
CHAPTER-H

RELATION BETWEEN CERTAIN SUMMABILITY 
METHODS OF AN INFINITE SERIES

2.1. INTRODUCTION:

Hiiseyin Bor has established a relation between the 

and (c,^, k>i summability methods of an infinite series. He

pointed out that |C4|t summability method can be obtained from 

summability method by taking p„= lfor all values of neN. 

He has also remarked that one can find a sequence (p„) for which 

the methods py,/*,) and Jc,i|4 are independent from each other.

Hence a question arises that, if a series is summable |c,i|t, then 

what conditions should be imposed on a sequence (p„) so that the 

same series becomes summable pv^l . . In order to answer

this type of question Hiiseyin Bor has proved the following two 

theorems.

THEOREM 1 [10]:

Let (pj be a sequence of positive real constants such that as

n—> ao

nPn=°{p«)> (2.1.1)

PB - 0{npn ). (2.1.2)
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w
If Y,<*n »s summable |c,i|, then It Is also summable

B=0

N,pn\ , k> 1 .
I*

THEOREM 2 [11]:

Let (p„) be a sequence of positive real constants such that it
co

satisfies the conditions (2.1.1) and (2.1.2). If is summable 

N,pn , then it is also summable |c,i|A , k>l.

n=0

Further, by putting these two results together, HUseyin Bor 

obtained the following theorem.

THEOREM 3 [11]:

Suppose (pn) is a sequence of nonnegative real constants such 

thatP„ =£pv *o, pn-»oo as «-><», and that (2.1.1) and (2.1.2)
v=0

hold. Then summability |c,i^ is equivalent to summability

k> 1.

All these theorems of HUseyin Bor are related to \c,\\k and 

summability methods. Considering more general 

summability methods such as |C74;^|* and , Huseyin Bor

generalized his own Theorem 1 by proving the following.

THEOREM 4 [12]:

Let {pn) be a sequence of positive real constants such that as

»-»oo
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>p.=°(0
r,=o(np,)-

(2.1.3)

and

s
\Pn )

(2.1.4)

(2.1.5)

If JX is summabie |C4;$|4, then it is also summable N,pn;5
fl=0

k> 1, S>0.

On the other hand, Theorem 1 was also generalized by 

O.Cakar and C.Orhan [22], replacing condition (2.1.2) by a weaker 

condition. Their result is given below:

THEOREM 5 [22]:

Let (ptt) be a sequence of positive real constants for which as

n-> oo

if-ltil V J

(2.1.6)

(2.1.7)

If a series JX is summable |c,i|t, then it is also summable 

*2:1.
B=0

It is interesting to note that M.A.Sarigol [51] battered 

Theorem 1 due to HUseyin Bor by using only the condition (2.1.1) 

and dropping condition (2.1.2). He also bettered Theorem 2 by
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using oniy the condition (2.1.2) and dropping condition (2.1.1). In 

fact, his results are as under:

THEOREM 6 [51, Theorem 3.1]:

Let {pn) be a sequence of positive real constants satisfying 

condition (2.1.1). If ]X is summable \c,i\k, then it is summable
ns: 0

N,pn k>l.

THEOREM 7 [51, Theorem 3.2]:

Let (pn) be a sequence of positive real constants satisfying
00 _______condition (2.1.2). If is summable N,pn , then it is summable

/r=0

\C,l\k, k>\.

Further in this direction, G.Sunouchi and L.S.Bosenquent, 

proved the following theorem in 1950.

THEOREM 8 [([52], [4J)J:

The necessary and sufficient condition for a series JX to be
n=0

summable IN,q„ whenever it is summable N,pn\ is

-^- = 0(1} (2.1.8)
QnPn

as n-> oo .

The sufficiency part of the above Theorem was proved by 

G.Sunouchi and the necessity part was proved by LS.Bosanquet.

