
CHAPTER-1

INTRODUCTION

1.1 A BACKGROUND:

The present thesis entitled " A study of different 

SUMMABILITY METHODS OF AN INFINITE SERIES " is an outcome of 

the investigations of the author into the study of various 

summabiiity methods and its applications. We propose to give in 

this chapter a survey of the summabiiity and resume of relevant 

results obtained by various authors on different summabiiity 

methods of an infinite series which will provide sufficient 

background for later chapters.

Let (a„) be a sequence of real numbers. The expression of 

the form

«o+ai+a2+----------+a„ + —------ (1.1.1)
is called an infinite series and the sequence {sj defined by

s„ =a0+a,+a2+---------------- +a„

is called the rih partial sum of the series. The series (1.1.1) is said 

to be convergent if lim* exists and the value of iims„ is called the
Jf-KO

sum of the series. Thus if a given series is convergent then it is 

possible to find its sum. If a series is not convergent then it is said 

to be divergent. A question arises: Is it possible to assign a sum to 

a non-convergent series? . It is well known that the notion of
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summability has provided a very effective affirmative answer to this 

natural question.

The theory of summability has a long illustrious history of 

more than 100 years with contributions from celebrated 

Mathematicians including Fejer [25], Lebesgue [34], Hardy [27] and 

Borel [6]. Results from summability theory have been found to be 

useful in various other areas of Mathematics and related sciences. 

We make a note of few of them:

The problem of analytic continuation has been studied by 

various summability methods and its history goes back to 1910. 

Important contributions in this area includes work of Borel for Borel 

summability [6], results due to Okada [47] covering Norlund 

summability, Agnew’s work on Hausdorff summability [3] and 

Knopp's paper on Euler summability [30]. Infact, Knopp [30] and 

Peyrimhoff [48] have successfully addressed the problem of exact 

summability regions for meromorphic function related to Hausdorff 

summability.

Mathematicians have worked to find summability tests for 

singular points of analytic function. In 1965, King [29] obtained 

necessary and sufficient conditions under which z = 1 becomes
CO

singular point of the function given by /(z)=]>Xz* • There are more
n=0

contributions by Titchmarsh [53], Hille [28] and others. Hartmann 

[26] has further extended King's and other results in 1972.

We know the Prime number theorem which states " k(x) is

asymptotic to ”. This theorem was conjectured by C.F.Gauss
log*
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in 1792 and was independently proved by Hadamard and Poussin 

in 1896. Summability theory has helped to provide easier proofs of 

this theorem. In fact, Lambert summability methods and Wiener's 

Tauberian theorem are being used to prove this theorem and a 

good reference for this is Peyerimhoff [48].

Norlund method of summability finds applications in the 

convergence problems of power series in complex analysis, e.g. it

is known that [31] a regular as well as non-regular Norlund
00

methods (N,p„) sum a given power series f(z)='£ja„zn with
71=0

limb I" =—, r >0 at most at countably many points outside the disc
n-w 1 P

of convergence, and these points can only accumulate on \z\ = R.

Now we get back to our discussion on summability. The 

notion of convergence was instrumented to the development of 

various summability methods. Likewise later on, the concept of the 

absolute summability was developed from the notion of absolute 

convergence. There are various methods due to Abel, Borel, 

Cesaro. Euler, Norlund, Riemann, Riesz and many more. Some of 

the most familiar methods of summability with which we shall be 

concerned here are Cesaro, Norlund and Riesz summability 

methods.

The Norlund summability was first introduced by Voronoi in 

1902, but not much work was carried out until 1919 when Norlund 
introduced the same notion independently. Since then this 

summability has been initially used and is known as Norlund 

summability. In 1949, Hardy [27] observed the usefulness of the
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concept of Norlund summability in correlating the same with 

Cesaro summability as well as Riesz summability. The summability 

studied by Hardy to obtain these correlation are denoted by (n,p„)

and |i\r,pn|. In 1983, HUseyin Bor [8] generalized summability

and introduced the concept of absolute (n,p„) summability of order

k, k>i, which is denoted by He has also remarked that

summability is more general than those of absolute Cesaro

summability |e,i|t of order one with index k and absolute Riesz 

summability \R,pn\ of order one. Further HUseyin Bor [14] also

extended summability to ^N,pn,y\k summability by introducing

r> o. On the other hand, in the year 1992, W.T.Sulaiman [50] 

introduced yet another new summability by introducing a sequence 

fo). This summability is denoted by N,pn,<j>\ and is more general

than 'N,ph summability.

