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MATHEMATICAL ANALYSIS OF ONE DIMENSIONAL UNSTEADY FREE 

CONVECTIVE MHD NANOFLUID FLOW WITH HEAT TRANSFER  

Analytic expression for unsteady hydromagnetic boundary layer flow past an oscillating 

vertical plate in optically thick nanofluid in presence of thermal radiation and uniform 

transverse magnetic field is obtained. The Rosseland diffusion flux model is adopted to 

simulate thermal radiation effects. The momentum and energy conservation equations are 

made dimensionless, and analytic solution is obtained using the Laplace transform. The 

expressions for velocity and temperature are obtained and plotted graphically.  

  

2.1 Introduction of the problem 

Working fluids have great demands placed upon them in terms of increasing or decreasing 

energy release to systems, and their influences depend on thermal conductivity, heat capacity 

and other physical properties in modern thermal and manufacturing processes. Potential for 

heat transfer in the high-tech applications such as microelectronics, data centres and micro-

channels have attracted the most attentions. Conventional heat transfer fluids such as ethylene 

glycol, water, pumping oil, etc., do not possess sufficient capability for cooling applications 

due to their poor thermal performance. A low thermal conductivity is one of the most 

remarkable parameters that can limit the heat transfer performance. Adding solid particles to 

these fluids could enhance their thermal performance. 

This is one of the most modern and appropriate methods for increasing the coefficient of heat 

transfer. However, still suspensions with micrometre or larger size particles are not efficient 

choice for such applications. Therefore, development of highly efficient heat transfer fluids 

for solving the drawback of conventional fluids has become one of the most important 

priorities in the cooling industries.  
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A mixture of nanoparticles and base fluid is designated as nanofluids. In nanoparticles, due to 

the increase of surface area to the volume, some physical properties such as thermal, 

electrical, mechanical, optical and magnetic properties of the materials can be changed 

significantly. The most important point is that nano structured materials exhibit different and 

unique properties as compared to the bulk materials with the same compositions. 

Experimental studies have displayed that with 1–5% volume of solid metallic or metallic 

oxide particles, the effective thermal conductivity of the resulting mixture can be increased 

by 20% compared to that of the base fluid.  

The study of magnetohydrodynamics flow and heat transfer has received considerable 

attention in recent years due to its essential applications in engineering and technology such 

as MHD generators, pumps, plasma studies, bearings, nuclear reactors and geothermal energy 

extractions. Interaction between the electrically conducting fluid and a magnetic field is used 

as a control mechanism in material manufacturing industry, as the convection currents are 

suppressed by Lorentz force which is produced by the magnetic field. Thermal Radiation 

transfer is also essential in nuclear power plants, gas turbines and various propulsion devices 

for aircrafts, missiles, satellites and space vehicles.  

The gravity-driven convective heat transfer is a vital phenomenon in the cooling mechanism 

of many engineering systems like the electronics industry, solar collectors and cooling 

systems for nuclear reactors because of its minimum cost, low noise, smaller size and 

reliability. Motsumi and Makinde [46] studied the problem of MHD with convective 

boundary layer flow and heat transfer characteristics over a vertical plate. The MHD 

boundary layer flow over a vertical stretching/shrinking sheet in a nanofluid was investigated 

by Makinde et al. [44] and Das et al. [10]. Sheikholeslami et al. [106] discussed effects of 

thermal radiation on magnetohydrodynamics nanofluid flow.  

http://adsabs.harvard.edu/cgi-bin/author_form?author=Sheikholeslami,+M&fullauthor=Sheikholeslami,%20Mohsen&charset=UTF-8&db_key=PHY
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The study of gravity-driven MHD flow of an optically thick fluid past an infinite vertical 

plate is considered very essential in understanding the behaviour of the performance of fluid 

motion in several applications. The problem of gravity-driven convection in a regular fluid 

past a vertical plate is a classical problem solved by Ostrach [54].  

Convective flows with radiation are also encountered in many industrial processes such as 

heating and cooling of chambers, energy processes, evaporation from large reservoirs, solar 

power technology and space vehicle re-entry. Thermal radiation effects of an optically thin 

gray gas bounded by a stationary vertical plate are investigated by England and Emery [13]. 

