
Chapter 1

Introduction and preliminaries

1.1 Introduction and motivation

Many basic notions and results in the theory of functions have been obtained

using Fourier or more generally trigonometric series. In 1981, while studying the

convergence of Fourier series, C. Jordan [30] introduced the class BV ([0, 2π]) of

functions of bounded variation over [0, 2π]. The class BV ([0, 2π]) distinguishes

itself from other standard classes of functions in analysis because the Fourier

analysis of the function of this class can be carried out in the most elegant way.

If f ∈ BV ([0, 2π]) then its mth Fourier coefficient is of the order O
(

1
|m|

)
[8,

Vol.I, p.72], its Fourier series converges everywhere pointwise [8, Vol.I, p.114]

and it converges absolutely if the modulus of continuity of the function tends

to zero sufficiently rapidly [8, Vol.II, p.160]. Another important aspect of this

class is that it is a Banach algebra with respect to the pointwise operations and

the variation norm ‖f‖ = ‖f‖∞ + V (f, [0, 2π]), where V (f, [0, 2π]) is the total

variation of the function f ∈ BV ([0, 2π]).

A mathematician desires for more elegance and/or more generality in treating a

particular problem leads further to interesting generalizations of the concept of

bounded variation in many ways. Consequently, different classes of functions of

generalized bounded variations are introduced.

In 1924, Wiener [73] introduced the class BV (p)([a, b]) (p ≥ 1) of functions of

p−bounded variation over [a, b]. The concept of p−bounded variation was sub-
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sequently generalized by L. C. Young [74] in 1937 to the class φBV ([a, b]) of

functions of φ−bounded variation over [a, b]. Another class that was directly in-

fluenced by the study of the convergence problems in the theory of Fourier series

namely ΛBV ([a, b]) of functions of Λ−bounded variation over [a, b] appeared in

1972 in Waterman’s paper [72]. Subsequently in 1980, Shiba [54] introduced the

class ΛBV (p)([a, b]) of functions of p−Λ−bounded variation over [a, b]. The class

φΛBV ([a, b]) of functions of φ−Λ−bounded variation over [a, b] was introduced by

M. Schramm and D. Waterman [52] in 1982. In 1990, H. Kita and K. Yoneda [33]

defined the class BV (p(n) ↑ p, [a, b]) (1 ≤ p ≤ ∞) of functions of p(n)−bounded

variation over [a, b]. It was generalized to the class BV (p(n) ↑ p, ϕ, [a, b]) by T.

Akhobadze [2] in 2000. Finally in 2011, the class ΛBV (p(n) ↑ p, ϕ, [a, b]) of func-

tions of p(n)− Λ−bounded variation over [a, b] appeared in [58]. By considering

the differences of order r ≥ 2 the class r − BV ([a, b]) of functions of bounded

rth−variation over [a, b] is one of the important generalizations of the Jordan’s

class.

While investigating the convergence of Fourier series in the L1([0, 2π])−norm,

in 1996 F. Móricz and A. H. Siddiqi [38] introduced the class BVM([0, 2π]) of

functions of bounded variation in the mean. The concept of bounded variation in

the mean was subsequently generalized by R. E. Castillo [11] in 2005 and it was

to the class BV (p)M([0, 2π]) of functions of p−bounded variation in the mean.

Similarly, the convergence problems in the theory of multiple Fourier series has

motivated further to generalize the Jordan’s class into higher dimensional space.

The notion of bounded variation is generalized from a function of one variable

to a function of several variables in different way. Several definitions are given

under which function of two or more independent variables shall be said to be

of bounded variation. Some of these definitions are associated with the names

of Hardy, Vitali, Arzelà, Pierpont, Fréchet and Tonelli. For the first time, in

1906, G. H. Hardy [28] introduced the class BVH([a, b] × [c, d]) of two variables

functions of bounded variation over [a, b]×[c, d]. Then in 1908 G. Vitali [56] intro-

duced the class BVV (
∏N

i=1[ai, bi]) of N−variables functions of bounded variation

over
∏N

i=1[ai, bi]. Considering the natural analogue of that of bounded variation

for a function of one variable, Arzelà [4] introduced the class BVA(
∏N

i=1[ai, bi]).

The inter-relations between these classes are studied by C. R. Adams and J. A.

Clarkson [1]. Among all these classes, classes BVV ([0, 2π]2) and BVH([0, 2π]2) are
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most convenient to consider in the study of double Fourier series. The Fourier

analysis of these two classes are studied in detail [21, 37, 40]. These classes

are also generalized in different ways. In 1958, J. Musielak [41] introduced the

class BV
(p)
V (
∏N

i=1[ai, bi]) of N−variables functions of p−bounded variation (in the

sense of Vitali) over
∏N

i=1[ai, bi]. In 1986, A. A. Saakyan [49] introduced the class

(Λ1,Λ2)∗BV ([a, b]× [c, d]) of two variables functions of (Λ1,Λ2)∗−bounded varia-

tion (in the sense of Hardy) over [a, b]× [c, d] which was extended by A. I. Sablin

[50] in 1987. It was to the class (Λ1, ···,ΛN)∗BV (
∏N

i=1[ai, bi]) of N−variables func-

tions of (Λ1, ···,ΛN)∗−bounded variation over
∏N

i=1[ai, bi]. Finally, the class (Λ1, ··
·,ΛN)∗BV (p)(

∏N
i=1[ai, bi]) of N−variables functions of p−(Λ1, · · ·,ΛN)∗−bounded

variation over
∏N

i=1[ai, bi] is generalized to the class φ(Λ1, ···,ΛN)∗BV (
∏N

i=1[ai, bi])

of N−variables functions of φ−(Λ1, ···,ΛN)∗−bounded variation over
∏N

i=1[ai, bi].

Also, the class r − BV ([a, b]) is generalized to the class r − BV (
∏N

i=1[ai, bi]) of

N−variables functions of bounded rth−variation over
∏N

i=1[ai, bi].

Similarly, the class BV (p)M([0, 2π]) is generalized to the class BV (p)M([0, 2π]2)

of two variables functions of p−bounded variation in the mean.

The study of properties of one variable as well as several variables functions

of generalized bounded variations is one of the interesting problems of recent

researches. In fact, Waterman, Móricz, Dyachenko, Bakhvalov, Ashton, Doust

and some other mathematicians have already studied properties of functions of

these classes. In the present, we propose to carry the study further and prove

many interesting properties of one variable as well as several variables functions of

generalized bounded variations which generalize earlier results of Ashton, Doust,

Castillo, Móricz, Fülöp, Kantrowitz, Veres, Schramm, Waterman [5, 12, 21, 31,

39, 52, 53] and of some others in Functional analysis and in Fourier analysis.

1.2 Notations and definitions

In the sequel T = [0, 2π); I = [0, 1); L is a class of non-decreasing sequences

Λ = {λn}∞n=1 of positive numbers such that
∑

n
1
λn

diverges; φ is an increasing

non-negative convex function defined on [0,∞) such that φ(0) = 0, φ(x)
x
→ 0 as

x→ 0 and φ(x)
x
→∞ as x→∞; ϕ(n) is a real sequence such that ϕ(1) ≥ 2 and

ϕ(n)→∞ as n→∞; and C is a set of complex numbers.
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1.2.1 Notations and definitions for functions of one vari-

able

Definition 1.2.1.1. Given sequence Λ = {λn}∞n=1 ∈ L and p ≥ 1, a function f

defined on an interval I := [a, b] is said to be of p − Λ−bounded variation (that

is, f ∈ ΛBV (p)(I)) if

VΛp(f, I) = sup
{Ii}


(∑

i

|f(Ii)|p

λi

) 1
p

 <∞,

where {Ii} = {[ai, bi]} is a finite collection of non-overlapping subintervals in I

and f(Ii) = f(bi)− f(ai).

In the Definition 1.2.1.1, for Λ = {1} (that is, λn = 1, for all n) and p = 1 one

gets the class BV (I); for p = 1 one gets the class ΛBV (I); and for Λ = {1} one

gets the class BV (p)(I).

For any Λ ∈ L and p ≥ 1, we have

(∑
i

|f(Ii)|p

λi

) 1
p

≤
(

1

λ1

) 1
p

(∑
i

|f(Ii)|p
) 1

p

≤
(

1

λ1

) 1
p ∑

i

|f(Ii)|.

This implies

BV (I) ⊂ BV (p)(I) ⊂ ΛBV (p)(I).

It is observed that, if f ∈ ΛBV (p)(I) then it is a regulated function over I [61,

Theorem 2, p.92] (that is, f has right hand and left hand limits at every point of

the intervals [a, b) and (a, b] respectively). If f is a regulated function over I then

f ∈ ΛBV (p)(I) for some sequence Λ ∈ L [61, Theorem 6, p.92]. Thus, the union

of ΛBV (p)(I) functions over all sequences Λ is the class of regulated functions

over I.