24



In 1987, H.Bor and Thorpe [17] proved a more general result 

in this direction as under:

THEOREM 9 [17]:

Let (pn) and (q„) be sequences of positive real constants. If

J>„& =<#.«,) (2-19)

P.4. =0(p.Q,) (2.1.10)

then the series J^an is summable
m0

N,p\ whenever it is also
lit

summable , k>\.
i lit

2.2 MAIN RESULTS:

In this chapter, we intend to prove more general results by 

establishing the relation between |c,i;<5|A (see chapter-l, definition 2)

and pv,/>„;<?|t(see chapter-l, definition 7) summability methods

under a weaker condition. Incidentally our results will generalize 

the results due to HUseyin Bor (Theorem 1, Theorem 2 and 

Theorem 4) and O.Cakar and C.Orhan (Theorem 5). Our aim in 

this chapter is also to extend Theorem 6 to Theorem 9 for

x- n,p» summability. In this regard, we refer the definition of

x~\N,pn summability due to S.M.Mazhar, which is given earlier
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in chapter-1 (see definition 9). S.M.Mazhar has remarked in [39]

that the summabilities |e,i|A, \R,pn\k, and ^p^can be

obtained from a single summability x-^,pn\k k>\. In fact, we shall 

prove the following theorems.

THEOREM A [54]:

Let {pn) be a sequence of positive real constants such that as

« QO

«p»=o(p„) (2.2.1)

and
v)

sf~T*-1“=o
n=»V^B/ R»-l

TV 8 k 1Uv, Pv

(2.2.2)

(2.2.3)

If ]Tan is summable then it is summable \N,pn;S , k>\,
rr=0

S> 0.

Remark 1:

O.Cakar and C.Orhan [22] have pointed out that condition (2.1.2) 

implies condition (2.2.2) but converse is not true. Thus our 

Theorem A is a generalization of Theorem 4, as we are replacing 

condition (2.1.4) by a weaker condition (2.2.2).

Remark 2:

It is also interesting to observe that when s = o, our Theorem A 

gives Theorem 5.
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THEOREM B [54]:

Let (p„) be a sequence of positive real constants such that as

n~> oo

Pn=0(np„) (2.2.4)

and
npn=0 (Pn)

z \Pn)

(2.2.5)

(2.2.6)

If Y.a»ls summable n,p„;S\ , then it is summable \cxs\k, k>l,
n=0

0<<5£<1, S>0.

Remark 3:

It is easy to see that, when s=0, Theorem B reduces to Theorem 2 

due to Hliseyin Bor.

THEOREM C [55]:

Suppose (/?„), (g„), (x„) and (rB) are sequences of positive real 

constants such that as

r*. = <*PJ2.) (2-2.7)

e»=Ofe,X.) (2.2.8)

PJ.-Of?,). (2.2.9)
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If Ydan is summable x-N,p„\ , then it is summable Y-N,gn
n=0

k> 1.

Remark 4:

p oIt may be observed that if we take xn=~^ and rn=^- in Theorem
Pn 9n

C then we get Theorem 9 due to H.Bor and B.Thorpe.

THEOREM D:

Suppose (pj, (q„), (x„) and (y„) are sequences of positive real 

constants such that as « -> oo

?.q.=o(p,a) (2,2.10)

Y.q,= Ofc„) (2.2.11)

P,=0(X,p,) (2.2.12)

is summable x-N,pB, then it is summable Y~\N,qnk

£>1.

Remark 5 :

It can be observed that if we take x=—, Y=^- and k = \ in
n 1 nPn <ln

Theorem D, then we get sufficient part of Theorem 8 due to 
G.Sunouchi.
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Remark 6:

It is also interesting to observe that, if we take pn = i for all n&N

o pand Yn =—,x„ =-s- in our Theorem D, then we get Theorem 6
Pn

due to M ASarigol.

If we interchange the role of the sequences (.x„) and (r„) in 

Theorem D, then we get the following theorem.

THEOREM E:

Suppose (pn), (qn), (x„) and (y„) are sequences of positive real 

constants such that

Pn<ln=0(PnQn)

Xnqn=0{Q„)

Pn =0 (YnPn)

00 _If is summable r-uv,^ , then it is summable
n=0 *

k> 1.

Remark 7:

It can be observed that if we take x=^-, Y=— and k = \ in
n > aPn <ln

Theorem E, then we get necessary part of Theorem 8 due to 

LS.Bosenquent.

