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STUDY OF ONE DIMENSIONAL MHD NANOFLUID FLOW WITH HEAT AND 

MASS TRANSFER IN POROUS MEDIUM 

Mass transfer is very important in the study of MHD as it cannot be neglected in many 

processes such as the dispersion of smoke from a chimney and home humidifier. Evaporation 

of alcohol from a beaker is an instance of mass transfer by natural convection. This chapter 

explores heat and mass transfer characteristics of one dimensional nanofluid flow through 

porous medium in presence of magnetic field.  

This chapter is distributed in two sections. First section studies heat and mass transfer 

involved in water based nanofluid, whereas second section deals with Casson fluid based 

nanofluid flow taking effects of radiation in consideration. 

 

3.1 SECTION I: STUDY OF WATER BASED NANOFLUID FLOW WITH HEAT 

AND MASS TRANSFER IN POROUS MEDIUM  

The present section is concerned with the mathematical modelling of flow, heat and mass 

transfer in the unsteady natural convective magnetohydrodynamics flow of electrically 

conducting nanofluid, past over an oscillating vertical plate through porous medium. The 

features of the fluid flow, heat and mass transfer are analyzed by plotting graphs and the 

physical aspects are discussed in detail. Skin friction, Nusselt number and Sherwood number 

are derived with the help of velocity, temperature and concentration respectively. They are 

represented in tabular form. 

 

3.1.1 Introduction of the problem 

The study of magnetohydrodynamics flow considering heat and mass transfer has essential 

applications in physics, chemistry and engineering. One of the basic and important problems 

in this area is the hydromagnetic behavior of boundary layers along fixed or moving surfaces 

in presence of transverse magnetic field. MHD boundary layers are observed in various 
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technical systems employing liquid metal and plasma flow in presence of transverse magnetic 

field. Keeping this in view, Sheikholeslami et al. [84] investigated MHD free convection of 

Al2O3 – water nanofluid. MHD boundary layer flow and heat transfer of nanofluid past a 

vertical stretching sheet has been presented by Das et al. [10].  

Heat transfer problems involving porous media have many engineering applications such as 

ground water pollution, geothermal energy recovery, flow through filtering media, thermal 

energy storage and crude oil extraction. Vadasz [114] explained heat and mass transfer in 

porous medium. Analytical investigation of MHD nanofluid flow in porous channel has been 

carried out by Sheikholeslami et al. [81].  

Nanofluid flow in oscillating porous media rarely been a subject of thorough studies until the 

recent rise of marine applications in natural gas and oil processing. Oscillating vertical plates 

are used as heat exchangers in cooling systems. Currently, the industry of fossil-fuel offshore 

extraction and processing is increasingly interested on this particular class of flows.  

 

3.1.2 Novelty of the problem 

The aim of present investigation is to study the hydromagnetic gravity-driven convective 

boundary layer flow of nanofluid past an oscillating vertical plate in presence of uniform 

transverse magnetic field. The fluid flow is assumed to be induced due to the motion of the 

plate. The bounding plate has ramped temperature with ramped surface concentration and 

isothermal temperature with ramped surface concentration through porous medium. The 

governing equations are solved analytically. Obtained exact solutions are studied numerically 

and are elucidated with the help of graphs. Parametric study is performed for different 

parameters.  

 



Chapter 3 

52 
 

3.1.3 Mathematical formulation of the problem 

Natural convective flow of nanofluid past an oscillating vertical plate is considered. Physical 

sketch of the problem is shown in Figure 3.1.1. Induced magnetic field by the fluid motion is 

negligible in comparison with the applied one as the magnetic Reynolds number is very 

small. Also, no external electric field is applied such that the effect of polarization of fluid is 

negligible. Hence, Reynolds number is also neglected. It is assumed that the effect of viscous 

dissipation and Ohmic dissipation are negligible in the energy equation and the level of 

species concentration is very low so, the Soret and Dufour effects are neglected. It is 

considered that porous medium has uniform geometry.  

 

Figure 3.1.1: Physical sketch of the problem. 