The effective thermal conductivity of the nanofluid given by Hamilton and Crosser was 

followed by Kakac and Pramuanjaroenkij [26], and Oztop and Abu-Nada [56]. 

  

2.2 Novelty of the Problem 

The aim of this chapter is to study the hydromagnetic gravity-driven convective boundary 

layer flow of nanofluids past an oscillating vertical plate in presence of a uniform transverse 

magnetic field and thermal radiation. The fluid flow is assumed to be induced by motion of 

the plate. Water based nanofluids containing nanoparticles of copper (Cu) and Silver (Ag) 

have been considered in the present work. The governing equations are solved analytically. 

 

2.3 Mathematical formulation of the Problem 

As in Figure 2.1, the flow is confined to 𝑦′  > 0, where 𝑦′ is the coordinate measured in the 

normal direction to the plate. The fluid is assumed to be electrically conducting with a 

uniform magnetic field 𝐵, applied in a direction perpendicular to the plate. Induced magnetic 

field produced by the fluid motion is negligible in comparison with the applied one as the 

magnetic Reynolds number is small enough to neglect the effects of induced magnetic field.  
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Figure 2.1: Physical Sketch of the Problem 

 

At time 𝑡′ = 0, the plate is at rest with the constant ambient temperature 𝑇0. At time 𝑡′  >  0, 

the plate begins to oscillate in its own plane according to 𝑢0 sin ω′𝑡′, where 𝑢0 is amplitude 

of the plate oscillations and the temperature of the plate is raised or lowered to 𝑇𝑤. As 

nanofluid is optically thick, radiative flux can be approximated using Rosseland 

approximation [40]. It is also assumed that a radiative heat flux 𝑞𝑟 is applied in the normal 

direction to the plate. A medium is said to be optically thick if radiation exchange occurs only 

among neighbouring volume elements. This is diffusion limit, in which the governing 

radiative transport equations are differential equations. The fluid is a water based nanofluid 

containing copper or silver as nanoparticles. It is further assumed that the base fluid and the 

suspended nanoparticles are in thermal equilibrium and density is linearly dependent on 

temperature buoyancy forces. 

Under these assumptions, the momentum and energy equations in the presence of thermal 

radiation and magnetic field past an oscillating vertical plate can be expressed as 
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𝜌𝑛𝑓
𝜕𝑢′

𝜕𝑡′ = 𝜇𝑛𝑓
𝜕2𝑢′

𝜕𝑦′2 + 𝑔(𝜌𝛽)𝑛𝑓(𝑇′ − 𝑇0) − 𝜎𝑛𝑓𝐵2𝑢′                        (2.1) 

(𝜌𝑐𝑝)
𝑛𝑓

𝜕𝑇′

𝜕𝑡′ = 𝑘𝑛𝑓
𝜕2𝑇′

𝜕𝑦′2 −
𝜕𝑞𝑟

𝜕𝑦′                                                                     (2.2)  

where  

𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑠                      (2.3) 

𝜇𝑛𝑓 =
𝜇𝑓

(1−∅)2.5
                             (2.4) 

𝜎𝑛𝑓 = 𝜎𝑓[1 +
3(𝜎−1)∅

(𝜎+2)−(𝜎−1)∅
], 𝜎 =

𝜎𝑠

𝜎𝑓
                          (2.5) 

(𝜌𝛽)𝑛𝑓 = (1 − ∅)(𝜌𝛽)𝑓 + ∅(𝜌𝛽)𝑠                          (2.6) 

𝑘𝑛𝑓 = 𝑘𝑓[1 − 3
∅(𝑘𝑓−𝑘𝑠)

2𝑘𝑓+𝑘𝑠+∅(𝑘𝑓−𝑘𝑠)
]                                     (2.7) 

(𝜌𝑐𝑝)
𝑛𝑓

= (1 − ∅)(𝜌𝑐𝑝)𝑓 + ∅(𝜌𝑐𝑝)𝑠                         (2.8) 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇′4

𝜕𝑦′                             (2.9) 

The thermo-physical properties of the base fluid (water) and different nanoparticles are given 

in Table 1.1.  