(2.2.13)

(2.2.14)

(2.2.15)

x~P’ph'

29



Remark 8:

It may noted that if we take xn=^~ and g„ =1 for all value of neN
Pn

in Theorem E, then we get Theorem 7 due to M ASarigol.

Remark 9:

Further, it is interesting to note that if we put xn = yh =« in our 

Theorems C to Theorem E, then we get a relation between 

Absolute Reisz summabilities of order k with respect to the 

sequences (pn) and (qn) in the form of the following corollaries:

COROLLARY 1:

Suppose (p„) and (q„) are sequences of positive real constants 

such that as « «>

P„qn=o(pnQ„),

np„=0{Pn),

and
Qn =0 (pqa).

CO

If the series J^an is summable \R,pn\k, then it is also summable
B=0

COROLLARY 2:

Suppose (pn) and (qn) are sequences of positive real constants 

such that as « -> qo
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and
m„=o{Qn),

pn=0{np„).

If the series £a„ is summable then it is also summable
n=0

\R,qn\k, k> 1 .

COROLLARY 3:

Suppose (pn) and (qn) are sequences of positive real constants 

such that as

Pnqn =o (p„Q„)

«Pn=0(Pn)

Qn=0(nq„).

00

If the series JX is summable |R,qn\k, then it is also summable
n= 0

\R>Pn\k> k>l.

Now we provide one by one, proof of our results from 

Theorem A to Theorem E.

2.3. PROOF OF THE THEOREMS:

First we establish some general terms. Let (t„) be sequence of 

(#,/?„) means of the series JX. Then, by definition, we have
n-Q
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where

l a1 \™i vSv >

n v=0

Therefore

tn _
■*» v=0 z~0

sv=a0+a1+a2+--------+ a„

P„
oP.Z«.+PlZ«, + P2Z"* +

2=0
1

z=0

2

Ez=0
•+aZ <3,

2=0

ir[Po«0 + Pl(«0 + «l)+P2(«0 +«l + *2) +------+ P,(«0 +«1 +-----------+ «.)]

- ”~[(Po +Pt+------+ Pn)<*e+(Pi+P2+------+P.)oi+---------- + P„a„]
*n

- -7T lPna 0 + (Pn - Po )ai +{Pn-(Po+Pl))a2+----------+ Pn°n ]

[Pna0 +{Pn -P0)a, + (P„ -P,)a2 +----------+(Pn -Pfl_,)aJ

v=0
(2.3.1)

Then for » > l, we have

in 1 n-1= -i-Efe -^.k --^-Efe-. -0«,
ln v=l ■*«_! v=l

4-e^. -4-e^.°.+“E^.a.
' n v=I ‘ „ v=l 'n-1 v=l ' n-1 v=l
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it in n-1 1 n-1

v=J *n v=l »=l ■‘b-1 v=l

1 n-1 1 n— E^v-^v -—£^v-l«v +°S

*IJ—I V=1 V=1

1 ^
rn-i v=l

P. V=1

1 1
p p 

n-l n J
£P^av
V=1

= Pn
P.P.nJ n~l v=l

-S^v • (2.3.2)

Similarly, if (r„) denotes a sequence of (#,?„) means of the series 

]Ta„. Then, by (2.3.1) and (2.3.2), we have
n=0

r.= ^-S(a-a-,k (2-3.3)
Sit V=1

and

T-.-n-, = (2.3.4)
lit Sit-1 v=l

PROOF OF THEOREM A :

CO

Since the series J^an is summable \c,v,s\k it follows that ( see
n=0

chapter-1, definition 2)
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<00 ,
n=0

(2.3,5)

By (2.3.2),we have

t„ i 
n 72—1

Pn

P„P.nrn-1 v=l

H

Pn rvP N
^n^f-1 V=1 \ V J a... (2.3.6)

Applying Abie's transformation on the right hand side of (2.3.6), we 

get

t„-t„,
72 71—i

Pn n-1 / n \

2>| £«., +
P„P„-l v=l v V / Z=1

(p \rn-l

< n

f Pn

{PnP^J
z=l

\rn J *=1

Since
1 v-l

V V

= -A(Pv_,)-PvAf- 

v w

(Py-l PV) Py
V

'l__ 1_^
^V V + ly

Pv PV
v v(v + l)