Moreover, if f ∈ ΛBV (p)(I) for every sequence Λ then f ∈ BV (p)(I) [61, Theorem

3, p.92]. Thus, the intersection of ΛBV (p)(I) functions over all sequences Λ is the

class BV (p)(I) (that is,
⋂

Λ ΛBV (p)(I) = BV (p)(I)).

Therefore, we can say that the class ΛBV (p)(I) lies between the class of regulated

functions over I and the class BV (p)(I).
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The following example shows that a continuous function need not be of p −
Λ−bounded variation.

Example 1.2.1.2. Given a p ≥ 1. Let f : [0, 1]→ R be defined as

f(x) =

{
x

1
p cos

(
π
2x

)
, if x ∈ (0, 1],

0, otherwise.

Obviously, f ∈ C([0, 1]). For any m = 2k, where k ∈ N, if we consider the points

x0 = 0 and xi = 1
m+1−i , for i = 1, 2, · · ·,m, then we have 0 = x0 ≤ x1 ≤ · · · ≤

xm = 1 and

f(xi) =

{
0, if i is even,

±(xi)
1
p , if i is odd.

Therefore,

m−1∑
i=0

|f(xi+1)− f(xi)|p =
1

m
+

1

m
+

1

m− 2
+

1

m− 2
+ · · ·+ 1

2
+

1

2

=
k∑
i=1

1

i
→∞ as k →∞.

Thus, f /∈ BV (p)([0, 1]). Since
⋂

Λ ΛBV (p)([0, 1]) = BV (p)([0, 1]), f /∈ ΛBV (p)([0, 1])

for at lest one sequence Λ ∈ L.

Since f is regulated function over [0, 1], f ∈ Λ
′
BV (p)([0, 1]), for some Λ

′ ∈ L (in

view of the result [61, Theorem 6, p.92]).

Hence, BV (p)(I) $ Λ
′
BV (p)(I).

Definition 1.2.1.3. Given a continuous function φ defined on [0,∞) and strictly

increasing from 0 to ∞, a function f defined on an interval I is said to be of

φ− Λ−bounded variation (that is, f ∈ φΛBV (I)) if

VΛφ(f, I) = sup
{Ii}

{∑
i

φ(|f(Ii)|)
λi

}
<∞,

where I, Λ, {Ii} and f(Ii) are as defined above in the Definition 1.2.1.1.

Here, function φ is said to have property ∆2 if there is a constant d ≥ 2 such that

φ(2x) ≤ dφ(x), for all x ≥ 0.
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In the Definition 1.2.1.3, for φ(x) = x and Λ = {1} one gets the class BV (I); for

φ(x) = x one gets the class ΛBV (I); for φ(x) = xp one gets the class ΛBV (p)(I);

and for Λ = {1} one gets the class φBV (I).

Definition 1.2.1.4. Given sequence ϕ(n) and 1≤ p(n) ↑ p as n → ∞, where

1 ≤ p ≤ ∞, a function f defined on an interval I is said to be of p(n)−Λ−bounded

variation (that is, f ∈ ΛBV (p(n) ↑ p, ϕ, I)) if

VΛp(n)(f, ϕ, I) = sup
n≥1

sup
{Ii}


(∑

i

|f(Ii)|p(n)

λi

) 1
p(n)

: δ{Ii} ≥
b− a
ϕ(n)

 <∞,

where I, Λ, {Ii} and f(Ii) are as defined earlier in the Definition 1.2.1.1, and

δ{Ii} = inf
i
{|ai − bi|}.

In the Definition 1.2.1.4, for ϕ(n) = 2n, for all n, and Λ = {1} one gets the class

BV (p(n) ↑ p, I); for Λ = {1} one gets the class BV (p(n) ↑ p, ϕ, I); for p =∞ one

gets the class ΛBV (p(n) ↑ ∞, ϕ, I); for Λ = {1} and p = ∞ one gets the class

BV (p(n) ↑ ∞, ϕ, I); and for p(n) = p, for all n, one gets the class ΛBV (p)(I).

It is observed that [62, Lemma 2.7, p.226], for 1 ≤ p <∞,

BV (p)(I) ⊆ BV (p(n) ↑ ∞, ϕ, I)

and ⋃
1≤q<p

BV (q)(I) ⊆ BV (p(n) ↑ p, ϕ, I) ⊆ BV (p)(I).

Definition 1.2.1.5. Given a positive integer r, a function f defined on an in-

terval I is said to be of bounded rth−variation (that is, f ∈ r −BV (I)) if

Vr(f, I) = sup
P

{
m−r∑
i=0

|∆rf(xi)|

}
<∞,

where I is as defined earlier in the Definition 1.2.1.1, P : a = x0 < x1 < · · · <
xm = b,

∆f(xi) = f(xi+1)− f(xi)
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and

∆kf(xi) = ∆k−1(∆f(xi)), k ≥ 2,

so that

∆rf(xi) =
r∑

u=0

(−1)u
(
r

u

)
f(xi+r−u).

Obviously, BV (I) ⊂ r − BV (I) ⊂ B(I), where B(I) is a class of all bounded

functions on I.

The following example shows that BV (I) 6= r −BV (I).

Example 1.2.1.6. Consider everywhere continuous but nowhere differentiable

function of Weierstrass [29], defined as

f(x) =
∞∑
n=1

b−n cos(bnx), b an integer > 1,

satisfies the condition

|f(x+ h) + f(x− h)− 2f(x)| = O(|h|) as h→ 0

uniformly in x in T and, therefore, it is of bounded second variation over T (that

is, f ∈ 2 − BV (T)) [75]. However, f being a nowhere differentiable function, it

is not of bounded variation over T (that is, f /∈ BV (T)).

Definition 1.2.1.7. Given a function f ∈ Lp(T), where p ≥ 1, the p−integral

modulus of continuity of f of higher differences of order r ≥ 1 is defined as

ω(p)
r (f ; δ) = sup

{(
1

2π

∫
T
|∆rf(x;h)|p dx

) 1
p

: 0 < h ≤ δ

}
,

where

∆rf(x;h) =
r∑

u=0

(−1)u
(
r

u

)
f(x+ (r − u)h).

In the Definition 1.2.1.7, for r = 1, we omit writing r, one gets ω(p)(f ; δ), the

p−integral modulus of continuity of f .

For p ≥ 1 and α ∈ (0, 1], we say that f ∈ Lip(p;α)(T) if

ω(p)(f ; δ) = O(δα).
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In the Definition 1.2.1.7, for p =∞ and r = 1, we omit writing p and r, one gets

ω(f ; δ), the modulus of continuity of f , and in that case the class Lip(p;α)(T)

reduces to the Lipschitz class Lip(α)(T).

For a 2π−periodic function, the notion of p−bounded variation in the sense of

Lp−norm is defined as follows.

Definition 1.2.1.8. Let f ∈ Lp(T) with p ≥ 1. We say f ∈ BV (p)M(T) (that

is, f is a function of p−bounded variation in the mean over T) if

V m
p (f,T) = sup

{Ii}

{∑
i

∫
T

|f(Iix)|p

|Iix|p−1
dx

}
<∞,

where {Ii} = {[xi, xi+1]} is a finite collection of non-overlapping subintervals in

T, {Iix} = {[x+xi, x+xi+1]}, f(Iix) = f(x+xi+1)−f(x+xi) and |Iix| = |xi+1−xi|.

In the Definition 1.2.1.8, for p = 1 one gets the class BVM(T).

Definition 1.2.1.9. A function f defined on an interval I is said to be absolutely

continuous (that is, f ∈ AC(I)) if for a given ε > 0, there exists δ = δ(ε) > 0

such that
∑

i |f(Ii)| < ε whenever {Ii} = {[ai, bi]} is a finite collection of non-

overlapping subintervals in I with
∑

i(bi − ai) < δ, where I and f(Ii) are as

defined earlier in the Definition 1.2.1.1.

The class of one variable functions of bounded variation as well as the classes

of one variable functions of generalized bounded variations are of great inter-

est because of their valuable properties like additivity, differentiability, mea-

surability, integrability, etc. Because of all such properties, functions of these

classes owe their important role in the study of Operator theory, Fourier series,

Walsh−Fourier series, Fourier−Haar series, Fourier−Jacobi series and other or-

thogonal series, Stieltjes and other integrals, and the calculus of variations.