Initially, both fluid and the plate are at constant temperature 𝑇0 and the concentration near the 

plate is assumed to be 𝐶0. At time 𝑡′ > 0, temperature of the wall is instantaneously raised 

and lowered to 𝑇0 + (𝑇𝑤 − 𝑇0) 𝑡′

𝑡0
⁄  when 𝑡′ ≤  𝑡0 and 𝑇𝑤 when 𝑡′ > 𝑡0 . Concentration near 
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the plate is raised linearly to 𝐶0 + (𝐶𝑤 − 𝐶0) 𝑡′

𝑡0
⁄  when 𝑡′ ≤  𝑡0 and which is there after 

maintained constant 𝐶𝑤. The plate oscillates in its plane (𝑦′ = 0) according to equation       

𝑢′ = 𝑢0𝑠𝑖𝑛(ω′𝑡′) or 𝑢0𝑐𝑜𝑠(ω′𝑡′), ω′ is the frequency of oscillation of the plate. The fluid is 

a water based nanofluid containing copper or silver as nanoparticles. It is further assumed 

that the base fluid and the suspended nanoparticles are in thermal equilibrium (by considering 

thermal equilibrium, particle-liquid mixture can be considered as conventional single phase 

fluid with properties of that are to be evaluated as functions of those of constituents [105]) 

and density is linearly dependent on buoyancy forces (Boussinesq approximation).  

Under the above assumptions, the momentum, energy and mass transfer equations can be 

expressed as 

𝜌𝑛𝑓
𝜕𝑢′

𝜕𝑡′ = 𝜇𝑛𝑓
𝜕2𝑢′

𝜕𝑦′2 − 𝜎𝑛𝑓𝐵2𝑢′ −
𝜇𝑛𝑓𝜑

𝑘1
𝑢′ + 𝑔(𝜌𝛽)𝑛𝑓(𝑇′ − 𝑇0) + 𝑔(𝜌𝛽𝐶)𝑛𝑓(𝐶′ − 𝐶0),(3.1.1) 

(𝜌𝑐𝑝)
𝑛𝑓

𝜕𝑇′

𝜕𝑡′ = 𝑘𝑛𝑓
𝜕2𝑇′

𝜕𝑦′2,                                                        (3.1.2)  

𝜕𝐶′

𝜕𝑡′ = 𝐷
𝜕2𝐶′

𝜕𝑦′2,               (3.1.3)    

where 

𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑠 ,             (3.1.4) 

𝜇𝑛𝑓 =
𝜇𝑓

(1−∅)2.5
 ,              (3.1.5)  

𝜎𝑛𝑓 = 𝜎𝑓[1 +
3(𝜎−1)∅

(𝜎+2)−(𝜎−1)∅
],              (3.1.6) 

𝜎 =
𝜎𝑠

𝜎𝑓
 ,                          (3.1.7)  

(𝜌𝛽)𝑛𝑓 = (1 − ∅)(𝜌𝛽)𝑓 + ∅(𝜌𝛽)𝑠 ,             (3.1.8)  
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𝑘𝑛𝑓 = 𝑘𝑓[1 − 3
∅(𝑘𝑓−𝑘𝑠)

2𝑘𝑓+𝑘𝑠+∅(𝑘𝑓−𝑘𝑠)
],            (3.1.9)  

(𝜌𝑐𝑝)
𝑛𝑓

= (1 − ∅)(𝜌𝑐𝑝)𝑓 + ∅(𝜌𝑐𝑝)𝑠 ,           (3.1.10)                        

𝑢′ = 0,     𝑇′ = 𝑇0,   𝐶′ = 𝐶0;  𝑎𝑠  𝑦′ ≥ 0 𝑎𝑛𝑑  𝑡′ = 0            (3.1.11) 

𝑢′ = 𝑢0 sin(ω′𝑡′) 𝑜𝑟 𝑢0 cos(ω′𝑡′) ,     

𝑇′ = {
𝑇0 + (𝑇𝑤 − 𝑇0) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑇𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

 ,      

𝐶′ = {
𝐶0 + (𝐶𝑤 − 𝐶0) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝐶𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

 ,   𝑎𝑠  𝑡′ ≥ 0 𝑎𝑛𝑑 𝑦′ = 0          (3.1.12) 

 𝑢′ → 0, 𝑇′ → 𝑇0,   𝐶′ → 𝐶0;  𝑎𝑠  𝑦′ → ∞ 𝑎𝑛𝑑 𝑡′ ≥ 0         (3.1.13) 