Therefore,

Pn 'V Pv

p p £—i v *—i 2 DO 2—‘
J n-1 v=l y z=l

n-if p ^

PnPn~\ »=1 VV(V + l)y Z=1 nPn tt
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ft gfi±lVr_Ly.„.
P.P.nl n-1 V=1

~rtv + l 2̂=1

Pn H“l i

K^n-l v=l
IPv

v+l
n "\

2>, J

l»)p.
f 1 n

> zar

Pn n-irv+l) , ,-\PA +
PnP»-1 v=l V V ) P»Pn-l v=l

n-1 fp \

/. +
V v J

n+1 
V, n J

^tn.
p n

•* M

= ^+^,2+^ .say.

Since

\n,l+tn,2+tnj{ ^4*(l +\t»a\ + [ ^z.,31 ) >

it follows that,to complete the proof of theorem A , it is enough to 

show that

E
x<St+£-l

n
PnJ

<00, for i = 1,2,3. (2.3.7)

Let us apply Haider's inequality with indices k and k’ , where 

1+1 = 1, we get
k k

rn+lfp s.a+i-i

n=2\Pn j

m+1 ( p
* M

n=2

Pn n-1

P P ■4“l vX B B-l V=1 ' r

V + l
\PA
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= 0(1) £
m+lf p

b=2 (pj

v u 

p pv »•* n-i y
fn-lZ*y
Lv=i

m+i/' p \&+k~x r y t^ ^ rn 1 Ao(i)I
TiyPnj

[ B-l

p p* ,
V * n J 1 B-l L v=l

2>v|'v

0(1)1
m+1 f p 'if n-1

n=2 'B-l lv=l

0(1)1
m+\f p Y*-1

n*2\Pn rB-1 lV=l
ZaW

B-l

-2>v
[ n-l v=l

= <*)£
m+lf p 1

* n

»=2

1 ltp^

^Pn J ^n~\ [v=l

0(1) S/'.W z
... {p f-'

■*■ H I

V=1 n=v+l
UJ Pn-1

= 0(1) 5>y|rvf / „ \<*
v»l

, by (2.2.3)

= o(i) s
( D ’N^”1

v=»l UW

= 0(1) Xv-Kf
V=4

= o(i) as w->oo

Again, we have

m+i ( P •* »
n=a\Pn J

, by (2.2.1)

, by (2.3.5).
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mnf p \mk~1

zn~2 y Pn
Pn yPnPn-l v=l V v J

m\( p Y1^1 ( n 
< V -JL Pn

sUJ
Vfri/P\ l*zHi^ / I v=l \ ^ /

mW{ p * 1 f n-I p \ 1

=-z4wa=2\Pn ;
•n-l lv=l v v y

Bn-l^ P "N* 1

* z/j=2 Un

I «“!

rn-l lv=l

fP* v
<vj

n-l f p \ , k-1

I i*,_i v=i v v >

0(1) £
*«■!/' P V*-1

71=2

r n-l f p \

KPnJ Pn-1 zp-m - bv(2-2-2)
m f p \ , m+1 /” p 'S1*

0(1) £ & K| ZV=1 \VJ n=v+t\Pn j n-l

m 7

0(1)1
V=1 V v J \Pv) Py

, by (2.2.3)

m

0(1) I
f n 'S5*-1

v=l \Pv j w*

0(1) Iva-'|7V(* , by (2.2.1)
V=1

= o(i) as m-^oo , by (2.3.5). 

Finally, we have
p V*+*-'

n.3
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= I
rnk-lf p '\a+i~1

#=2 Uv
n + AP„ 

” JP«

w+1(p \mk-'

II o M Pn

l^n J

m+l0(1)1
(p >*-»

n=2 \Pn j

0(1) I»*"k.r .by(2.2.1)
>1=1

o(i) as ttl —> oo , by (2.3.5).

Therefore we get

, \6i+i—1 V„A <00,/= 1,2,3.
n=1 V-Pn 7

This completes the proof of theorem A.