For a 2π−periodic complex valued function f ∈ L1(T), its Fourier series is defined

as

f(x) ∼
∑
m∈Z

f̂(m) eimx,

where

f̂(m) =
1

2π

∫
T
f(x) e−imx dx

denotes the mth Fourier coefficient of f .
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The Fourier series of a function f is said to be β−absolute convergence if∑
m∈Z

|f̂(m)|β <∞, 0 < β ≤ 2.

Let us denote

A1(β) =

{
f ∈ L1(T) :

∑
m∈Z

|f̂(m)|β <∞

}
.

For β = 1, we omit writing β, one gets the absolute convergence of the Fourier

series of f and in that case the class A1(β) is denoted by A1.

Wiener [48, §11.6, p.278] proved that the class A1 is a commutative complex

Banach algebra. Therefore, the class A1 is also known as Wiener algebra.

Like trigonometric system, the Walsh system also forms a complete orthonormal

system. It is observed that the Walsh system perform all the usual applications of

trigonometric system. Like Fourier series, the Walsh−Fourier series is interesting

also from theoretical as well as application points of view.

The Walsh orthonormal system {ψm(x) : m ∈ N0}, where N0 = {0} ∪ N =

{0, 1, 2, · · ·}, on the unit interval I = [0, 1) in the Paley enumeration is defined as

follows.

Let

r0(x) =


1, if x ∈

[
0, 1

2

)
,

−1, if x ∈
[

1
2
, 1
)
;

and extend r0(x) for the half-axis [0,∞) with period 1.

The Rademacher orthonormal system {rk(x) : k ∈ N0} is defined as

rk(x) = r0(2kx), k = 1, 2, · · · ; x ∈ I.

If

m =
∞∑
k=0

mk2
k, each mk = 0 or 1,
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is the binary decomposition of m ∈ N0, then

ψm(x) =
∞∏
k=0

rmkk (x), x ∈ I,

is called the mth Walsh function in the Paley enumeration.

In particular, we have

ψ0(x) = 1 and ψ2m(x) = rm(x), m ∈ N0.

Any x ∈ I can be written as

x =
∞∑
k=0

xk 2−(k+1), each xk = 0 or 1.

For any x ∈ I\Q, there is only one expression of this form, where Q is a class of

dyadic rationals in I. When x ∈ Q there are two expressions of this form, one

which terminates in 0’s and one which terminates in 1’s.

For any x, y ∈ I their dyadic sum is defined as

xu y =
∞∑
k=0

|xk − yk| 2−(k+1).

Observed that, for each m ∈ N0, we have

ψm(xu y) = ψm(x) ψm(y), x, y ∈ I, xu y /∈ Q.

For a 1−periodic real valued function f ∈ L1(I), its Walsh−Fourier series is

defined as

f(x) ∼
∑
m∈N0

f̂(m) ψm(x),

where

f̂(m) =

∫
I
f(x) ψm(x) dx

denotes the mth Walsh−Fourier coefficient of f .
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1.2.2 Notations and definitions for functions of two vari-

ables

Soon following the Jordan’s research study, many mathematicians began to study

notion of bounded variation for functions of several variables. Those who pro-

posed definitions of bounded variation for functions of two variables (that is,

f(x, y)) were actuated mainly by the desire to single out for attention a class of

functions having properties analogous to some particular properties of a function

g(x) of bounded variation. To preserve properties of one sort, the definition of

bounded variation of function of one variable is extended to the function of two

variables in one way, whereas to preserve properties of another sort, a quite dif-

ferent extension may be needed. Some of such extensions are as follow.

Definition 1.2.2.1. A function f defined on a rectangle R2 := [a, b] × [c, d] is

said to be of bounded variation in the sense of Arzelà (that is, f ∈ BVA(R2)) if

VA(f,R2) = sup
P

{∑
i

|f(xi+1, yi+1)− f(xi, yi)|

}
<∞,

where

P : (a, c) = (x0, y0) ≤ (x1, y1) ≤ · · · ≤ (xN , yN) = (b, d),

in which (xk, yk) ≤ (xk+1, yk+1) is defined as

(xk, yk) ≤ (xk+1, yk+1)⇔ xk ≤ xk+1 and yk ≤ yk+1, for all k = 0, 1, · · ·, N − 1.

The class BVA(R2,R), of real functions of bounded variation on R2 in the sense

of Arzelà, generalizes many properties of the class BV ([a, b]). Some of them are

as follow.

Remark 1.2.2.2. Let f1 : [a, b] → R and f2 : [c, d] → R be functions of one

variable. Define real functions f and g on R2 := [a, b] × [c, d] as f(x, y) =

f1(x) + f2(y) and g(x, y) = f1(x)f2(y). Then the following will hold [23, Exercise

43 (i) and (ii), p.40]:

(i) f ∈ BVA(R2,R) if and only if f1 ∈ BV ([a, b]) and f2 ∈ BV ([c, d]).

(ii) Let f1 and f2 be non-zero functions. g ∈ BVA(R2,R) if and only if f1 ∈
BV ([a, b]) and f2 ∈ BV ([c, d]).
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If a function f : R2 → R satisfies the condition

|f(x2, y2)− f(x1, y1)| ≤ K (x2 − x1 + y2 − y1),

for all (x1, y1) ≤ (x2, y2) in R2, where K is constant, then f ∈ BVA(R2,R) and

VA(f,R2) ≤ K(b− a+ d− c) [23, Exercise 49 (i), p.41].

Definition 1.2.2.3. A real function f defined on a rectangle R2 is said to be

monotonically increasing (respectively monotonically decreasing) if, for all (x1, y1),

(x2, y2) ∈ R2, we have

(x1, y1) ≤ (x2, y2)⇒ f(x1, y1) ≤ f(x2, y2) (respcetively f(x1, y1) ≥ f(x2, y2)),

where R2 and (x1, y1) ≤ (x2, y2) are as defined earlier in the Definition 1.2.2.1.

If f is either monotonically increasing on R2 or monotonically decreasing on R2

then f is said to be monotonic on R2.

A function of the class BVA(R2,R) is characterized as the difference of two mono-

tonic functions on R2 [23, Proposition 1.12, p.19].

Consider function f on Rk. For k = 1 and I = [a, b], define ∆f ba = f(I) =

f(b)− f(a). For k = 2, I = [a, b] and J = [c, d], define

∆f
(b,d)
(a,c) = f(I × J) = f(I, d)− f(I, c) = f(b, d)− f(a, d)− f(b, c) + f(a, c).

Definition 1.2.2.4. A function f defined on a rectangle R2 is said to be of

bounded variation in the sense of Vitali (that is, f ∈ BVV (R2)) if

V (f,R2) = sup
I1, I2

{∑
i

∑
j

|f(Ii × Ij)|

}
<∞,

where R2 is as defined earlier in the Definition 1.2.2.1; I1 and I2 are finite collec-

tions of non-overlapping subintervals {Ii} and {Ij} in [a, b] and [c, d] respectively.

The following example shows that a function f ∈ BVV (R2) need not be bounded.

Example 1.2.2.5. ([23, Example 1.19 (i), p.23]) Let f : [0, 1]2 → R be defined

as
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f(x, y) =


1
x

+ 1
y
, if x 6= 0 and y 6= 0,

1
x
, if x 6= 0 and y = 0,

1
y
, if x = 0 and y 6= 0,

0, if x = 0 and y = 0.

Then V (f, [0, 1]2) = 0. Thus, unbounded function f ∈ BVV ([0, 1]2).

This class is further generalized to the class BVH(R2) as follows.

If f ∈ BVV (R2) is such that the marginal functions f(., c) ∈ BV ([a, b]) and

f(a, .) ∈ BV ([c, d]) then f is said to be of bounded variation in the sense of

Hardy (that is, f ∈ BVH(R2)).

If f ∈ BVH(R2) then f is bounded and each of the marginal functions f(., s) ∈
BV ([a, b]) and f(t, .) ∈ BV ([c, d]), where s ∈ [c, d] and t ∈ [a, b] are fixed.

Definition 1.2.2.6. A real function f defined on a rectangle R2 is said to be

2−fold monotonically increasing (respectively 2−fold monotonically decreasing)

if, for all (x1, y1), (x2, y2) ∈ R2, we have

(x1, y1) ≤ (x2, y2)⇒ ∆f
(x2,y2)
(x1,y1) ≥ 0

(
respectively ∆f

(x2,y2)
(x1,y1) ≤ 0

)
,

where R2 and (x1, y1) ≤ (x2, y2) are as defined earlier in the Definition 1.2.2.1.

If f is either 2−fold monotonically increasing on R2 or 2−fold monotonically

decreasing on R2 then f is said to be 2−fold monotonic on R2.

A function of the class BVV (R2,R), of real functions of bounded variation on R2

in the sense of Vitali, is characterized as the difference of two 2−fold monotonic

functions on R2 [23, Proposition 1.17, p.22].

