter II

Therefore, •
s •» s
K

( Un1 + ^n2 + * * * + “ S
*k } nk

<

where A is an absolute constant.

(5,20)

This gives 0 losnk V
JX.

Hence the absolute convergence of the series (5,6) 
follows from (5.8).



94

Proof of {Theorems 13 and 14:

Under the hypothesis of the theorems.

we have

X
10 ( —j—) , by Theorems 

nk

1 and 2 of Chapter II. 

Therefore, using (5.28) we get

3 A(_L.,+ -Ijt + ••••+
< 1 n2

1 )+|S|
“k

n.

,a + ....+ ) + |s
k

1-a
•"05 10 (- ■) •

Hence the absolute convergence of the series (5 

from (5.10),

6) follows