PROOF OF THEOREM B:

Since the series ]TaB is summable \N,pn;S
«=0

chapter-1, definition 7)

f p

'■=• V Pn
Y-Yj <co-

By (2.3.1), we have for « > l

Jt follows that ( see

(2.3.8)
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We write

rn v=0

AT*.1 “ tn ~
Pn

P„P.
nV 1 v=l

tP^

Therefore

n-1

Ar,H—1
P, l«v “ —

D O vv P
Jrnrn-1 v=l -rn

.e. ^-a. Pn n-l

P.Pn-4 n-I v=l
-SPv-l«v - A/^,

i.e. a.
P i «-ifs-Ar , - —Vp ,a
_ n-l D /-(-,v-l“v
Pn '‘n-l v=l

i.e. n„ =
Pn Pn-1

Let (w.) denotes the nth (c,l) means of the sequence («ar 

by definition 1 of chapter-!, we have

1 -y va„
w+1^ vV=1

1
»+l V=1

-—At + -—At£My„i -r £My_2
Pv jPv-1

by (2.3.9)

^E(-v)f a,„,-

n + lv=l Pv VW + 1JPn » + lv=l Pv-1

(2.3.9) 

). Then
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1
M + l

n~ 1

V=1 n +1 E(v+i)-
V»1

v—1 A/ -
«P„ .

Pk' ^

1
« + l

I *±[-vPy+(v+i)pvJ
nPn

{n+l)pn A f,rt—I

Since
- vPv + (v+l)Pv^, = - vPv + vPv_, + Pv_,

= -V/7y+Pv_,

Therefore

= -vpy+Pv-pv

= Pv-(v+pv).

wn
1

n+1
i A^v-i 1

M+l IXv+Oac, («+l)p» Ar ,n-1

= w»,i+wn,2+wnj3. say.

Since
I I* I* I I* | 1* V
Ki+w»,2+wn,3| ^4 ywK>1| +\w„a\ +|wn>3[ j,

we see that to complete the proof of theorem B , it is enough to 

show that

Z>-W<- > for f = 1’2’3- (2-3.10)
72=1

Applying Holder's inequality with indices k and k', where 

I+_L=i we have
k k'
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OT-fl

n*~l\w.
«=2

/i,l

m+1
£n*-,

n=2

l/p >_l_y
n+ltfVPvJ »-i

BI+l /" 1 f »-l f D 'X 1
2>*-' 4t i -K4
" v»+U J

m+1

o(i) I-
n=2 n

m+l io(i) E ‘

n-lf P V

z ^ K,r

~2»
2-«

v=I V..Pv y

il
n-ir P V

E — K-,v=l \Pv /

ra+X |

o(D E-^ K-.I E „«
v=I \I*v J n=v+l ”

m ( p V / i \
o(D E f K,|‘ 4r

v=l \PV ,/ VV }

0(1) E
m ( p '\<a+*~ 

■» «

V=1
\*J by (2.2.4)

KPvJ

o(i) as m oo , by (2.3.8).
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Again

m+l

n=2

m+l
2>
n=2

a-i ^tS(v + 1Wv-i
?7 + l “

^ ^ 1 Y k4y(v+l)t ^
2-“!^ ^
B=2

■A#,
Ui v V—1

ffiHhl f *1~~1 f JJ-1 i W

0(1) S^IXKJ HI1'!
n=2 n ^ v=l Lv=l

m+l 1 f n-1 , T f 1 n-1

oft) i4H2>‘K,‘iii
J [wti .

m+l 1 f n-1o(D e4hSv>,
n=a " l v=l

= o(i) 2>*|Aa 2
m+l ^

V=I n=v+l W
2-«

= 0(1) sv^-Kir
V=1

0(1) E -
T*\P*)

KJ* . by (2.2.5)

= o(i) as m->ao , by (2.3.8). 

Finally, we have
#71+!

I"
n=2

5/t-l W,n,3
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m+1

n
n=2

n P»
n + lp„

—At,71-1

0(1) / ~ \
ips 2 \PnJ

A/.«-l!

/ ^ v^fc+it-l m ( j> \
** ■«*0(1) I ^ K 

m{ pJ v-1

o(i) as m -»oo , by (2.3.8).

Hence

<°° - f°r /=i’2’3-
71=1

This completes the proof of theorem B.