Introducing non dimensional variables 

𝑦 =
𝑢0𝑦′

𝑣𝑓
, 𝑡 =

𝑢0
2𝑡′

𝑣𝑓
, 𝑢 =

𝑢′

𝑢0
, 𝜃 =

𝑇′−𝑇0

𝑇𝑤−𝑇0
, 𝐶 =

𝐶′−𝐶0

𝐶𝑤−𝐶0
, 𝜔 =

𝑣𝑓ω′

𝑢0
2                        (3.1.14) 

𝜕𝑢

𝜕𝑡
= 𝑎1

𝜕2𝑢

𝜕𝑦2 − (𝑎3𝑀 +
𝑎1

𝑘
) 𝑢 + 𝐺𝑟𝑎2𝜃 + 𝐺𝑚𝑎5𝐶          (3.1.15) 

𝜕𝜃

𝜕𝑡
= 𝑎4

𝜕2𝜃

𝜕𝑦2               (3.1.16) 

𝜕𝐶

𝜕𝑡
=

1

𝑠𝑐

𝜕2𝐶

𝜕𝑦2
               (3.1.17) 

with initial and boundary conditions 

𝑢 = 𝜃 =  𝐶 = 0 , 𝑦 ≥ 0, 𝑡 = 0                         (3.1.18) 

𝑢 = sin(ω′𝑡′) or cos(ω′𝑡′) ,     
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𝜃 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    = 𝑡𝐻(𝑡) − (𝑡 − 1)𝐻(𝑡 − 1),  

𝐶 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    = 𝑡𝐻(𝑡) − (𝑡 − 1)𝐻(𝑡 − 1),   𝑦 = 0, 𝑡 > 0        (3.1.19) 

𝑢 → 0, 𝜃 → 0, 𝐶 → 0    𝑎𝑠  𝑦 → ∞, 𝑡 > 0            (3.1.20) 

where H (.) is Heaviside unit step function. 

𝑃𝑟 =
𝜇𝑓 (𝜌𝑐𝑝)

𝑓

𝜌𝑓𝑘𝑓
 ,                      (3.1.21) 

𝑀 =
𝜎𝑓𝐵2𝑣𝑓

𝜌𝑓𝑢0
2 ,                                 (3.1.22) 

1

𝑘
=

𝑣𝑓𝜑2

𝑘1𝑢0
2 ,                                  (3.1.23) 

𝐺𝑟 =
𝑣𝑓𝑔𝛽(𝑇𝑤−𝑇0)

𝑢0
3  ,                      (3.1.24) 

𝛾 =
𝜇𝐵√2𝜋𝑐

𝑃𝛾
,                                  (3.1.25) 

𝑆𝑐 =
𝑣𝑓

𝐷
 ,                                  (3.1.26) 

𝐺𝑚 =
𝑔𝛽𝑐𝑣𝑓(𝐶𝑤−𝐶∞)

𝑢0
3 ,                      (3.1.27) 

𝑏0 = 1 − ∅,                                  (3.1.28) 

𝑏1 = (𝑏0 + ∅
𝜌𝑠

𝜌𝑓
),               (3.1.29) 

𝑏2 = (𝑏0 + ∅
(𝜌𝛽)𝑠

(𝜌𝛽)𝑓
),               (3.1.30) 

𝑏3 = (𝑏0 + ∅
(𝜌𝑐𝑝)𝑠

(𝜌𝑐𝑝)𝑓
),               (3.1.31) 

𝑏4 =
𝑘𝑛𝑓

𝑘𝑓
,                (3.1.32) 
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𝑏5 =
𝜎𝑛𝑓

𝜎𝑓
,                (3.1.33) 

𝑏6 =
𝑏4

𝑏3
,                (3.1.34) 

𝑏7 = (𝑏0 + ∅
(𝜌𝛽)𝑐

(𝜌𝛽)𝑓
),               (3.1.35) 

𝑎1 =
1

𝑏0
2.5𝑏1

,                (3.1.36) 

𝑎2 =
𝑏2

𝑏1
,                (3.1.37) 

𝑎3 =
𝑏5

𝑏1
,                (3.1.38) 

𝑎4 =
𝑏6

𝑃𝑟
 ,                (3.1.39) 

𝑎5 =
𝑏7

𝑏1
                (3.1.40) 

3.1.4 Solution of the problem 

3.1.4.1 Solution for plate with ramped wall temperature 

Taking Laplace transform of equations (3.1.15) to (3.1.17) with initial and boundary 

conditions (3.1.18) and (3.1.19). 

