CHAPTER - VI

. ABSOLUTE SUMMABILITY OF TACUNARY FOURIER

SERTES AND ITS CONJUGATE SERIES

1. In this chapter, we discuss the, absolute summability
of lacunary Fourier series (L) and its conjugate series (Ll)
by considering certain-conditions on a function and on g

gap under which the absolute convergence of (L) is not
guaranteed, In order to appreciate the significance of the
conditions consideredlby.us in this regard, at ‘the outset,
it is desirable to recall some of the resﬁlts on absolute
convergence. Considering certain classes of functions either
on an arbitrary subinterval or at-a point of c}n ,'n:1, the
problem of absolute convergence of (L) is studied in great
details by several mathematicisns, under suitablé}lacunarity
conditions, They have obtained very interesgting results
sharpening at each stage, the‘results obtained by the previous
authors., The results due to M. Izumi and S. Izumi (157,
Jie-Arng Chao [3], J. R. Patadia and V. M, Shah [287], and
P, B. Kennedy [@Z] are mentioned in the present context,

M, Izumi and S, Izumi proved the following result

on absolute convergence of (L),
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THEOREM 6, A, |15} Theorem 2] . 1f

. B
(1) (o =1y) >am Q<e<1, (6.1)
(A is a positive constant)
(i) f e Lipa(®) , O0<a <1, S (6.2)
then the Fourier series (L) of f converges

absolutely when o > B_l -1 .

Considering more general gap condition than Izumi,

Chao obtained the following result in the year 1966.

THEORMM 6, B. [3] . If

(1) (4 - my) > A niky (0 < B < 1, Y>0), . (6.3)

where A is a positive constant,
and (1i) £ satisfies the condition (6.2),
then the Fourier series (L) of f converges

absolutely when af + a¥+ 8 > 1 .

Recently, in the year 1981, J. R. Patadia and
V. M, Shah (287 obtained the following result on absolute

convergence, which generalizes both the above results.

THEOR®M 6,C. [28] If

(i) {nk} satisfies the condition (6.3)

and (ii) £ satisfies the condition (6.2),
then
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m, ' m . m
E_:({anl+|bn})<oo,o<m31
k=1 k k

when ofm + omy > (1 - %}(1 - 8).

It can be observed that, the particular case of
Theorem 8,C when ¥=0 and m =1 provides us with a.

generalization of Theorem 6,A due to M, Izumi and S, Izumi.
This generalization ensures the absolute convergence of (L)

Wwhen o > (871~ 1) under the conditions (6.1) and (6.2).

Now, it is quite natural to inquire into the-
behaviour of the lacunary Fourier series (L) of a function

f in Tipo at a point, when q« 5 %(B"l - 1). In this regard,

we have studied here the absolute summability of (L). In fact,

we prove the following theorems.

THEOREM 15. If (i) {nk“k satisfies (6,1) with some

suitable constant 4,
and (ii) £ satisfies (6.2),

then the Fourier series (L) of f is -
absolutely summable (e, %)

(1) for every a > 0 if 8 > 5 3 (6,4)
or (ii) for every o > 5%- - g if g« % . (6.5)



THEOREM 16, Under the hypothesis of theorem 15, the Fourier

series (L) of f is absolutely summable (c,1) when o > 8'1 - 2,

‘REMARK 1, It can be observed that, the significance of the
conclusion (6,5) in Theorem 15 could be visualized when B > % .
Because, under this condition, we have

3 5 1,.~1
R R ACIEEEY

and consequently the absolute summability (e, %} of the

series (L) is ensured for the range

B 5 -1
2B "2((15_ (B "1)0

ol

Similarly the significance of Theorem 16 could be

. ‘ - ’_1'
visualized when g > % , as B 1. 2 < %(B - 1) in this

case, )

It can be seen that the above Theorems 15 and 16
are obtained under the gap condition (6.1). Now considering
more general gap coﬁdition (6.3) than (6,1) we continue further
our study on absolufe sumnability. In this regard, we refer

here the particular case of Theorem 6.C when m = 1, which
ensures the absolute convergence of (L) when af+a’y> %(1~B)