Definition 1.2.2.7. Given
∧

= (Λ1,Λ2), where Λk = {λkn}∞n=1 ∈ L, for k = 1, 2,

and p ≥ 1, a measurable function f defined on a rectangle R2 is said to be of

p−
∧
−bounded variation (that is, f ∈

∧
BV (p)(R2)) if

V∧
p
(f,R2) = sup

I1, I2


(∑

i

∑
j

|f(Ii × Ij)|p

λ1
i λ

2
j

) 1
p

 <∞,

where R2 is as defined earlier in the Definition 1.2.2.1; I1 and I2 are as defined

earlier in the Definition 1.2.2.4.
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Let f be an unbounded function as defined earlier in the Example 1.2.2.5 (p.12).

Then V∧
p
(f, [0, 1]2) = 0. Thus, a function f ∈

∧
BV (p)(R2) need not be bounded.

This class is further generalized to the class
∧∗BV (p)(R2) in the sense of Hardy

as follows.

If f ∈
∧
BV (p)(R2) is such that the marginal functions f(., c) ∈ Λ1BV (p)([a, b])

and f(a, .) ∈ Λ2BV (p)([c, d]) then f is said to be of p −
∧∗−bounded variation

(that is, f ∈
∧∗BV (p)(R2)).

If f ∈
∧∗BV (p)(R2) then f is bounded and each of the marginal functions

f(., s) ∈ Λ1BV (p)([a, b]) and f(t, .) ∈ Λ2BV (p)([c, d]), where s ∈ [c, d] and t ∈ [a, b]

are fixed.

Note that, for Λ1 = Λ and Λ2 = {1} (that is, λ1
n = λn and λ2

n = 1, for all n),

the classes
∧
BV (p)(R2) and

∧∗BV (p)(R2) reduce to the classes ΛBV (p)(R2) and

Λ∗BV (p)(R2) respectively; for Λ1 = Λ2 = {1} and p = 1, the classes
∧
BV (p)(R2)

and
∧∗BV (p)(R2) reduce to the classes BVV (R2) and BVH(R2) respectively; for

p = 1, the classes
∧
BV (p)(R2),

∧∗BV (p)(R2), ΛBV (p)(R2) and Λ∗BV (p)(R2)

reduce to the classes
∧
BV (R2),

∧∗BV (R2), ΛBV (R2) and Λ∗BV (R2) respec-

tively; and for Λ1 = Λ2 = {1}, the classes
∧
BV (p)(R2) and

∧∗BV (p)(R2) reduce

to the classes BV
(p)
V (R2) and BV

(p)
H (R2) respectively.

Dyachenko and Waterman [18, Proposition 1, p.401] proved that there exists a

function f ∈
∧∗BV (R2) which is everywhere discontinuous.

For any Λ1,Λ2 ∈ L and p ≥ 1, we have

(∑
i

∑
j

|f(Ii × Ij)|p

λ1
i λ

2
j

) 1
p

≤
(

1

λ1
1 λ

2
1

) 1
p

(∑
i

∑
j

|f(Ii × Ij)|p
) 1

p

≤
(

1

λ1
1 λ

2
1

) 1
p ∑

i

∑
j

|f(Ii × Ij)|.

This implies

BVV (R2) ⊂ BV
(p)
V (R2) ⊂

∧
BV (p)(R2)

and hence

BVH(R2) ⊂ BV
(p)
H (R2) ⊂

∧∗BV (p)(R2).
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The class
∧
BV (p)(R2,R), of real functions of p−

∧
−bounded variation on R2,

generalizes many properties of the class BV ([a, b]). Some of them are as follow.

Let f1, f2, f and g be as in the Remark 1.2.2.2 (p.11) earlier. Then the following

will hold:

(i) Let f1 and f2 be not constant functions. g ∈
∧
BV (p)(R2,R) if and only if

f1 ∈ Λ1BV (p)([a, b]) and f2 ∈ Λ2BV (p)BV ([c, d]).

(ii) V∧
p
(f,R2) = 0 implies f ∈

∧
BV (p)(R2,R).

If a function h : R2 → R is such that V∧
p
(h,R2) = 0 then V (h,R2) = 0.

Therefore, in view of [23, Exercise 44, p.40], there exist functions h1 : [a, b]→ R
and h2 : [c, d]→ R such that h(x, y) = h1(x) + h2(y), for all (x, y) ∈ R2.

If a function f : R2 → R satisfies the condition∣∣∣∆f (x2,y2)
(x1,y1)

∣∣∣ ≤M |x2 − x1| |y2 − y1|,

for all (x1, y1) ≤ (x2, y2) in R2, where M is constant, then f ∈
∧
BV (p)(R2,R)

and

V∧
p
(f,R2) ≤ M(b− a)(d− c)

(λ1
1 λ

2
1)

1
p

.

The following example shows that a continuous function need not be of p−bounded

variation in the sense of Vitali.

Example 1.2.2.8. Given a p ≥ 1. Let f : [0, 1]2 → R be defined as

f(x, y) =

{
(xy)

1
p cos

(
π
2x

)
, if x ∈ (0, 1] and y ∈ [0, 1],

0, otherwise.

Obviously, f ∈ C([0, 1]2). For any m = 2k, where k ∈ N, if we consider the points

x0 = 0 and xi = 1
m+1−i , for i = 1, 2, · · ·,m, then we have 0 = x0 ≤ x1 ≤ · · · ≤

xm = 1. Take n = 1, y0 = 0 and y1 = 1 then we have 0 = y0 ≤ y1 = 1.

Moreover, for any i ≥ 0, f(xi, 0) = 0 and

f(xi, 1) =

{
0, if i is even,

±(xi)
1
p , if i is odd.
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Therefore,

m−1∑
i=0

n−1∑
j=0

|f(xi+1, yj+1)−f(xi, yj+1)−f(xi+1, yj)+f(xi, yj)|p

=
1

m
+

1

m
+

1

m− 2
+

1

m− 2
+ · · ·+ 1

2
+

1

2

=
k∑
i=1

1

i
→∞ as k →∞.

Thus, f /∈ BV (p)
V ([0, 1]2).

Definition 1.2.2.9. A measurable function f defined on a rectangle R2 is said

to be of φ−
∧
−bounded variation (that is, f ∈ φ

∧
BV (R2)) if

V∧
φ
(f,R2) = sup

I1, I2

{∑
i

∑
j

φ(|f(Ii × Ij)|)
λ1
i λ

2
j

}
<∞,

where R2 is as defined earlier in the Definition 1.2.2.1;
∧

is as defined in the

Definition 1.2.2.7; I1 and I2 are as defined in the Definition 1.2.2.4; and φ is as

defined in the Definition 1.2.1.3.

Let f be an unbounded function as defined earlier in the Example 1.2.2.5 (p.12).

Then V∧
φ
(f, [0, 1]2) = 0. Thus, a function f ∈ φ

∧
BV (R2) need not be bounded.

This class is further generalized to the class φ
∧∗BV (R2) in the sense of Hardy

as follows.

If f ∈ φ
∧
BV (R2) is such that the marginal functions f(., c) ∈ φΛ1BV ([a, b])

and f(a, .) ∈ φΛ2BV ([c, d]) then f is said to be of φ −
∧∗−bounded variation

(that is, f ∈ φ
∧∗BV (R2)).

If f ∈ φ
∧∗BV (R2) then f is bounded and each of the marginal functions f(., s) ∈

φΛ1BV ([a, b]) and f(t, .) ∈ φΛ2BV ([c, d]), where s ∈ [c, d] and t ∈ [a, b] are fixed.

Observe that for φ(x) = x the conditions φ(x)
x
→ 0 as x → 0 and φ(x)

x
→ ∞ as

x→∞ are not valid.

Note that, for φ(x) = x and Λ1 = Λ2 = {1}, the classes φ
∧
BV (R2) and

φ
∧∗BV (R2) reduce to the classesBVV (R2) andBVH(R2) respectively; for φ(x) =

x, the classes φ
∧
BV (R2) and φ

∧∗BV (R2) reduce to the classes
∧
BV (R2)
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and
∧∗BV (R2) respectively; and for φ(x) = xp, the classes φ

∧
BV (R2) and

φ
∧∗BV (R2) reduce to the classes

∧
BV (p)(R2) and

∧∗BV (p)(R2) respectively.