HUseyin Bor ([10],[11]) was the first who begun the study of 

I#,/?! summability and obtained a relation between \c± and
I M *

N’Pnl summability. Several authors like W.T.Sulaiman [50],

MASarigol [36], S.M.Mazhar [39], O.Cakar and C.Orhan [22] and

many others have studied the N,p„ summability, in the recent

years and have improved upon the earlier results or obtained new 

results by considering weaker conditions and also considering 

more general summabilities.
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We have studied |c,i|4, \cxr\k, , k/d., NtPn,i and

x- n,p,\ summabilities and obtained several results, which in turn

generalizes the earlier results obtained by various researchers. 

This thesis is the outcome of the researches carried out by the 

author mainly in this direction.

In order to state some of the main results proved by us in the 

present thesis, we first give the definitions and notations used in 

the present thesis.

1.2 DEFINITIONS AND NOTATIONS:

(i) ABSOLUTE CESARO SUMMABILITY:

Definition 1 :

Let YJan be a given infinite series with (s„) as the sequence of its
«=0

partial sums. Let (o-J and (tn) denote the n-th (c,i) means of the
oo

sequences (s„)and (mn) respectively. Then the series ]Tan is said
n=0

to be summable \c,i\k> k>l, if

n=l

where
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1 n 
an=— 

n + l v=0

In view of the fact that t„ = n{an -ov,) by [33], (1.2.1) can be written 

as

(1.2.2)
rt=1 n

The above definition of |C4|t summability was first given by 

T.M.FIett [23] in 1957. Later on, in 1958 T.M.FIett [24] extended 

this definition to \cxr\k summability by introducing />o as under:

Definition 2:

CO

The series is said to be summable \cxr\k , k>\ and y>o, if

or

(1.2.3)

co

znsl n
<oo (1,2.4)

It is clear that when y = o, the summability \cxr\t reduces to |c,i|A 
summability.

(ii) RIESZ SUMMABILITY:

In the year 1993, Mehmet Ali Sarigol [37] defined absolute Riesz 

summability as follows:
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Definition 3:

Let £a„ be a given infinite series with (sj as the sequence of its
n=0

partial sums, and let (p„) be a sequence of positive real numbers 

such that

If
pn = Pq 4* jPj +———f~ pn —^ co as w —^ co .

(1.2.5)

where tn denotes Riesz mean of , i.e.
w=0

-2>VSV

1 n v=0
(1.2.6)

then the series J^a„ is said to be summable \R,pn\k> k>\.
0

Note that for k = i, the summability |R,p„\k becomes absolute Riesz 

summability \R,pn\ of order one, which is given by M.Riesz [49].

(iii) NORLUND SUMMABILITY:

The general definition of Norlund mean occurs first in Voronoi, 

Proc. of the eleventh Congress of Russian naturalists and 

scientists (in Russian), St. Petersburg in 1902,. Voronoi's article 

was short note in a rare publication, and was unnoticed until 

Tamarkin called attention to it. Norlund [45] gave the following 

definition independently in 1919.
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Definition 4:

Let JX be a given infinite series with sequence of partial sums
n=0

(s„). Let (p„) be a sequence of constants, real or complex, and let 

us write

Pn=pQ+Pl +----------- + Pn - (P-l = P-1 = 0). (1.2.7)

The sequence-to-sequence transformation

=4-2>~». ft * °) (1-2-8)
•* 9 v«0

defines the sequence (r„) of Norlund means of the sequence (s„)
co

generated by the sequence of coefficients (pj. The series is
B=0

said to be summable (N,p„) to the sum s, if

limr„ = s, (1.2.9)

In the above definition, G.H.Hardy [27] replaced (1.2.8) by

1 * 
v=0

and defined a new method of summability, which is denoted by 

(tf,pn) as follows:

Definition 5:

CO

Let be a given infinite series with sequence of partial sums
B=0

(sj. Let (p„) be a sequence of constants, real or complex, and let 

us write
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Pn=Po+Pl +-------+ Pn • (pi = P-1 = °)-

The sequence-to-sequence transformation

(1-2.10)
"n v=0

defines the sequence (/„) of Norlund means of the sequence (sj
op

generated by the sequence of coefficients (p„). The series JX is
n=0

said to be summable (n,p„) to the sum s, if

limf = s (1.2.11)
n-*»

and if the sequence (t„) is of bounded variation , that is

00

ZK-^il<00 *
n-\

then the series jx is said to be absolutely summable (n,p„) , or
B=0

simply summable pv, pB.

The conditions for regularity of the method of summability 
fv, pn) defined by (1.2.10) are

and

limlPl —> o°

Zkl=o(ip.|).
v=0

(1.2.12)

(1.2.13)
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In 1983, HUseyin Bor [8] Introduced the following concept of 

absolute (#,;?„) summability.