CEnder the conditions (6.,2) and (6.3¥,2ﬁ:nmy'be noted

that, when of + oY= %(1 - B), then also the absolute
convergence of {L) is obtaiped by J. R. Patadia and V. M. Shah
{29] , but under a little stronger condition on f than
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Lipa(P). Consequently as Ybefore, we would like to inguire
into the behaviour of the series (L) of a function in Lipua(P),

when

af.+ oY < %(1 -B) .
In fact, we establish here the absolute summability
(c,8) (0 ¢ <1) of (L) in the following theorem,
THEOREM 17. If (i) {nk} satisfies the gap condition
(6.3) with some suitable constant A,

and (ii) f satisfies the condition (6.2),
then the lacunary Fourier series (L) of f is

absolutely summable (c,8) for 0 < 6 £ 1

when

1 -8~-06-7Y8 2 - 38 -Y¥Y + B0 -6
oa>max{ B"’Y ’ 5T BY }

REMARK 2. It is easy to see that Theorems 15 and 16 are the
particular cases of the above Theorem 17 when 6 .—.'-:2L s Y=0 ;
and 8 =1, Y =0 respectively,

REMARK 3, It is interesting to observe that when Y= 1,
Theorem 17 gives the absolute summability (c,1) of the Fourier
series (L) for every « > O and»that; when “{:-2?3 y We get
the absolute summability (c, %) of (L) for every o > O.

Further, in this chapter, we also study the absolute
summability of (L) and its conjugate Fourier series (I’l)’ by

considering the following theorem on absolute convergence

*
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due to P. B. Kennedy Ei? ¢ Theorem V(ivl} .

THEOREM 6.D. [17) If (i) (1, -1) - @ as k -> oo, (6.6)

(i1) f e Dipa(I) , 0< a1, (6.7)
and (iii) £ is of bounded variation in I, (6.8)
then the Fourier series (L) of f converges
absolutely,
If f e Lipa(I) with o > % , then also the absolute

convergence of (L) is established by Kennedy.

Now, it is well knovwm that the condition (6.7) only,

with 0 < ¢ £ % (together with (6.6) ) is not sufficient

to ensure the absolute convergence of (L) (refer iﬂ4; p.243tD.

At the same time, the condition (6.8) only
(together with (6.6) ) does not guarantee the absolute
convergence of (L) (refer {%4 : p.241:}). Hence it is quite
natural to inquire into the behaviour of (L), whenever the
‘condition (6,7) or (6,8) only is satisfied., In this regard,
V. M. Shah {35 ; Chapter szl has studied the absolute
summability (c,1) of (L) and (L,). Here we intend to study
the same problem of absolute summability under weaker
conditions on a function than those considered by V. M. Shah,
In fact, we congider a function either in Lip(a,p) or in
bounded rﬁh variation class over arbi¥rary subinterva; I of

[} T ﬁ] . We prove the following theorems.
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THEOREM 18, If (1) {nﬁ} satisfies the gap condition (6.6),

(i1) £ is of bounded r'® variation in I, (6.9)
.. 2
(iii) fel (I), ) (6.10)
00
and (iv) E —Eg ig convergent, (6.11)
k=1 “k
then the Fourier series (L) and (Ll) are
«-(6,12)
everywhere absolutely summahle (c,1).
n - 1
.y lim kel T Tk
THEOREM 19. T (1) £5%- Togmn, = B, B > 0, (6.13)

end (ii) f satisfies the conditions (6.9) and (6.10),
then the conclusion (6.12) holds.

THEOREM 20. If (i) {nk} satigfies the condition (6.6),

(11) £ e Tip(a,p,I) with 0 < a %3 P22 ,

i © _
. Na 4+ Np + esat+ 1 ’
and (iii) ‘E {'1 2 s k} is convergent, (6.14)

k=1 By '

then the conclusion (6.12) holds.