Definition 1.2.2.10. Given a positive integer r, a function f defined on a rect-

angle R2 is said to be of bounded rth−variation (that is, f ∈ r − BV (R2)) if the

following two conditions are satisfied:

(i)

Vr(f,R
2) = sup

P=P1×P2

{
m−r∑
i=0

n−r∑
j=0

|∆rf(xi, yj)|

}
<∞,

where R2 is as defined earlier in the Definition 1.2.2.1, P1 : a = x0 < x1 < · · · <
xm = b, P2 : c = y0 < y1 < · · · < yn = d,

∆f(xi, yj) = f([xi, xi+1]× [yj, yj+1])

and

∆kf(xi, yj) = ∆k−1(∆f(xi, yj)), k ≥ 2,

so that

∆rf(xi, yj) =
r∑

u=0

r∑
v=0

(−1)u+v

(
r

u

) (
r

v

)
f(xi+r−u, yj+r−v).

(ii) The marginal functions f(., c) ∈ r−BV ([a, b]) and f(a, .) ∈ r−BV ([c, d]).

If f ∈ r−BV (R2) then f is bounded and each of the marginal functions f(., s) ∈
r−BV ([a, b]) and f(t, .) ∈ r−BV ([c, d]), where s ∈ [c, d] and t ∈ [a, b] are fixed.

Obviously, BVH(R2) ⊂ r −BV (R2).

Definition 1.2.2.11. Given a function f ∈ Lp(T2
), where p ≥ 1, the p−integral

modulus of continuity of f of higher differences of order r ≥ 1 is defined as

ω(p)
r (f ; δ1, δ2)

= sup

{(
1

4π2

∫ ∫
T2
|∆rf(x, y;h1, h2)|p dx dy

) 1
p

: 0 < h1 ≤ δ1, 0 < h2 ≤ δ2

}
,

where

∆rf(x, y;h1, h2) =
r∑

u=0

r∑
v=0

(−1)u+v

(
r

u

) (
r

v

)
f(x+ (r − u)h1, y + (r − v)h2).
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In the Definition 1.2.2.11, for r = 1, we omit writing r, one gets ω(p)(f ; δ1, δ2),

the p−integral modulus of continuity of f .

For p ≥ 1 and α1, α2 ∈ (0, 1], we say that f ∈ Lip(p;α1, α2)(T2
) if

ω(p)(f ; δ1, δ2) = O(δα1
1 δα2

2 ).

In the Definition 1.2.2.11, for p = ∞ and r = 1, we omit writing p and r,

one gets ω(f ; δ1, δ2), the modulus of continuity of f , and in that case the class

Lip(p;α1, α2)(T2
) reduces to the Lipschitz class Lip(α1, α2)(T2

).

For a function f of two variables, where f is 2π−periodic in each variable, the

notion of p−bounded variation in the sense of Lp−norm is defined as follows.

Definition 1.2.2.12. Let f ∈ Lp(T2
) with p ≥ 1. We say f ∈ BV (p)M(T2

) (that

is, f is a function of p−bounded variation in the mean over T2
) if each of

V m
p (f,T2

) = sup
I1, I2

{∑
i

∑
j

∫ ∫
T2

|f(Iix × Ijy)|p

|Iix|p−1 |Ijy|p−1
dx dy

}
,

V m
p (f(., s),T) = sup

I1

{∑
i

∫
T

|f(Iix × s)|p

|Iix|p−1
dx

}
, s ∈ T,

and

V m
p (f(t, .),T) = sup

I2

{∑
j

∫
T

|f(t× Ijy)|p

|Ijy|p−1
dy

}
, t ∈ T, are finite,

where I1 and I2 are finite collections of non-overlapping subintervals {[xi, xi+1]}
and {[yj, yj+1]} respectively in T, {Iix} = {[x+xi, x+xi+1]}, {Ijy} = {[y+yj, y+

yj+1]}, |Iix| = |xi+1 − xi| and |Ijy| = |yj+1 − yj|.

Definition 1.2.2.13. A function f defined on a rectangle R2 is said to be ab-

solutely continuous (that is, f ∈ AC(R2)) if the following two conditions are

satisfied:

(i) Given ε > 0, there exists δ = δ(ε) > 0 such that∑
R2
k∈R

|f([ak, bk]× [ck, dk])| < ε

18



whenever R = {R2
k := [ak, bk] × [ck, dk]} is a finite collection of pairwise non-

overlapping sub-rectangles of R2 with∑
R2
k∈R

(bk − ak)(dk − ck) < δ,

where R2 is as defined earlier in the Definition 1.2.2.1.

(ii) The marginal functions f(., c) ∈ AC([a, b]) and f(a, .) ∈ AC([c, d]).

An absolutely continuous function f on R2 is uniformly continuous and each of

the marginal functions f(., s) ∈ AC([a, b]) and f(t, .) ∈ AC([c, d]), where s ∈ [c, d]

and t ∈ [a, b] are fixed.

E. Berkson and T. Gillespie [9] observed that, the class AC(R2) is a closed linear

subspace of the class BVH(R2) and functions in AC(R2) can be characterized in

terms of indefinite integrals of Lebesgue integrable functions.

It is observed that these classes of two variables functions of generalized bounded

variations possess many interesting properties in Fourier analysis.

For any x = (x, y) ∈ T2
and k = (m,n) ∈ Z2, denote their scalar product by

k · x = mx+ ny.

For a complex valued function f ∈ L1(T2
), where f is 2π−periodic in each vari-

able, its double Fourier series is defined as

f(x) ∼
∑
k∈Z2

f̂(k) ei(k·x) =
∑
m∈Z

∑
n∈Z

f̂(m,n) ei(mx+ny),

where

f̂(k) =
1

(2π)2

∫ ∫
T2
f(x) e−i(k·x) dx =

1

(2π)2

∫ ∫
T2
f(x, y) e−i(mx+ny) dx dy

denotes the kth Fourier coefficient of f .

The double Fourier series of a function f is said to be β−absolute convergence if∑
m∈Z

∑
n∈Z

|f̂(m,n)|β <∞, 0 < β ≤ 2.
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Let us denote

A2(β) =

{
f ∈ L1(T2

) :
∑
m∈Z

∑
n∈Z

|f̂(m,n)|β <∞

}
.

For β = 1, we omit writing β, one gets the absolute convergence of the double

Fourier series of f and in that case the class A2(β) is denoted by A2.

For a real valued function f ∈ L1(I2
), where f is 1−periodic in each variable, its

double Walsh−Fourier series is defined as

f(x) ∼
∑
k∈N2

0

f̂(k) ψm(x) ψn(y) =
∑
m∈N0

∑
n∈N0

f̂(m,n) ψm(x) ψn(y),

where

f̂(k) = f̂(m,n) =

∫ ∫
I2
f(x, y) ψm(x) ψn(y) dx dy

denotes the kth Walsh−Fourier coefficient of f .

1.2.3 Notations and definitions for functions of N−variables

Let Ik = [ak, bk] ⊂ R, for k = 1, 2, · · ·, N . In the Subsection 1.2.2 above, we

defined f(I1) for a function f of one variable and f(I1 × I2) for a function f of

two variables (p.12). Similarly, for a function f on RN , by induction, defining

the expression f(I1 × · · · × IN−1) for a function of N − 1 variables, one gets

f(I1 × · · · × IN) = f(I1 × · · · × IN−1, bN)− f(I1 × · · · × IN−1, aN).

Observe that, f(I1 × · · · × IN) can also be expressed as

f(I1 × · · · × IN) = ∆fb
a =

∑
c

k(c)f(c),

where a = (a1, a2, · · ·, aN), b = (b1, b2, · · ·, bN) ∈ RN , the summation is over all

c = (c1, c2, · · ·, cN) ∈ RN such that ci ∈ {ai, bi}, for i = 1, · · ·, N, and for any such

c, k(c) = k1 · · · kN , in which, for 1 ≤ i ≤ N,

ki =

{
1, if ci = bi,

−1, if ci = ai.
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Then, for N = 1 we get

f(I1) = ∆fb
a = ∆f b1a1 =

∑
c1

k(c)f(c) = f(b1)− f(a1).

For N = 2 we get

f(I1×I2) = ∆fb
a = ∆f

(b1,b2)
(a1,a2) =

∑
(c1,c2)

k(c)f(c)

= f(b1, b2) + f(a1, a2)− f(b1, a2)− f(a1, b2).

Similarly, for N = 3 we get

f(I1×I2×I3) = ∆fb
a = ∆f

(b1,b2,b3)
(a1,a2,a3) =

∑
(c1,c2,c3)

k(c)f(c)

= f(b1, b2, b3) + f(b1, a2, a3) + f(a1, b2, a3) + f(a1, a2, b3)

−f(b1, b2, a3)−f(a1, b2, b3)−f(b1, a2, b3)−f(a1, a2, a3).

