
CHAPTER - VI

SINE AND COSINE SERIES WITH QUASIMONOTONE
COEFFICIENTS

6.1 INTRODUCTION:

In the preceding chapters, we have studied different types of 

summability methods. Most of the work carried out in the previous 

chapters was to obtain some relationship between different 

summabilities. Our present interest in this chapter is to study the 

series of Sine and Cosine for some special class of functions. It is 

known that any function f on an interval of length 2n may be 

expressed uniquely as the sum of an odd and an even functions. 

Odd functions have Sine series and even functions have Cosine 

series. If the coefficients of these series decreases to zero, then 

the series

—+ J]atCoskx (6.1.1)
2

5>*SWx (6.1.2)

will converge.

The monotone coefficients may be generalized by taking 

quasimonotone coefficients (see[21]). The uniform convergence of 

Sine series with quasimonotone coefficients is given by 

J.R.Nurcombe [46] as under:
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THEOREM 19 [46]:

If (bn) is positive and quasimonotone, then a necessary and 

sufficient condition either for the uniform convergence of J^bnSinnx, 

or for the continuity of its sum function /(*), is that nbn -»o.

Now, before giving the next result, we need the following 

definition,

Definition 13 [21]:

Let / e c[a,b] and x,y e [a, b]. We say that / e Lipa , 0 < a < 1, if

Lorentz [35] has proved the following Theorem for Sine and 

Cosine series with decreasing coefficients of some function 

belonging to the class Lipa. In fact, his result is as follows:

THEOREM 20:
Let

I* t\x~y\a-

/(*) = YJanC0SWC >

where anio. If f(x)<=Lipa, o<a<i,then

(6.1.3)
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This is also valid for

g{x) = ^ajmnx. (6.1.4)

The converse part of above Theorem is also proved by 

Lorentz.

6.2 MAIN RESULT:

In this chapter, we will prove a result on Sine and Cosine series 

with quasimonotone coefficients. In fact, we shall replace the 

condition of decreasing coefficients in Lorentz result by a weaker 

condition of quasimonotone coefficients. The condition of 

quasimonotone coefficients is weaker than that of positive 

decreasing sequence is seen in Chapter-I (see Remark under 

definition 11).

We first prove the following Lemma.

Lemma:

If (a„) is quasimonotone sequence then the series ^a„Cosnx is 

convergent.

Proof:

Let
'YjakCoskx — kfiCoskx
k=1 *=1 kP
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n {

T?
k=1

fi
kfi

k Coskx

By using Abie's transformation, we have

J^akCoskx = 2A(^fe“"irCosJx +nfi 

*=i k=\ v;=i J y \mJ

\
c

< M
_*=i

M £(*"-(* + 1 )J)+«"
£=1

M.

w
Therefore Y,akCoskx is convergent to some function, say f{x).

k=1

Therefore, we can write

/(*) “ ^a„Cosm.

Now, we are in a position to state our result as under.

THEOREM M:

Let (a„) be a quasi-monotone sequence of real numbers, 

i.e. -%4o , for some B>o.
nfi

Suppose

fix) = '*TanCosnx .
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If f{x)eLipa , o<a<i and osp<-|, then

a„=Q 1
a+l-2p

\n

This is also valid for

#(*) = !La*SinnX-

Remarks:

1. Here we observe that na„ = , ■n ■
n wl+a-20

1
„a-20 ->o as p<y i.e. a-2p>o.

2. If we put p=o in our Theorem M , then we get Theorem 20 due 

to Lorentz [35].

3. It is also interesting to note that the sufficient part of the above 

result can also be established under a slightly strong condition

a-2p>l.

If for a series (6.1.1), we take a„=o a+l-2p
\n

With a-2p>l,

then (6.1.1) becomes a Fourier series as ( see [5], Vol.-ll,

page 201) and hence by using corollary (see [5], Vol.-II, page 217), 

we can say that /eLipa, 0<a<l.
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6.3 PROOF OF THEOREM M :

Since /(*) e Upa , 0<«<i, it follows that 

|/W-/(o)|<|x-0|“.

Now,
J^akCoskx - ^akCosk(0)
4=i 4=1

J^akCoskx - Jofj
4=1 4=1

Y^ak{Coshc~\)
4=1

Y.a^-Coskx)
4=1

4=1Sa42sin
.2

=

Supposing *=— and using (6.3.1), we obtain
rt

2 2] akSin2 — < %- 
In na

Now

< k <n => x <kx<nx

(6.3.1)

(6.3.2)
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and Sine function is increasing in o, % . Therefore, we get

Sin it
_ < Sin kit 

2 n

• 1 ^ kiti.e. = <Sm—.
42 2n

Hence from (6.3.2), we have

Cita 4? 2 kx—— > 2 > akSin — kfni * In

>- 2 Ya.
f j \2

k=
Vl/2 J

>

Now, let us write

T,%kp , for some p > 0.
4T

We put n - m and
2

Then

(6.3.3)

(6.3.4)



Since

= sk-m

* H„± *P

h=m

> «>'E i
k=m

> Hnmfi (n-m + l)

IV >I
»Q

fi/ \n ft — n +1
np A A /

> and

Vn>l,

Therefore, by (6.3.4) we have

,a ,PU
'l'
up

a„2p
an

4Cnun
*a+l

, -of—L_

Here ft Ofj —^ o. Therefore it follows from Theorem 19 [46] that the 

Sine series with quasimonotone coefficients will converge
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unlforn’ily.' Hence'term' by'term" integration c5f‘the series" is" justified. 

This gives

X X

— ja^inxdx + ja2Sin2xdx + ■
x

+janSinnxdx + -

— a,(l - Cosx)+-j- (l - Cos2x)+- -----+—(l - Cosnx)+ ■
n

- YH-Cosnx) 
£1 »

nx= 2 f^Sin2-
tt n 2

Since g(x)eLipa, it follows that

a+l
Q<t£x

Therefore,

C/+1 > 2Y^Sm2~ 
fr n 2

kxZ 2^— Sin2
fak 2

> 2Y^, by ((6.3.3) and (6.3.4))
,7*1 k

«¥l
4 ){n

, by (6.3.5).
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Therefore, we have

a„2p
<*n „a+l

an
1

a+l-2p

This completes the proof of theorem M.
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