�̅� = (1 − 𝑒−𝑠)𝐹8(𝑦, 𝑠)             (3.1.41) 

𝐶̅ = 𝐹11(𝑦, 𝑠)(1 − 𝑒−𝑠)             (3.1.42) 

�̅�𝑠𝑖𝑛(𝑦, 𝑠) = 𝑖𝐺1(𝑦, 𝑠) + (1 − 𝑒−𝑠)𝐻1(𝑦, 𝑠)           (3.1.43) 

�̅�𝑐𝑜𝑠(𝑦, 𝑠) = 𝐺1(𝑦, 𝑠) + (1 − 𝑒−𝑠)𝐻1(𝑦, 𝑠)           (3.1.44) 

where 

𝐻1(𝑦, 𝑠) = 𝐺2(𝑦, 𝑠) − 𝐺3(𝑦, 𝑠) − 𝐺4(𝑦, 𝑠)           (3.1.45) 
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𝐺1(𝑦, 𝑠) =
1

2
𝐹1(𝑦, 𝑠) −

1

2
𝐹2(𝑦, 𝑠)            (3.1.46) 

𝐺2(𝑦, 𝑠) = 𝑑17𝐹3(𝑦, 𝑠) + 𝑑18𝐹4(𝑦, 𝑠) + 𝑑12𝐹5(𝑦, 𝑠) + 𝑑15𝐹6(𝑦, 𝑠)        (3.1.47) 

𝐺3(𝑦, 𝑠) = 𝑑13𝐹7(𝑦, 𝑠) + 𝑑11𝐹8(𝑦, 𝑠) + 𝑑12𝐹9(𝑦, 𝑠)          (3.1.48) 

𝐺4(𝑦, 𝑠) = 𝑑16𝐹10(𝑦, 𝑠) + 𝑑14𝐹11(𝑦, 𝑠) + 𝑑15𝐹12(𝑦, 𝑠)         (3.1.49) 

𝐺5(𝑦, 𝑠) = 𝑑11𝐹3(𝑦, 𝑠) − 𝑑11𝐹3(𝑦, 𝑠)           (3.1.50) 

𝐺6(𝑦, 𝑠) = 𝑑16𝐹3(𝑦, 𝑠) + 𝑑14𝐹4(𝑦, 𝑠) + 𝑑15𝐹6(𝑦, 𝑠)          (3.1.51) 

𝐺7(𝑦, 𝑠) = 𝑑11𝐹7(𝑦, 𝑠) − 𝑑11𝐹9(𝑦, 𝑠)           (3.1.52) 

𝐹1(𝑦, 𝑠) =
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠+𝑖𝑤
              (3.1.53) 

𝐹2(𝑦, 𝑠) =  
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠−𝑖𝑤
              (3.1.54) 

𝐹3(𝑦, 𝑠) =
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠
              (3.1.55) 

𝐹4(𝑦, 𝑠) =
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠2               (3.1.56) 

𝐹5(𝑦, 𝑠) =
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠−𝑑6
              (3.1.57) 

𝐹6(𝑦, 𝑠) =
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠−𝑑9
              (3.1.58) 

𝐹7(𝑦, 𝑠) =
e

−y√s
𝑎4⁄

𝑠
              (3.1.59) 
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𝐹8(𝑦, 𝑠) =
e

−y√s
𝑎4⁄

𝑠2               (3.1.60) 

𝐹9(𝑦, 𝑠) =
e

−y√s
𝑎4⁄

𝑠−𝑑6
              (3.1.61) 

𝐹10(𝑦, 𝑠) =
1

𝑠
𝑒−𝑦√𝑠𝑐 𝑠              (3.1.62) 

𝐹11(𝑦, 𝑠) =
1

𝑠2
𝑒−𝑦√𝑠𝑐 𝑠             (3.1.63) 

𝐹12(𝑦, 𝑠) =
1

𝑠−𝑑9
𝑒−𝑦√𝑠𝑐 𝑠             (3.1.64) 

 Inverse Laplace transform of equation (3.1.41-3.1.44), 

𝜃(𝑦, 𝑡) = 𝑓8(𝑦, 𝑡) − 𝑓8(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)           (3.1.65) 