Definition 1.2.3.1. Given
∧

= (Λ1, · · ·,ΛN), where Λk = {λkn}∞n=1 ∈ L, for

k = 1, 2, ···, N , and p ≥ 1, a measurable function f defined on RN :=
∏N

k=1[ak, bk]

is said to be of p−
∧
−bounded variation (that is, f ∈

∧
BV (p)(RN)) if

V∧
p
(f,RN) = sup

J1,···,JN


(∑

k1

· · ·
∑
kN

|f(I1
k1
× · · · × INkN )|p

λ1
k1
· · · λNkN

) 1
p

 <∞,

where J1, · · ·, JN−1 and JN are finite collections of non-overlapping subintervals

{I1
k1
}, · · ·, {IN−1

kN−1
} and {INkN} in [a1, b1], · · ·, [aN−1, bN−1] and [aN , bN ] respectively.

This class is further generalized to the class
∧∗BV (p)(RN) in the sense of Hardy

as follows.

A function f ∈
∧
BV (p)(RN) is said to be of p−

∧∗−bounded variation (that is,

f ∈
∧∗BV (p)(RN)) if for each of its marginal functions

f(x1, · · ·, xi−1, ai, xi+1, · · ·, xN) ∈ (Λ1, · · ·,Λi−1,Λi+1, · · ·,ΛN)∗BV (p)(RN(ai)),

for all i = 1, 2, ···, N, where
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RN(ai)

= {(x1, ···, xi−1, xi+1, ···, xN) ∈ RN−1 : xk ∈ [ak, bk] for k = 1, ···, i−1, i+1, ···, N}.

If f ∈
∧∗BV (p)(RN) then f is bounded on RN .

Note that, for Λ1 = · · · = ΛN = {1} and p = 1, the classes
∧
BV (p)(RN)

and
∧∗BV (p)(RN) reduce to the classes BVV (RN) and BVH(RN) respectively;

for p = 1, the classes
∧
BV (p)(RN) and

∧∗BV (p)(RN) reduce to the classes∧
BV (RN) and

∧∗BV (RN) respectively; and for Λ1 = · · · = ΛN = {1}, the

classes
∧
BV (p)(RN) and

∧∗BV (p)(RN) reduce to the classes BV
(p)
V (RN) and

BV
(p)
H (RN) respectively.

For any Λk ∈ L, for k = 1, 2, · · ·, N , and p ≥ 1, we have

(∑
k1

· · ·
∑
kN

|f(I1
k1
× · · · × INkN )|p

λ1
k1
· · · λNkN

) 1
p

≤
(

1

λ1
1 · · · λN1

) 1
p

(∑
k1

· · ·
∑
kN

|f(I1
k1
× · · · × INkN )|p

) 1
p

≤
(

1

λ1
1 · · · λN1

) 1
p ∑

k1

···
∑
kN

|f(I1
k1
×···×INkN )|.

This implies

BVV (RN) ⊂ BV
(p)
V (RN) ⊂

∧
BV (p)(RN)

and hence

BVH(RN) ⊂ BV
(p)
H (RN) ⊂

∧∗BV (p)(RN).

Definition 1.2.3.2. A measurable function f defined on RN is said to be of

φ−
∧
−bounded variation (that is, f ∈ φ

∧
BV (RN)) if

V∧
φ
(f,RN) = sup

J1,···,JN

{∑
k1

· · ·
∑
kN

φ(|f(I1
k1
× · · · × INkN )|)

λ1
k1
· · · λNkN

}
<∞,

where RN ,
∧

and J1, · · ·, JN are as defined earlier in the Definition 1.2.3.1, and

φ is as defined earlier in the Definition 1.2.1.3.

This class is further generalized to the class φ
∧∗BV (RN) in the sense of Hardy

as follows.
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A function f ∈ φ
∧
BV (RN) is said to be of φ−

∧∗−bounded variation (that is,

f ∈ φ
∧∗BV (RN)) if for each of its marginal functions

f(x1, · · ·, xi−1, ai, xi+1, · · ·, xN) ∈ φ(Λ1, · · ·,Λi−1,Λi+1, · · ·,ΛN)∗BV (RN(ai)),

for all i = 1, 2, · · ·, N .

If f ∈ φ
∧∗BV (RN) then f is bounded on RN .

Note that, for φ(x) = x and Λ1 = · · · = ΛN = {1}, the classes φ
∧
BV (RN)

and φ
∧∗BV (RN) reduce to the classes BVV (RN) and BVH(RN) respectively;

for φ(x) = x, the classes φ
∧
BV (RN) and φ

∧∗BV (RN) reduce to the classes∧
BV (RN) and

∧∗BV (RN) respectively; and for φ(x) = xp, the classes φ
∧
BV (RN)

and φ
∧∗BV (RN) reduce to the classes

∧
BV (p)(RN) and

∧∗BV (p)(RN) respec-

tively.

Definition 1.2.3.3. Given a positive integer r, a function f defined on RN is

said to be of bounded rth−variation (that is, f ∈ r − BV (RN)) if the following

two conditions are satisfied:

(i)

Vr(f,R
N) = sup

P=P1×···×PN

{
s1−r∑
k1=0

· · ·
sN−r∑
kN=0

|∆rf(xk11 , · · ·, x
kN
N )|

}
<∞,

where RN is as defined earlier in the Definition 1.2.3.1,

Pi : ai = x0
i < x1

i < · · · < xsii = bi, for all i = 1, 2, · · ·, N,

∆f(xk11 , · · ·, x
kN
N ) = f([xk11 , x

k1+1
1 ]× · · · × [xkNN , xkN+1

N ])

and

∆kf(xk11 , · · ·, x
kN
N ) = ∆k−1(∆f(xk11 , · · ·, x

kN
N )), k ≥ 2,

so that

∆rf(xk11 , ···, x
kN
N ) =

r∑
u1=0

···
r∑

uN=0

(−1)u1+···+uN
(
r

u1

)
···
(
r

uN

)
f(xk1+r−u1

1 , ···, xkN+r−uN
N ).
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(ii) Each of its marginal functions

f(x1, · · ·, xi−1, ai, xi+1, · · ·, xN) ∈ r −BV (RN(ai)), for all i = 1, 2, · · ·, N.

Obviously, BVH(RN) ⊂ r − BV (RN) ⊂ B(RN), where B(RN) is a class of all

bounded functions on RN .

Definition 1.2.3.4. Given x = (x1, · · ·, xN) ∈ TN and f ∈ Lp(TN), where p ≥ 1,

the p−integral modulus of continuity of f of higher differences of order r ≥ 1 is

defined as

ω(p)
r (f ; δ1, · · ·, δN)

= sup
{( 1

(2π)N

∫
· · ·
∫
TN
|∆rf(x1, · · ·, xN ;h1, · · ·, hN)|p dx

) 1
p

: 0 < hi ≤ δi for all i = 1, 2, · · ·, N
}
, where

∆rf(x1, ···, xN ;h1, ···, hN)

=
r∑

u1=0

···
r∑

uN=0

(−1)u1+···+uN
(
r

u1

)
···
(
r

uN

)
f(x1+(r−u1)h1, ···, xN+(r−uN)hN).

In the Definition 1.2.3.4, for r = 1, we omit writing r, one gets ω(p)(f ; δ1, · · ·, δN),

the p−integral modulus of continuity of f .

For p ≥ 1 and αi ∈ (0, 1], for all i = 1, 2, · · ·, N , we say that f ∈ Lip(p;α1, · ·
·, αN)(TN) if

ω(p)(f ; δ1, · · ·, δN) = O(δα1
1 · · · δ

αN
N ).

In the Definition 1.2.3.4, for p = ∞ and r = 1, we omit writing p and r, one

gets ω(f ; δ1, · · ·, δN), the modulus of continuity of f , and in that case the class

Lip(p;α1, · · ·, αN)(TN) reduces to the Lipschitz class Lip(α1, · · ·, αN)(TN).

Definition 1.2.3.5. A function f defined on RN is said to be absolutely contin-

uous (that is, f ∈ AC(RN)) if the following two conditions are satisfied:

(i) Given ε > 0, there exists δ = δ(ε) > 0 such that∑
RNk ∈R

|f([ak1, b
k
1]× · · · × [akN , b

k
N ])| < ε
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whenever

R = {RN
k = [ak1, b

k
1]× · · · × [akN , b

k
N ]}

is a finite collection of pairwise non-overlapping sub-rectangles of RN with

∑
RNk ∈R

N∏
i=1

(bki − aki ) < δ,

where RN is as defined earlier in the Definition 1.2.3.1.

(ii) Each of its marginal functions

f(x1, · · ·, xi−1, ai, xi+1, · · ·, xN) ∈ AC(RN(ai)), for all i = 1, 2, · · ·, N.