Definition 6:

Let Yjan be a given infinite series with (sj as the sequence of its

n=0

partial sums. Let (pn) be a sequence of positive real constants 

such that

P„ — pq + P] h------------- 1- pn —y oo as n —y oo .

The sequence-to-sequence transformation

ak *o)
* n

(1.2.14)

defines the sequence (/„) of the (Ar,pn) means of the sequence ($„), 

generated by the sequence of coefficients {pn) . Then the series

w _is said to be summable N,pn , k>\ if
n=0

« r n \*-1

zn~l
E

KPn)
fn-t*-1 <Q0- (1.2.15)

In the special case, when pn =i for all values of n, the 

summability N,pn reduces to |c,i|t summability and for k = l, the

summability jv,/J gives rise to \R,pn\ .
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Further Hiiseyin Bor [14] extended the summability to 

lv,p„,r\k summability by introducing y> o in the year 1988 as 

follows:

Definition 7

The series ]TaBis said to be summable N,pn,y , / >oand k>\
n=0

if

fP.\ . ,*

W=1 \ Pn ,
K.-Vi <0°! (1.2.16)

where t„ is given by (1.2.10).

It can be seen that:

(i) If y = o and pn =i for all values of n , then the summability

reduces to |c,i|t summability.

(ii) For y = o, the summability W,p„,y becomes IN,p„ .

Later on in the year 1992, W.T.Sulaiman [50] extended the 

summability to N,pn,$„ summability by introducing a sequence 

{(f>n) as follows:

Definition 8:

The series ]Ta„ is said to be summable N,pn,0n , k>\ if
n=0 k
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0-2.17)
n=1

where (^„) is a sequence of positive real constants and t„ is given 

by (1.2.10).

In particular we observe that:

(i) For the summability N,pn,(f>n\ reduces to N,pn
Pn '*

summability.

(ii) If $B=n for all n , then the summability \n,p„,</>„ reduces to

summability.

The above definition of \N,pn,<j>\ was reformed by
I \k

S.M.Mazhar [39] as under:

Definition 9:

00

The series £an is said to be summable x-\n,p„\, k>\ if

£0.-U‘«». (1.2.18)
n=l

where (xn) is a sequence of positive real constants and tn is given 

by (1.2.10).
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It is interesting to observe that:

(i) For jr=-=-, the summability jsr-lN,pn reduces to
Pn ' *

IN,pn k summability.

(ii) If x„=n for all n, then the summability x- 

to summability.

X,pn reduces

1.3 MAIN RESULTS:

In ordeF to explain the significance of the results established 

by us, it is desirable to recall briefly the development that has taken 

place regarding the study of summability methods used in our 

thesis.

The study of summability methods of infinite series

was originally introduced by Hu'seyin Bor ([10],[11]) and proved two 

well known results in this direction . These results are as under:

THEOREM IA:

Let {pn) be a sequence of positive real constants such that as
ft —^ CO

npn=0(P„),
pn=0(np„).

(1.3.1)
(1.3.2)

If ^an is summable |C4[4 , then it is also summable
/f=0

N>Pn k »
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THEOREM IB:

Let (j>n) be a sequence of positive real constants such that it
00

satisfies the conditions (1.3.1) and (1.3.2). If is summable 

n,p„ , then it isalso summable |e,i|. , k>\ .
k *

Further, Hliseyin Bor [12] generalized Theorem IA for more 

general summability as follows:

THEOREM IC:

Let (pn) be a sequence of positive real constants such that it 

satisfies the conditions (1.3.1), (1.3.2) and

\Si-l

X ,
n=v\Pn ) 1 n-l

=o
Pv)

(1.3.3)

00

If yv is summable |c,i;<?|. , then it is also summable \N,pn;d\ , 
<?>o and ^>1.

On the other hand, the above Theorem IA of Huseyin Bor 

was also generalized by O.Cakar and C.Orhan [22] replacing 

condition (1.3.2) by a weaker condition. Their result is given below:

THEOREM ID:

Let {pn) be a sequence of positive real constants such that as

n-> oo

npn=0(Pn)
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'p'

v=l
(1.3.4)

V-f'v/

If 2X is summable |o,i|A, then it is also summable hv,/>l , k>\
/p=0

It is worth noting, that, by dropping condition (1.3.2) from 

Theorem 1A and condition (1.3.1) from Theorem 1B, MASarigol 

[51] proved the same results in 1989.

Further, it was proved by G.Sunouchi and L.S.Bosenquent 

([52],[4]) that the necessary and sufficient condition for a series 

(1.1.1) to be summable N,g\, whenever it is summable %p I is

i,P, = o(3,p,) as «->».