THEOREM 21, If (i) {nk% satisfies the condition B, ,

(i1) f e Lip(a,p,E) with 0 € o £ % 5 P22,

and (iii) the condition (6.14) holds,
then the conclusion (6.12) holds,
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2 Tn order to prove our theorems we need the following
lemmss. Demma 6.1 is due to J. R. Patadia and V. M. Shah [29]
and Temma 6.2 is due to Chao EB 3 Theorem 13 .
TRVMA 6,1 If {nk'g satisfies the gap condition (6.3)
with & > 2M - 1, M being a positive integer greater than 6,

1 +Y

where &6 = -1—_—_—§ , then

n, > ¥ for all ke N

LEMMA 6,2 Under the hypothesis of Theorem 6.B,

1 ) B
a, s by ”—'O"“'a'é_?'&,) . K= 1,2,3,000.
x| Tk P i .

Proof of Theorem 15. For a real number S, other than a

s n+ 8 8
negative integer, put E, = : where n € N and Ej = 1.
n

’ s
Denoting the nt? CesSro mean of order 8 > 0 by @"’n(x)
and replacing the absent terms in (1) by zeros, we have [’7]

S INC]

A 8—1
= ' n - cosn.X + D gimn_x)
0, 0 ) ny - By P a‘np S D

< *Lw{{nk(an cosm X + by s:mnkx)l
By Enk

k—l B

{ - Enk‘np D (an cosnx+b sump'x)l} (6.15)
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i
e

Let ©
Now
(.) Ee ~J Ile s
+ n " [ (6+1)
1

(ii) a‘n.kgbnk20(_‘a'§ 9 k:lggggyu-os

By
by taking %Y= 0 in Lemma 6.2,
and (iii) -
) Iy np!
> oy -y | forp=1,2,3, ..., k-1

>anl , vy (6.1).
Hence, from (6.,15), we obbtain

: o
| o, () - Oy - NEN

1 -af  =of

= 0(1) W{nk (nk + Ty )
k-1
: 1 —(XB
+ E " 5 % (np

L (1l 1 1-ap

= 0(1) 'i{+fe{nk af, nk 5y ko1 }
1 k

= 0(1){ ni-i—oaﬁ + B-08 + aff + 6 }
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- 0(1’) .._.._.._.......3.:......-. . ~ i 1 »
= 05 + ops * T,BF - 6P + afb + 8611

by Lemma 6.1

1 1 :
0(1) cab 1 T 5Bt oaB-1 ’
2'('%‘{5- ' ‘Jzé"(‘_&}“l-p
k k

il

. . 1
88 8§ = w—mee— ande'-:z

T-p
! . . 2ap + 1
Buta)-——-zs_,l lm:'pll(‘%6~21”)>1 and

P

B3 5 . . 20B + 3B ~ 1
o> 5p " g.mplles 5(1 - m > 1.

Hence, in order to ‘establish the convergence of
‘0 ‘ .
E' 10“6 (x) - G (x) l ; it is sufficient
n, ny, - 1
k=1

to have )

1 3__5
a)max{-—-z—g—-l, 2?‘-2},
which is ensured in the follo,wipg.

. 3
Case (i) Tet P2 % .

3
1 S¢p<E then



- 105 -
Case (ii). Tet {3(-% anda)tgg-l-g-.

Then certainly £ < -23- , Which
shows that

1

3 _5

This proves that (L) is absolutely summable (c, %‘).

Proof of Theorem 16.
TLet 6 = 1. Then by using Lemmg 6.1 and Temma 6,2

for ”Y'=\ 0 , we obtain from (6.15),

| @;;kcxs SOl

. .
= - zllk ) l z: ny (a,np cosn X + bn’p si_nanH

!

o

PN

B
~

‘l—-‘-
e
M

il
o
—~
s
St

e k‘ .
= 0(1) §, (e ¥ 1)}
' 1
0(1){ o fE+6=1 }
“ k ‘ \

o(1){-%--—- g{:.!},asaz =g -

1l

i
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wl :
Since « > § - 2, it follows that &%—"j—% > 1.
Hence
Q0
ZI%(X) - Onk__ 1 (x) I < w,
k=1

which implies the absolute summability (c,1) of (L),

This completes the proof of Theorem 16,

Proof of Theoren 17.‘

Under the conditions of the theorem,

ank’bnk=0(

77 K= 128y euees

o

(by Lemma 6.2).

Also En *-TBZIT » (0 <8 <1),
and o - | 2 |my - n, 4] forp = 1,2,3,... k-1

7‘
Z_Anf(.k , by (6.3).