For any x = (x1, · · ·, xN) ∈ TN and k = (k1, · · ·, kN) ∈ ZN , denote their scalar

product by k · x = k1x1 + · · ·+ kNxN .

For a complex valued function f ∈ L1(TN), where f is 2π−periodic in each

variable, its multiple Fourier series is defined as

f(x) ∼
∑
k∈ZN

f̂(k) ei(k·x) =
∑
k1∈Z

· · ·
∑
kN∈Z

f̂(k1, · · ·, kN) ei(k1x1+···+kNxN ),

where

f̂(k) =
1

(2π)N

∫
· · ·
∫
TN
f(x) e−i(k·x) dx

=
1

(2π)N

∫
· · ·
∫
TN
f(x1, · · ·, xN) e−i(k1x1+···+kNxN ) dx1 · · · dxN

denotes the kth Fourier coefficient of f .

The multiple Fourier series of a function f is said to be β−absolute convergence

if ∑
k1∈Z

· · ·
∑
kN∈Z

|f̂(k1, · · ·, kN)|β <∞, 0 < β ≤ 2.

Let us denote

AN(β) =

{
f ∈ L1(TN) :

∑
k1∈Z

· · ·
∑
kN∈Z

|f̂(k1, · · ·, kN)|β <∞

}
.
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For β = 1, we omit writing β, one gets the absolute convergence of the multiple

Fourier series of f and in that case the class AN(β) is denoted by AN .

For a real valued function f ∈ L1(IN), where f is 1−periodic in each variable, its

multiple Walsh−Fourier series is defined as

f(x) ∼
∑
k∈NN0

f̂(k) ψk1(x1)···ψkN (xN) =
∑
k1∈N0

···
∑
kN∈N0

f̂(k1, ···, kN) ψk1(x1)···ψkN (xN),

where

f̂(k) =

∫
· · ·
∫
IN
f(x) ψk1(x1) · · · ψkN (xN) dx

=

∫
· · ·
∫
IN
f(x1, · · ·, xN) ψk1(x1) · · ·ψkN (xN) dx1 · · ·dxN

denotes the kth Walsh−Fourier coefficient of f .

1.3 Recent development and layout of the thesis

This section aims at providing introduction to the subject area of the thesis

through laying down the recent development regarding concerned aspects of these

problems. It is well known that one variable as well as several variables functions

of generalized bounded variations share many properties of functions of bounded

variation. Several mathematicians have studied basic properties of classes of

both one variable functions of generalized bounded variations and two variables

functions of bounded variation. Some of them are as followed.

In 1976, D. Waterman [71, p.41] proved that the class ΛBV (I) is a Banach space

with respect to the pointwise operations and the Λ−variation norm

‖f‖Λ = ‖f‖∞ + VΛ(f, I), f ∈ ΛBV (I). (1.1)

This result was extended for the class ΛBV (p)(I) [61, Theorem 1, p.92] as follows.

Theorem A: The class ΛBV (p)(I) is a Banach space with respect to the pointwise

operations and the Λp−variation norm

‖f‖Λp = ‖f‖∞ + VΛp(f, I), f ∈ ΛBV (p)(I). (1.2)
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In 2010, R. Kantrowitz [31, Theorem 1, p.171] observed that

‖fg‖Λp ≤ ‖f‖Λp ‖g‖Λp , where f, g ∈ ΛBV (p)(I). (1.3)

Thus, the class ΛBV (p)(I) is closed under pointwise multiplication.

This inequality (1.3) together with the Theorem A give the following result.

Theorem B: The class ΛBV (p)(I) is a Banach algebra with respect to the point-

wise operations and the Λp−variation norm, as defined in (1.2).

Motivated by the problems in the spectral theory of linear operators, in 2005 B.

Ashton and I. Doust [5] introduced the class BV (σ) as follows.

Definition 1.3.1. Given a non-empty compact subset σ of R, a function f

defined on σ is said to be of bounded variation (that is, f ∈ BV (σ)) if

V (f, σ) = sup
P∈q(σ)

{∑
i

|∆f(xi)|

}
<∞,

where q(σ) = {P : P = {xi}mi=1 is an increasing finite sequence in σ} and

∆f(xi) = f(xi+1)− f(xi).

Note that, for σ = [a, b] one gets the class BV ([a, b]).

B. Ashton and I. Doust [5, Theorem 2.7] proved the following.

Theorem C: The class BV (σ) is a Banach algebra with respect to the pointwise

operations and the variation norm

‖f‖σ = ‖f‖∞ + V (f, σ), f ∈ BV (σ). (1.4)

For functions of two variables, in 1984 E. Berkson and T. Gillespie [9, Theorem 3,

p.310] observed that the class BVH(R2) is a commutative unital Banach algebra

with respect to the pointwise operations and the variation norm

‖f‖ = ‖f‖∞ + V (f,R2) + V (f(., c), I) + V (f(a, .), J), f ∈ BVH(R2). (1.5)

In the Chapter 2, generalizing the classes BV (σ) and ΛBV (p)(I) to the class

ΛBV (p)(σ,B), of one variable functions of p−Λ−bounded variation from σ into a

commutative unital Banach algebra B, and generalizing the class
∧∗BV (p)(RN)
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to the class
∧∗BV (p)(ΠN

i=1σi,B), of N−variables functions of p −
∧∗−bounded

variation from ΠN
i=1σi into B, where σi are non-empty compact subsets of R, for

all i = 1, 2, · · ·, N , some of their basic properties will be studied.

The classical Dirichlet-Jordan test [8, V.I, p.114] asserts that the Fourier series

of a 2π−periodic function f ∈ BV (T) converges at each point. It was observed

that the Dirichlet-Jordan test may be generalized by weakening the requirement

that f is of bounded variation [10]. Earlier in 1996, considering a function f

of class BVM(T), F. Móricz and A. H. Siddiqi [38] showed that the nth partial

sum, Sn, of the Fourier series of f converges to f in L1(T)−norm. In 2000, P.

B. Pierce and D. Waterman [45, p.2593] observed that the class BVM(T) is a

Banach space with respect to the pointwise operations and the variation norm in

mean

‖f‖ = ‖f‖L1(T) + V m(f,T), f ∈ BVM(T). (1.6)

R. E. Castillo [11] extended the class BVM(T) to the class BV (p)M(T) in 2005.

Further in 2011, Castillo [12] proved the following results.

Theorem D: The class BV (p)M(T) is a Banach space with respect to the point-

wise operations and the variation norm in mean

‖f‖ = ‖f‖Lp(T) + (V m
p (f,T))

1
p , f ∈ BV (p)M(T).

Theorem E: Let f ∈ BV (p)M(T) be such that its derivative f
′

is continuous on

T. Then f
′ ∈ Lp(T) and

V m
p (f,T) = 2π‖f ′‖p

Lp(T)
.

Above Theorem E is an analogous Riesz type result [47] for the class BV (p)M(T).

Further in Chapter 3, these two results (Theorem D and Theorem E) will be

extended for two variables functions of p−bounded variation in the mean.

The Fourier analysis of one variable as well as several variables functions of gen-

eralized bounded variations is one of the interesting topics explored in researches

currently. Here in this chapter, we briefly summarize the known Fourier coeffi-

cients properties of one variable as well as several variables functions of bounded

variation and of generalized bounded variations.
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It is very well known that a rate at which the Fourier coefficients of a function

f ∈ L1(T) tend to zero depends on smoothness of a function. One may recall

the well known classical result (1.7) below [8, Vol.I, p.72] concerning the order of

magnitude of Fourier coefficients.

If f ∈ BV (T) then f̂(m) = O

(
1

|m|

)
. (1.7)

This result was extended for a function of the class BV (p)(T) by R. N. Siddiqi

[55] in 1972 in the following way.

If f ∈ BV (p)(T) then f̂(m) = O

(
1

|m|
1
p

)
. (1.8)

Generalizing this result, M. Schramm and D. Waterman [53] proved in 1982 the

following:

Theorem F: If f ∈ ΛBV (p)(T) then

f̂(m) = O

 1(∑|m|
j=1

1
λj

) 1
p

 . (1.9)

Theorem G: If f ∈ φΛBV (T) then

f̂(m) = O

φ−1

 1∑|m|
j=1

1
λj

 . (1.10)

In 2004, V. Fülöp and F. Móricz [21, Theorem, p.99] generalized the above clas-

sical result (1.7) for a function of N−variables as follows.