Considering temperature difference within the flow to be sufficiently small, using Taylor’s 

series and neglecting higher terms, Equation (2.9) becomes 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕(4𝑇0
3𝑇′−3𝑇0

4)

𝜕𝑦′                            (2.10) 

Using Equation (2.10) in (2.2) 

(𝜌𝑐𝑝)
𝑛𝑓

𝜕𝑇′

𝜕𝑡′ = (𝑘𝑛𝑓 +
16𝜎∗𝑇0

3

3𝑘∗ )
𝜕2𝑇′

𝜕𝑦′2 ,                                  (2.11) 
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The initial and boundary conditions are 

𝑡′ = 0 , 𝑢′ = 0, 𝑇′ = 𝑇0     for 𝑦′ ≥ 0   

𝑡′ > 0 , 𝑢′ = 𝑢0 sin ω′𝑡′ , 𝑇′ = 𝑇𝑤     for 𝑦′ = 0  

𝑡′ > 0 , 𝑢′ → 0, 𝑇′ → 𝑇0  as  𝑦′ → ∞                         (2.12) 

Introducing non dimensional variables 

𝑦 =
𝑢0𝑦′

𝑣𝑓
, 𝑡 =

𝑢0
2𝑡′

𝑣𝑓
, 𝑢 =

𝑢′

𝑢0
, 𝜃 =

𝑇′−𝑇0

𝑇𝑤−𝑇0
, 𝜔 =

𝑣𝑓𝜔′

𝑢0
2 ,                                      (2.13) 

(2.1) and (2.11) become  

∂u

∂t
= a1

∂2u

∂y2 + Gra2θ − 𝑀a3u                                      (2.14) 

∂θ

∂t
= a4

∂2θ

∂y2                  (2.15) 

where 

𝑏0 = 1 − ∅                   (2.16) 

𝑏1 = (𝑏0 + ∅
𝜌𝑠

𝜌𝑓
),                  (2.17) 

𝑏2 = (𝑏0 + ∅
(𝜌𝛽)𝑠

(𝜌𝛽)𝑓
),                  (2.18) 

𝑏3 = (𝑏0 + ∅
(𝜌𝑐𝑝)𝑠

(𝜌𝑐𝑝)𝑓
),                  (2.19) 

𝑏4 =
𝑘𝑛𝑓

𝑘𝑓
,                   (2.20) 

𝑏5 =
𝜎𝑛𝑓

𝜎𝑓
,                   (2.21) 



Chapter 2 

35 
 

𝑏6 =
𝑏4

𝑏3
,                   (2.22) 

𝑎1 =
1

𝑏0
2.5𝑏1

,                   (2.23) 

𝑎2 =
𝑏2

𝑏1
,                   (2.24) 

𝑎3 =
𝑏5

𝑏1
,                              (2.25) 

𝑎4 =
𝑏4+𝑁𝑟

𝑏3𝑝𝑟
,                   (2.26) 

𝑀 =
𝜎𝑓𝐵2𝑣𝑓

𝜌𝑓𝑢0
2

                   (2.27) 

𝑁𝑟 =
16𝜎∗𝑇0

3

3𝑘∗𝑘𝑓
                   (2.28) 

𝑃𝑟 =
𝜇𝑓 (𝜌𝑐𝑝)

𝑓

𝜌𝑓𝑘𝑓
 ,                         (2.29) 

𝐺𝑟 =
𝑔𝛽𝑓(𝑇𝑤−𝑇0)𝑣𝑓

𝑢0
3                   (2.30) 

The corresponding initial and boundary conditions are 

t = 0 , u = 0, θ = 0     for y ≥ 0   

t > 0 , 𝑢 = sin ωt , θ = 1     for y = 0  

u → 0, θ → 0     as  y → ∞                           (2.31) 