Therefore, the relation (6.15), given in the proof of

Theorem 15, becomes

0 8]
| cr;k(x) - CT;; -1

--ozﬁ - Yo =1 1 "05[3
= 0(1) “—“g' non ok + E T3P B P
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. -
: 1-9
. 1—&@ ~Ya 1 kel n
=0(1) —3 {nk k4 (T?-') P """R‘—‘“pw }
ok £

p=1
| Y T
1w Yo -0
_ 1 L v k.n
e
1 le-af Lt 8-
as Wp‘y‘ailaﬁdnp <m0 ¢ a,p < 1.
Therefore

fﬁ‘%k(X) - 0‘;6'11{ _1(X)1 ,

(=3 Ll

]

. 1
0(1){ 5+ af Yo . | 6+p-po+ab k‘;(—*/e-l}
By k oy -

1 - 1 : 6.1
= 0(1){ k5(§+oc§3)+ Yo * k6(6+{3-§36+oc5)+‘¥-79~1}’ by Lemma 6.1
1 ) - -1
= 0(1){ O+ B+ Y0+Y + e+2;3-»se+a5+o:5¥+*r‘—1} ? (6.16)
k 1-g k _ 1-8
as 8§ = %‘{3-%— .

Finally, since

“ 3
> L=8=08-Y0 i £i170ws that
B+Yy ;

D + of +$7’8.+ o s q :
l_.
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2w 3B )f4 Bo - ©
B+ BY

and since o > , We have

8 + 2B - BO + aﬁ + a8Y+ V=1 5 1
T-f v

Hence, from (6.16) we obtain

Q0 .

8 . 0
E o (x) - T (x)f <
k=1
which implies the absolute summability (c,8) of (n).

This completes the proof of Theorem 17.

Proof of Theorem 18,

th

Denoting the n " Ces¥ro mean of order 1 by Gﬁa(x)

and replacing the absent terms in (L) and (Ll) by zéros,

we have
Ior;;km) - On a0 I
k
1
= nw) i pz=; np unpl o Where
= ( cosn_ X + b, sinn x) in case of the series (L)
E R

(v, cosn X - ay sinnpx) in case of the series (Ll).
iy P
on account of conditions (6.6), (6.9) and (6.10)

we have, by Theorem 3 of Chapter II,

ayﬁ(,bnkw(-%lz) (k> @)
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Y o= (’ l -

Therefore,
o (x) - T (x) |
| %5, e =1
k
= 0(1) -"2"’—"1 2 E 1
= 0(1) 5% (6.17)
Oy
o
Hence the convergence of :S :{‘Oh.(x)”* o (%)
. -1
k=1 nk nk
follows from the convergence of %%f -§g= ”
k=1 l'lk
This completes the proof of theorem 18.

Proof of Theorem 19,

The lacunarity condition (6.13). implies that
(nk+1* nk)—~> oo and thgrefore, as discussed in the

proof of Theorem 18 , we have from (6.17)

| o - op 4] *—"O(—;i*ac')'-

Also the gap condition (6.13) gives
D =Ny g > Cy lognk 2 4y logk Cy >0,

(IC: 192939.-0.) ;
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. k
and hence n > my + €y z log p
: p=2
-k
> 015 log t dt
2
>cklogk, (e>0) (6,18)
(kﬂlgg,sycooon)

Therefore using '(6.17) and (6.18) we obtain,
1

|63, - o4 | = of 7 )
N ¥ Loz k
®
Since E —~—;~—§— is convergent, our Theorem 19 follows.,
k logk
k=2

Proof of Theorems 20 and 21.

Under the conditions of our theorems,
1
)

ank 3 bnk = 0( n% (k => @) ,

by Theorems 1 and 2 of Chapter II.

1l
Thi i = I o
his gives np unp o( o )

Therefore,

}e‘nkm - O‘;}’{ _

(1-a)
n
D

™=

- 1
= 0(1) -
me B



2
nk p=1
L
N D
p=1 Kk
@
Hence the convergence of E 1CT” (x) - O l(x) ’
le=1 E e

follows from the condition (6,14) of our theorems,

This completes the proof.