𝐶(𝑦, 𝑡) = 𝑓11(𝑦, 𝑡) − 𝑓11(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)           (3.1.66) 

𝑢𝑠𝑖𝑛(𝑦, 𝑡) = 𝑖𝑔1(𝑦, 𝑡) + ℎ1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)          (3.1.67) 

𝑢𝑐𝑜𝑠(𝑦, 𝑡) = 𝑔1(𝑦, 𝑡) + ℎ1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)          (3.1.68) 

3.1.4.2 Solution for plate with isothermal temperature 

In this case, the initial and boundary conditions are same except Equation. (3.1.19), that 

becomes 𝜃 = 1 𝑎𝑡 𝑦 = 0, 𝑡 ≥ 0.  

Now Laplace transform of equations (3.1.15) to (3.1.17) subject to new initial and boundary 

conditions will be  

�̅� = 𝐹7(𝑦, 𝑠)               (3.1.69) 

𝐶̅ = 𝐹11(𝑦, 𝑠)(1 − 𝑒−𝑠)             (3.1.70) 

�̅�𝑠𝑖𝑛(𝑦, 𝑠) = 𝑖𝐺1(𝑦, 𝑠) + 𝐺5(𝑦, 𝑠) + 𝐺6(𝑦, 𝑠)(1 − 𝑒−𝑠) − 𝐺7(𝑦, 𝑠) − 𝐺4(𝑦, 𝑠)(1 − 𝑒−𝑠)   
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     (3.1.71) 

�̅�𝑐𝑜𝑠(𝑦, 𝑠) = 𝐺1(𝑦, 𝑠) + 𝐺5(𝑦, 𝑠) + 𝐺6(𝑦, 𝑠)(1 − 𝑒−𝑠) − 𝐺7(𝑦, 𝑠) − 𝐺4(𝑦, 𝑠)(1 − 𝑒−𝑠)    

                     (3.1.72) 

Concentration will be same as given in equation (3.1.66) and expressions of temperature 

𝜃(𝑦, 𝑡) and velocity 𝑢(𝑦, 𝑡) are given below.  

θ(y, t) = 𝑓7(𝑦, 𝑡)              (3.1.73) 

𝑢𝑠𝑖𝑛(𝑦, 𝑡) = 𝑖𝑔1(𝑦, 𝑡) + 𝑔5(𝑦, 𝑡) + 𝑔6(𝑦, 𝑡) − 𝑔6(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) − 𝑔7(𝑦, 𝑡) − 𝑔4(𝑦, 𝑡) 

                      +𝑔4(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)                       (3.1.74) 

𝑢𝑐𝑜𝑠(𝑦, 𝑡) = 𝑔1(𝑦, 𝑡) + 𝑔5(𝑦, 𝑡) + 𝑔6(𝑦, 𝑡) − 𝑔6(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) − 𝑔7(𝑦, 𝑡) − 𝑔4(𝑦, 𝑡) 

                      +𝑔4(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)            (3.1.75) 

where 

ℎ1(𝑦, 𝑡) = 𝑔2(𝑦, 𝑡) − 𝑔3(𝑦, 𝑡) − 𝑔4(𝑦, 𝑡)           (3.1.76) 

𝑔1(𝑦, 𝑠) =
1

2
𝑓1(𝑦, 𝑡) −

1

2
𝑓2(𝑦, 𝑡)            (3.1.77) 

𝑔2(𝑦, 𝑡) = 𝑑17𝑓3(𝑦, 𝑡) + 𝑑18𝑓4(𝑦, 𝑡) + 𝑑12𝑓5(𝑦, 𝑡) + 𝑑15𝑓6(𝑦, 𝑡)        (3.1.78) 

𝑔3(𝑦, 𝑡) = 𝑑13𝑓7(𝑦, 𝑡) + 𝑑11𝑓8(𝑦, 𝑡) + 𝑑12𝑓9(𝑦, 𝑡)          (3.1.79) 

𝑔4(𝑦, 𝑡) = 𝑑16𝑓10(𝑦, 𝑡) + 𝑑14𝑓11(𝑦, 𝑡) + 𝑑15𝑓12(𝑦, 𝑡)         (3.1.80) 