2.4 Solution of the problem 

Taking Laplace transform of equation (2.14), 

u̅ =
𝑖

2
𝐹1(𝑦, 𝑠) −

𝑖

2
𝐹2(𝑦, 𝑠) − 𝑐6𝐹3(𝑦, 𝑠) + 𝑐6𝐹4(𝑦, 𝑠) + 𝑐6𝐹5(𝑦, 𝑠) − 𝑐6𝐹6(𝑦, 𝑠)         (2.32) 
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Taking Laplace transform of equation (2.15), 

θ̅ =
1

s
e

−y√s
𝑎4⁄

                             (2.33) 

Where  

𝐹1(𝑦, 𝑠) =
e

−y√
(s+c1)

a1

(s+iω)
                  (2.34) 

𝐹2(𝑦, 𝑠) =
e

−y√
(s+c1)

a1

(s−iω)
                   (2.35) 

𝐹3(𝑦, 𝑠) =
e

−y√
(s+c1)

a1

s
                  (2.36) 

𝐹4(𝑦, 𝑠) =
e

−y√
(s+c1)

a1

(s−𝑐4)
                  (2.37) 

𝐹5(𝑦, 𝑠) =
e

−y√s
𝑎4⁄

𝑠
                  (2.38) 

𝐹6(𝑦, 𝑠) =
e

−y√s
𝑎4⁄

(s−𝑐4)
                  (2.39) 

Taking inverse Laplace transform of equations (2.32 - 2.33), 

𝑢(𝑦, 𝑡) =
𝑖

2
𝑓1(𝑦, 𝑡) −

𝑖

2
𝑓2(𝑦, 𝑡) − 𝑐6𝑓3(𝑦, 𝑡) + 𝑐6𝑓4(𝑦, 𝑡) + 𝑐6𝑓5(𝑦, 𝑡) − 𝑐6𝑓6(𝑦, 𝑡)         (2.40) 

θ(y, t) = erfc (
y√1

a4⁄

2√t
)                          (2.41) 

Here erfc is Complementary error function. 

where, 
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𝑓1(𝑦, 𝑡) =
e−iωt

2
[e

−y√
1

a1
(c1−iω)

 erfc (
y

2√a1t
− √(c1 − iω)t) + e

y√
1

a1
(c1−iω)

 erfc (
y

2√a1t
+ √(c1 − iω)t)]   (2.42) 

𝑓2(𝑦, 𝑡) =
eiωt

2
[e

−y√
1

a1
(c1+iω)

 erfc (
y

2√a1t
− √(c1 + iω)t) + e

y√
1

a1
(c1+iω)

 erfc (
y

2√a1t
+ √(c1 + iω)t)]    (2.43) 

𝑓3(𝑦, 𝑡) =
1

2
[e

−y√
c1
a1 erfc (

y

2√a1t
− √c1t) + e

−y√
c1
a1 erfc (

y

2√a1t
+ √c1t)]             (2.44) 

𝑓4(𝑦, 𝑡) =
ec4t

2
[e

−y√
1

a1
(c1+c4)

 erfc (
y

2√a1t
− √(c1 + c4)t) + e

y√
1

a1
(c1+c4)

 erfc (
y

2√a1t
+ √(c1 + c4)t)]      (2.45) 

𝑓5(𝑦, 𝑡) = erfc (
y

2√a4t
)                     (2.46) 

𝑓6(𝑦, 𝑡) =
ec4 t

2
[e

−y√
c4
a4 erfc (

y

2√a4t
− √c4t) + e

y√
c4
a4 erfc (

y

2√a4t
+ √c4t)]             (2.47) 

c1 = 𝑀a3                  (2.48) 

c2 = Gra2                  (2.49) 

c3 =
𝑎1

𝑎4
− 1                  (2.50) 

c4 =
c1

c3
                   (2.51) 

c5 =
c2

c3
                   (2.52) 

c6 =
c5

c4
                  (2.53) 

 

2.5 Nusselt Number: 

From the equation (2.41), Nusselt number 𝑁𝑢 can be written as 

𝑁𝑢 = −√
1

𝑎4 𝜋 𝑡
                  (2.54) 
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2.6 Skin Friction: 