On the other hand H.Bor and B.Thorpe [17] have shown that the 

summabilities given by G.Sunouchi and LS.Bosenquent can be 

replaced by more general summabilities py,$J and \n,p„\ , £>i.

In chapter II of the thesis, we have studied \c,i,r\k and 

summability of an infinite series, and obtained relation

between them, which generalizes Theorem IA to Theorem IC due 

to Huseyin Bor and Theorem ID of O.Caker and C.Orhan. Also in 

this chapter, we have discussed the x-p,p„| summability and

proved some results which generalizes the results of G.Sunouchi 

and LS.Bosenquent and also of H.Bor and B.Thorpe. Moreover in 

this chapter, we have also obtained a relation between absolute 

Riesz summabilities with respect to sequences (p„) and (g„).
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To state the result obtained by us in next chapter, we need 

following definition of almost increasing sequence given by 

S.AIjaneic and D.Arandelovic [1].

Definition 10:

A positive sequence (bj is said to a/most increasing if there 

exists a positive sequence (<?„) and two positive constants A and B 

such that

Acn <b<Bc„ for all n.
n /I n

Obviously, every increasing sequence is almost increasing but the 

converse need not be true as can be seen from the example

b„=ne(-lT ( see [1] ).

S.M.Mazhar [40] proved a result on absolute Cesaro summability 

of an infinite series. This result was further extended by Hiiseyin 

Bor [13] for summability as under:

THEOREM IE:

Let (p„) be a sequence of positive numbers such that

Pn=0(npn) as n-»oo .

If {xn) is a positive monotonic non-decreasing sequence such that

Vr„=o(i)as m-> oo

ZnX„\A%\ = 0(l) , 
0=1
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and
r _ ■\I tI'J '“W®«=i V r» y

op __
then the series Y,anK is summable , k > 1

n=0

THEOREM IF:

Let GO be a sequence of positive numbers such that

P„ =o(np„) as n—>oo ,

Let (x„) be a positive non-decreasing sequence and suppose that 

there exist sequences (4) and (j3„) such that

K|<&

fin-+0 as n—>co,

m£«Xn|A/?„|<0° ,
n=l

AmXm=0(l) as m->00

and
/ _ \

«=1 v^> y
=o(xm)as w->co ,

where

'■HriX« + l"

then the series is summable
w=0

N,pnt , k> 1.
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Now looking at the hypothesis of Theorem IE and Theorem IF, 

we would like to examine whether the condition on sequence (x„) 

can be replaced by a weaker condition and the summability by 

some what more general summability. We investigated this aspect 

in chapter III and established two theorems obtaining more general 

summability under weaker condition on sequence (.x„).

Further in chapter IV, we have extended the summability 

N,P„;r\ to DvP,y,a by introducing a> o and proved a theorem on

it. Incidentally our theorem generalizes the results of F.M.Khan [32] 

and Huseyin Bor [15].

Chapter V is devoted to the study of summability of a

Fourier series. We have seen that Y-\N,pttk summability of a

Fourier series at a point can be ensured by a local property. The 

result proved by us in this chapter generalizes the result due to 

HUseyin Bor [16].

Finally to state the result obtained by us in chapter-VI, we 

need the following definition due to J.R.Nurcome [46].

Definition 11:

A sequence (an) of positive numbers is said to be quasi-monotone

if for some pao, the sequence

Remark:

We observe that, the condition of quasimonotone sequence is 

weaker than that of positive decreasing sequence, i.e.
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Every positive decreasing sequence is quasimonotone but the 

converse is not true.

Proof:

We will first show that, if (an) is positive decreasing then it is also 

quasimonotone.

Suppose (a„) is decreasing sequence of positive numbers. Than

an~an+l V».

°n ~an*l — © • (13.5)

Now,

°n a„l > a^l

np (ft+lY (»+(»+l)^

> 0, by (1.3.5).

Therefore the sequence f,
n

is nonincreasing for some

fi>o.Hence (an) is quasimonotone. That the converse is not true 

can be seen by the following example.

Take an =iog«. Then \ is non-increasing for
np np

some /3>o and therefore (a„) is quasimonotone but (logn) is 

increasing sequence.
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In the year 1948, Lorentz [35] proved a simple but elegant 

result as follows:

Theorem IG:

If

f{x) = Y,a»Cosnx'

where a„lo , then for f{x)&Lipa , o<a<i, it is necessary and 

sufficient that

This is also valid for

g{x)=Y<a«Sinnx •

In the last chapter of the thesis i.e. chapter-VI, we have extended 

the part of the Theorem IG due to Lorentz under a weaker 

condition.
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