Theorem H: If f ∈ BVV (TN) ∩ L1(TN) and k = (k1, · · ·, kN) ∈ ZN is such that

k1 · · · kN 6= 0, then

f̂(k) = O

(
1

|
∏N

j=1 kj|

)
. (1.11)

Corollary H: If f ∈ BVH(TN) and k = (k1, · · ·, kN) ∈ ZN is such that kj 6= 0

for (1 ≤)j1 < · · · < jM(≤ N) and kj = 0 for (1 ≤)l1 < · · · < lN−M(≤ N), where

{l1, · · ·, lN−M} is the complementary set of {j1, · · ·, jM} with respect to {1, · · ·, N},
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then

f̂(k) = O

 1

|
∏N

j=1
kj 6=0

kj|

 . (1.12)

The behavior of the multiple Fourier series of functions of generalized bounded

variations regarding the β−absolute convergence is also typical. Some of the

results on absolute convergence and β−absolute convergence of Fourier series of

a function of one variable are as followed.

The well known result of Bernstein [8, Vol.II, p.154] concerning the absolute

convergence of the Fourier series of f is as follows.

Theorem I: If
∞∑
m=1

ω
(
f ; 1

m

)
m

1
2

<∞, (1.13)

then f ∈ A1.

The following corollary follows from Theorem I.

Corollary I: If f ∈ Lip(α)(T), α > 1
2
, then f ∈ A1.

Zygmund [8, Vol.II, p.160] shows that if f ∈ BV (T) then the condition posed on

its modulus of continuity for f ∈ A1 can be significantly weakened. This theorem

of Zygmund is as follows.

Theorem J: If f ∈ BV (T) and

∞∑
m=1

(
ω
(
f ; 1

m

)) 1
2

m
<∞, (1.14)

then f ∈ A1.

The following corollary follows from Theorem J.

Corollary J: If f ∈ BV (T) ∩ Lip(α)(T), α > 0, then f ∈ A1.

From Mn−Weierstrass test, it is easy to observe that the class A1 is a subspace of

the space C(T). A1 is a proper subspace of C(T) and it is seen from the following

example [19, V.I, p.173].
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Let f be the sum of the sine series
∑∞

n=2
sinnx
nlogn

. Then it is observed that f ∈
AC(T), but f /∈ A1.

Thus, f ∈ BV (T) and f /∈ A1. In view of the Corollary J, f /∈ Lip(α)(T) for any

α > 0. Thus, f is an example of absolutely continuous function not satisfying

Lipschitz condition of order α > 0.

The above theorems of Bernstein (Theorem I) and Zygmund (Theorem J) follow

from the following theorem of Szász [8, Vol.II, p.155].

Theorem K: If f ∈ L2(T) and

∞∑
m=1

ω(2)
(
f ; 1

m

)
m

1
2

<∞, (1.15)

then f ∈ A1.

This theorem was generalized as follows [43, Theorem 2, for nk = k, for all k,

p.116].

Theorem L: If f ∈ L2(T) and

∞∑
m=1

(
ω

(2)
r

(
f ; 1

m

)
m

1
2

)β

<∞, 0 < β ≤ 2, (1.16)

then f ∈ A1(β).

Corollary L: (i) If f ∈ Lip(α)(T), 0 < α ≤ 1, then, for β > 2
2α+1

, f ∈ A1(β)

[76, V.I, Theorem 3.10, p.243].

(ii) If f ∈ BV (T) ∩ Lip(α)(T), 0 < α ≤ 1, then, for β > 2
2+α

, f ∈ A1(β)

[76, V.I, Theorem 3.13, p.243].

In 1982, M. Schramm and D. Waterman [52] extended the above Theorem J of

Zygmund for a function of the class ΛBV (p)(T) as it is shown below.

Theorem M: If f ∈ ΛBV (p)(T), 1 ≤ p < 2r, 1 < r <∞, and

∞∑
m=1

(
ω((2−p)s+p) (f ; π

m

))1− p
2r

m
1
2

(∑m
j=1

1
λj

) 1
2r

<∞, (1.17)
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where 1
r

+ 1
s

= 1, then f ∈ A1.

The sufficiency condition for the β−absolute convergence of Fourier series of a

function f ∈ ΛBV (T) is obtained as it is follows [68, Theorem 1, for nk = k, for

all k, p.131].

Theorem N: If f ∈ ΛBV (T) and

∞∑
m=1

 ω
(
f ; 1

m

)
m
(∑m

j=1
1
λj

)


β
2

<∞, (1.18)

then f ∈ A1(β).

This theorem was extended for a function of the class ΛBV (p)(T) as shown below

[59, Theorem 1, for nk = k, for all k, p.770].

Theorem O: If f ∈ ΛBV (p)(T), 1 ≤ p < 2r, 1 < r <∞, and

∞∑
m=1

(ω((2−p)s+p) (f ; 1
m

))2− p
r

m
(∑m

j=1
1
λj

) 1
r


β
2

<∞, (1.19)

where 1
r

+ 1
s

= 1, then f ∈ A1(β).

The sufficiency condition for the β−absolute convergence of Fourier series of a

function f ∈ r − BV (T) is obtained as shown below [68, Theorem 3, for nk = k,

for all k, p.132].

Theorem P: If f ∈ r −BV (T) and

∞∑
m=1

(ω (f ; 1
m

)) 1
2

m

β

<∞, (1.20)

then f ∈ A1(β).

Thus, there are interesting relationships established between the modulus of con-

tinuity or the integral modulus of continuity and the β−absolute convergence of

Fourier series of one variable functions of generalized bounded variations. Some

analogue results for the β−absolute convergence of multiple Fourier series are as
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indicated below.

The β−absolute convergence of multiple Fourier series was studied for the first

time by Minakshisundaram and Szász [35]. They proved the following.

Theorem Q: If a function f satisfies the condition

|f(x1, · · ·, xN)− f(y1, · · ·, yN)| ≤M |(x1, · · ·, xN)− (y1, · · ·, yN)|α, (1.21)

for all (x1, · · ·, xN), (y1, · · ·, yN) ∈ TN , where 0 < α ≤ 1 and |(x1, · · ·, xN)− (y1, · ·
·, yN)| is the usual distance between the two given points, then, for β > 2N

2α+N
,

f ∈ AN(β). Moreover, the result is not true for β = 2N
2α+N

.

Extending the above theorems of Szász (Theorem K) and Zygmund (Theorem

J), F. Móricz and A. Veres [39] in 2008 obtained sufficient conditions for the

β−absolute convergence of multiple Fourier series of functions of the classes

L2(TN) and BV
(p)
V (TN) as they are shown below:

Theorem R: If f ∈ L2(TN) and

∞∑
k1=1

· · ·
∞∑

kN=1

ω(2)
(
f ; π

k1
, · · ·, π

kN

)
(k1 · · · kN)

1
2

β

<∞, (1.22)

then
∞∑
|k1|=1

· · ·
∞∑

|kN |=1

|f̂(k1, · · ·, kN)|β <∞. (1.23)

Theorem S: If f ∈ BV (p)
V (TN) ∩C(TN), 0 < p < 2, and

∞∑
k1=1

· · ·
∞∑

kN=1


(
ω
(
f ; π

k1
, · · ·, π

kN

)) (2−p)
2

k1 · · · kN


β

<∞, (1.24)

then (1.23) holds true.

The order of magnitude of multiple Fourier coefficients of N−variables func-

tions of generalized bounded variations will be estimated in the first section of

Chapter 4. In the second section of Chapter 4, sufficiency conditions will be ob-
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tained, in terms of modulus of continuity or integral modulus of continuity, for

the β−absolute convergence of multiple Fourier series of N−variables functions

of generalized bounded variations.

Walsh [69] points out great similarities between the trigonometric system and the

Walsh system. He establishes continuity of f(x) at a point x0 as a sufficient con-

dition for the Walsh−Fourier series of f(x) to be (C, 1) summable to f(x0) at x0.

He observes that, like trigonometric system, the Walsh system is also interesting

from theoretical point of view. Therefore, naturally the study of Walsh−Fourier

coefficients properties of functions of these generalized bounded variations also

makes a equally interesting problem for researchers. Walsh, Fine, Móricz, Gogi-

nava [20, 24, 36, 69] and many others have obtained several interesting results in

this direction. In 1949, N. J. Fine [20, Theorem VI, p.383] estimated the order

of magnitude of Walsh−Fourier coefficients as follows.

If f ∈ BV (I) then f̂(m) = O

(
1

m

)
. (1.25)

This result was generalized as follow [22].

Theorem T: If f ∈ ΛBV (p)(I) then

f̂(m) = O

 1(∑m
j=1

1
λj

) 1
p

 . (1.26)

Theorem U: If f ∈ φΛBV (I) then

f̂(m) = O

(
φ−1

(
1∑m
j=1

1
λj

))
. (1.27)

Later on, in Chapter 5, we are going to estimate the order of magnitude of

Walsh−Fourier coefficients of one variable as well as N−variables functions of

generalized bounded variations.
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