From the equations (2.40), skin friction 𝜏 can be written as 

𝜏(𝑦, 𝑡) =
𝑖

2
ℎ1(𝑡) −

𝑖

2
ℎ2(𝑡) − c6 ℎ3(𝑡) + c6 ℎ4(𝑡) + c6 ℎ5(𝑡) − c6 ℎ6(𝑡)             (2.55) 

Where  

ℎ1(𝑡) = 𝑒−𝑖ω𝑡√
𝑐1−𝑖ω

𝑎1
erf(√(𝑐1 − 𝑖ω)𝑡) +

𝑒−𝑐1𝑡

√𝜋𝑎1𝑡
             (2.56) 

ℎ2(𝑡) = 𝑒𝑖ω𝑡√
𝑐1+𝑖ω

𝑎1
erf(√(𝑐1 + 𝑖ω)𝑡) +

𝑒−𝑐1𝑡

√𝜋𝑎1𝑡
             (2.57) 

ℎ3(𝑡) = −√
𝑐1

𝑎1
erf(√𝑐1𝑡) +

𝑒−𝑐1𝑡

√𝜋𝑎1𝑡
                           (2.58) 

ℎ4(𝑡) = 𝑒c4𝑡√
c4+c1

a1
erf(√(c4 + c1)𝑡) +

𝑒−𝑐1𝑡

√𝜋𝑎1𝑡
              (2.59) 

ℎ5(𝑡) = √
1

𝑎4 𝜋 𝑡
                   (2.60) 

ℎ6(𝑡) = −𝑒c4𝑡√
c4

a4
erf(√c4𝑡) +

1

√𝜋𝑎4𝑡
                          (2.61) 

 

2.7 Results and Discussion: 

Obtained numerical results are elucidated with the help of graphical illustrations to get a clear 

insight on the physics of the problem. Numerical results for velocity profile as well as 

temperature profile are presented for different values of various parameters, involved in 

dimensionless equations.  
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Figure 2.2: Velocity profile for 𝑦 and 𝑁𝑟 at 𝑡 = 0.5, 𝑀 = 3, 𝐺𝑟 = 5, 

∅ = 0.03, 𝑃𝑟 = 6.2  

 

 

 

Figure 2.3: Velocity profile for 𝑦 and  𝑀 at 𝑡 = 0.5, 𝐺𝑟 = 5, ∅ = 0.03, 

𝑃𝑟 = 6.2, 𝑁𝑟 = 0.5 
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Figure 2.4: Velocity profile for 𝑦 and 𝑡 at  𝑀 = 3, 𝐺𝑟 = 5, ∅ = 0.03, 

𝑃𝑟 = 6.2, 𝑁𝑟 = 0.5  

 

 

Figure 2.5: Velocity profile for 𝑦 and 𝐺𝑟 at  𝑀 = 3, 𝑡 = 0.5,  

 ∅ = 0.03, 𝑃𝑟 = 6.2, 𝑁𝑟 = 0.5  
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Figure 2.6: Velocity profile for 𝑦 and 𝑃𝑟 at  𝑀 = 3, 𝑡 = 0.5, ∅ = 0.03, 

 𝐺𝑟 = 5, 𝑁𝑟 = 0.5  

 

Figure 2.7: Temperature profile for 𝑦 and 𝑁𝑟 at  𝑀 = 3, 𝑡 = 0.5,  

 ∅ = 0.03, 𝐺𝑟 = 5, 𝑃𝑟 = 6.2  
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Figure 2.8: Temperature profile for 𝑦 and 𝑃𝑟 at  𝑀 = 3, 𝑡 = 0.5,   

∅ = 0.03, 𝐺𝑟 = 5, 𝑁𝑟 = 0.5  

 

 

Figure 2.9: Temperature profile for 𝑦 and 𝑡 at  𝑀 = 3, 𝑁𝑟 = 0.5,   

∅ = 0.03, 𝐺𝑟 = 5, 𝑃𝑟 = 6.2  
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Figure 2.10: Velocity profile for different Nanofluids and 𝑁𝑟 at 𝑀 = 3, 𝑡 = 0.5,   

∅ = 0.03, 𝐺𝑟 = 5, 𝑃𝑟 = 6.2, ω = 0. 