PROOF OF THEOREM C

cu

Since the series ]Ta„ is summable x- N,pn , it follows that ( see
71=0

chapter-!, definition 9)

xwi».-u*«» (2.3.11)
71=1

By (2.3.1), (2.3.2) and (2.3.9) we have

zin v*0

T — T =A n xn-1 <1h
QnQ,

ZG^v.for (n>i),
71—1 V=]
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and

a.
P P

Pn Pn-1

Therefore, we have

Tn-Tn-X <in
QnQ,

n-1 v=l

P P+-^Atv_2
PV

/>v-l

=
a T\(P \ 0-24+ — ga-. + ttVS

QnPn QnQn-1 Vssl y P'

n-l/' p

v7
aa-i v=*l \ jPv /

v-1 QvAtv_

- ^ + 7^-S—
QnQn-l v=l jPv

But
2v-l^v “ Q^Py ’~QyPy QvPv

= <a-,~Q,)r,+p,Q,

= +Pv0v •

Thus,

T.-T.4 qA n~t AL+ 7^-1—(-»,^+/>,a)QnQn-l v=l Pv

9,^. " ^ '
-A/n-l

fl "4f P a 24
QnQn-l v=l V. P'

*/ tr

= ^+7^+7^ ,say.

Since
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we see that,to complete the proof of theorem C , it is enough to 

show that

• f°r/=lA3. (2.3.12)
n=\

Firstly, we have

n-\

Yj*
n=\

k-l <lnK

QnPn
At,7t~\

n=\
JZnPn

|^B-1

n=l

(n \kf a \k
Hn

\QnJ

On

j
\*J , by (2.2.7)

'a'H
0(1)1^ K

n=l \ tin ;

= o(i) Exr|^,|‘ , by (2.2.8)
n=l

= 0(1), by (2.3.11).

Another application of Holder’s inequality, gives
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m*1lnH
n=2

n-1

V=1 \Pv J

m+1Zk‘
n=2

f ?, Yfco.'i-l * fl

’ Ua
71-1 /

E — ?v|^v-l
v=l \Pv /

m+1

ze
n=2

i
v 0« > 6«-i
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Therefore, we get
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72=1

This completes the proof of theorem C.

PROOF OF THEOREM D :

Since the series is summable x- N,p„\ , it follows that ( see
n=0

chapter-1, definition 9)
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Then by (2.3.1), (2.3.2), (2.3.4) and (2.3.9) we have

rn v=0

1= K-i
Pn

P.P.nxn-\ v=l

and

Tn~T«-l

a

= 9n

QnQ,
E0V-A. for («>l)

a-l V=1

—AT.-, +—AC, ,
Pn Pn-i

(2.3.14)

Therefore, we have

T, Ti-i
ae,n-1 v=l

P P

■-*-4^ +—A/v_2
/>v /V-l

, by (2.3.14)

48



Mil

QnPn
+

n-lf p \

QnQn-l ttKPv
QvK-l + ?„

n-lfp ^

SQnQn-1 v=l V Pv
lv-l QvK-i

- QnPn
QnPn

&n-l +
QnQn-1 v=l Pv

fj A#qn X— (Qv-A-QvPv-r)

But

Thus

Qv-A ~QvPv-1 = Gv-l^v -Gv^v + QvPv

= -gvPv+pvQv

T-TnX
n 7i—I

gnpn
QnPn

&n-1 +
QnQn-1 v=l Pv

S^-(-?,n+P,e,)

£?„p»
A/,

9n ^(P'

71-1 QnQn-1 v=l \ Pv /
9M ■ + *■

if—*!

v-1
!&7ji/n-l v=l

= T.,1 +T,,2 +^,3 i saY-

To prove the Theorem, by Minkowski's inequality, it is sufficient to 
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0(0 sf—T1
At ,v-1

\k

= 0(1) ±x*-l\AtvJ , by (2.1.10) and (2.2.12)
V=1

= o(i) as in —^ oo , by (2.3.13).

Therefore, we get

, fori-1,2,3.
n=\

This completes the proof of theorem D.

PROOF OF THEOREM E :

The proof of Theorem E is similar to Theorem D , which 

can be obtained by interchanging the role of the sequences (x„) 
and (y„) in Theorem D.
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