 

 

Figure 2.11: Temperature profile for different Nanofluids at 𝑁𝑟 = 0.5, 𝑀 = 3,   

𝑡 = 0.5, ∅ = 0.03, 𝐺𝑟 = 5, 𝑃𝑟 = 6.2, 𝜔 = 0  
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Figure 2.12: Nusselt number for 𝑃𝑟 and 𝑡 at  𝑀 = 3, ∅ = 0.03, 𝐺𝑟 = 5, 

𝑁𝑟 = 0, 𝜔 = 0. 

 

 

Figure 2.13: Nusselt number for 𝑁𝑟 and 𝑡 at  𝑀 = 3, ∅ = 0.03, 𝐺𝑟 = 5,  

𝑃𝑟 = 6.2, 𝜔 = 0. 
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Figure 2.14: Skin friction for 𝑃𝑟 and 𝑡 at  𝑀 = 3, ∅ = 0.03,  

 𝐺𝑟 = 5, 𝑁𝑟 = 0, 𝜔 = 0 

 

 

Figure 2.15: Skin friction for 𝑁𝑟 and 𝑡 at  𝑀 = 3, ∅ = 0.03,  

 𝐺𝑟 = 5, 𝑃𝑟 = 6.2, 𝜔 = 0  
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Figure 2.2 represents velocity profile for different values of 𝑁𝑟 and 𝜔 keeping other 

parameters fixed. It is observed that the fluid velocity 𝑢 increases with radiation parameter  

𝑁𝑟 for different values of 𝜔. The velocity increases steeply near the surface of the plate and 

after attaining the maximum value, the curve settle down to the corresponding asymptotic 

value for 𝜔 = 0 while for other values of 𝜔, velocity decreases as it goes far from plate. 

Figure 2.3 shows the effect of magnetic parameter 𝑀 on the velocity. It is seen that the 

amplitude of the velocity as well as the boundary layer thickness decreases when 𝑀 is 

increased. Physically, it may be due to the fact that the application of a transverse magnetic 

field results in Lorentz force similar to the drag force, and upon increasing the values of 𝑀, 

the drag force increases which leads to the deceleration of the flow. Figure 2.4 reveals the 

influence of dimensionless time 𝑡 on the velocity profile. It is found that the velocity is an 

increasing function of time 𝑡. Figure 2.5 depicts the profile of velocity for different values of 

Grashof number 𝐺𝑟. It is observed that velocity increases with increasing values of 𝐺𝑟. The 

flow is accelerated due to the enhancement in the buoyancy forces corresponding to 

increasing values of Grashof number, i.e. free convection effects. Figure 2.6 exhibits the 

velocity profile for different values of Prandtl number 𝑃𝑟, when the other parameters are 

fixed. It is observed that velocity of the fluid decreases with increasing Prandtl number. 

Figure 2.7 reveals the effect of radiation parameter 𝑁𝑟 on the temperature profile. 

Temperature increases with increase in radiation parameter as heat energy from the flow 

region is also increased, resulting in increase in fluid temperature. Similarly, decrease in the 

values of 𝑁𝑟 results in decrease in the Rosseland radiation absorptivity resulting divergence 

of the radiative heat flux. This escalates rate of radiative heat transfer to the fluid and hence 

the fluid temperature increases. Figure 2.8 depicts the variation of nanofluid temperature for 

Prandtl number 𝑃𝑟. The temperature profile exhibits that fluid temperature decreases as 𝑃𝑟 

increases. This may be due to the fact that higher 𝑃𝑟 means relatively low thermal 
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conductivity, which reduces conduction and as a result, temperature decreases. Figure 2.9 is 

plotted to show the effects of the dimensionless time 𝑡 on the temperature profile. Obviously, 

the temperature increases with increasing time 𝑡. This graphical behaviour of temperature is 

in good agreement with the corresponding boundary conditions of temperature profile as 

shown in Equation (2.12). Fluid temperature is high near the plate and decreases 

asymptotically to the free stream with zero value far away from the plate. Figure 2.10 and 

Figure 2.11 reveal velocity and fluid temperature variations for two types of water based 

nanofluids Cu – water and Ag – water for different values of 𝑁𝑟. Velocity of silver water 

nanofluid is more than copper water nanofluid, it is obvious that the velocity distributions for 

Cu – water and Ag – water are almost the same as their densities are near to each other. 

However, due to higher thermal conductivity of Ag – water nanofluid, temperature of Ag – 

water nanofluid is found to be higher than Cu – water. It is also seen that the thermal 

boundary layer thickness is more for Ag – water than Cu – water nanofluid. Figure 2.12 and 

Figure 2.13 illustrate effects of Prandtl number 𝑃𝑟 and radiation parameter 𝑁𝑟 on Nusselt 

number 𝑁𝑢. Temperature gradient increases with thermal radiation resulting in increased 𝑁𝑢. 

Increase in 𝑃𝑟 results in lower thermal conductivity and thus there is decrease in 𝑁𝑢. Figure 

2.14 and Figure 2.15 reveal effects of Prandtl number 𝑃𝑟 and radiation parameter 𝑁𝑟 on skin 

friction 𝐶𝑓. Skin friction on plate decreases with increase in 𝑃𝑟 while increases with increase 

in 𝑁𝑟.  

Table 2.1 shows effects of Magnetic parameter 𝑀, Grashof number 𝐺𝑟, Nanoparticle volume 

fraction ∅ on Skin friction 𝐶𝑓  and Nusselt number 𝑁𝑢. Negative values of 𝑁𝑢 show that heat 

flows from fluid to plate and that of skin friction reveals exertion of drag force. It is observed 

that 𝑁𝑢 increase with  ∅ as volume fraction of nanoparticle increases thermal conductivity. 

𝑁𝑢 also increases with time. 𝐶𝑓 decreases with increase in 𝐺𝑟 as raise in buoyancy 

accelerates the fluid flow. 𝐶𝑓 is a decreasing function of time. 
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Table 2.1: Skin friction and Nusselt number variation at 𝑃𝑟 = 6.2 and 𝑁𝑟 = 0.5 

𝑡 𝑀 𝐺𝑟 ∅ 𝐶𝑓 𝑁𝑢 

0.4 1.1 5 0.05 -0.6196 -1.7179 

0.4 1.2 5 0.05 -0.6081 -1.7179 

0.4 1.5 5 0.05 -0.5680 -1.7179 

0.4 1.5 5.5 0.05 -0.6248 -1.7179 

0.4 1.5 6.0 0.05 -0.6816 -1.7179 

0.4 1.5 5 0.1 -0.4064 -1.6268 

0.4 1.5 5 0.15 -0.2799 -1.5397 

0.5 1.5 5 0.05 -0.6043 -1.5366 

0.6 1.5 5 0.05 -0.6284 -1.4027 

   

  

2.8  Conclusions  

In this chapter, an exact analysis is performed to investigate effects of radiation, magnetic 

parameter and various physical parameters on an unsteady MHD flow of an optically thick 

nanofluid past an oscillating vertical plate. The dimensionless governing equations are solved 

using the Laplace transform. Water based nanofluid is considered having nanoparticles: 

copper and silver. The results for velocity and temperature are obtained and plotted 

graphically. 

The main conclusions of this study are: 

 The velocity of the nanofluid increases with increase in the radiation parameter Nr for 

different frequencies of oscillation 𝜔 of the plate. 

 The velocity of the nanofluid decreases with increase in the magnetic field. 

 The Velocity increases with increase in 𝐺𝑟 and 𝑡.  
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 Temperature of nanofluid increases with increase in the radiation parameter 𝑁𝑟. 

 The temperature of the nanofluid increases with time 𝑡. 

 Both velocity and temperature of the nanofluid decrease as Prandtl number 𝑃𝑟 

increases. 

 Temperature of Silver-water nanofluid is more compared to Copper-water nanofluid. 

 Skin friction and Nusselt number decrease with increase in Prandtl number 𝑃𝑟. 

 Skin friction and Nusselt number increase with increase in Radiation Parameter 𝑁𝑟. 

 

 
 