𝑔5(𝑦, 𝑡) = 𝑑11𝑓3(𝑦, 𝑡) − 𝑑11𝑓3(𝑦, 𝑡)            (3.1.81) 

𝑔6(𝑦, 𝑡) = 𝑑16𝑓3(𝑦, 𝑡) + 𝑑14𝑓4(𝑦, 𝑡) + 𝑑15𝑓6(𝑦, 𝑡)          (3.1.82) 

𝑔7(𝑦, 𝑡) = 𝑑11𝑓7(𝑦, 𝑡) − 𝑑11𝑓9(𝑦, 𝑡)            (3.1.83) 
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𝑓1(𝑦, 𝑡) =
𝑒−𝑖ω𝑡

2
[𝑒

−𝑦√
1

𝑑1
(𝑑2−𝑖ω)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑑1𝑡
− √(𝑑2 − 𝑖ω)𝑡) + 𝑒

𝑦√
1

𝑑1
(𝑑2−𝑖ω)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑑1𝑡
+ √(𝑑2 − 𝑖ω)𝑡)]

                 (3.1.84)

  

𝑓2(𝑦, 𝑡) =
𝑒𝑖ω𝑡

2
[𝑒

−𝑦√
1

𝑑1
(𝑑2+𝑖ω)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑑1𝑡
− √(𝑑2 + 𝑖ω)𝑡) + 𝑒

𝑦√
1

𝑑1
(𝑑2+𝑖ω)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑑1𝑡
+ √(𝑑2 + 𝑖ω)𝑡)] 

                               (3.1.85) 

𝑓3(𝑦, 𝑡) =
1

2
[𝑒

−𝑦√
𝑑2
𝑑1 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑑1𝑡
− √𝑑2𝑡) + 𝑒

𝑦√
𝑑2
𝑑1 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑑1𝑡
+ √𝑑2𝑡)]       (3.1.86) 

𝑓4(𝑦, 𝑡) =
1

2
[(𝑡 −

𝑦

2√𝑑2𝑑1
) 𝑒

−𝑦√
𝑑2
𝑑1 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑑1𝑡
− √𝑑2𝑡) + (𝑡 +

𝑦

2√𝑑2𝑑1
) 𝑒

𝑦√
𝑑2
𝑑1 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑑1𝑡
+ √𝑑2𝑡)] (3.1.87) 

𝑓5(𝑦, 𝑡) =
𝑒𝑑6𝑡

2
[𝑒

−𝑦√
1

𝑑1
(𝑑6+𝑑2)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑑1𝑡
− √(𝑑6 + 𝑑2)𝑡) + 𝑒

−𝑦√
1

𝑑1
(𝑑6+𝑑2)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑑1𝑡
+ √(𝑑6 + 𝑑2)𝑡)]

                 (3.1.88) 

𝑓6(𝑦, 𝑡) =
𝑒𝑑9𝑡

2
[𝑒

−𝑦√
1

𝑑1
(𝑑9+𝑑2)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑑1𝑡
− √(𝑑9 + 𝑑2)𝑡) + 𝑒

−𝑦√
1

𝑑1
(𝑑9+𝑑2)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑑1𝑡
+ √(𝑑9 + 𝑑2)𝑡)]

                 (3.1.89) 

𝑓7(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎4𝑡
)             (3.1.90) 

𝑓8(𝑦, 𝑡) = (
𝑦2

2 𝑎4
+ 𝑡) 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑎4 𝑡
) −

𝑦√𝑡

2√𝑎4 𝜋
𝑒

−
𝑦2

4𝑡𝑎4          (3.1.91) 

𝑓9(𝑦, 𝑡) =
𝑒𝑑6𝑡

2
[𝑒

−𝑦√
𝑑6
𝑎4  𝑒𝑟𝑓𝑐 (

𝑦 

2√𝑎4𝑡
− √𝑑6𝑡) + 𝑒

𝑦√
𝑑6
𝑎4  𝑒𝑟𝑓𝑐 (

𝑦 

2√𝑎4𝑡
+ √𝑑6𝑡)]      (3.1.92) 

𝑓10(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 (
𝑦√𝑆𝑐

2√𝑡
)             (3.1.93) 

𝑓11(𝑦, 𝑡) = (
𝑦2𝑆𝑐

2
+ 𝑡) 𝑒𝑟𝑓𝑐 (

𝑦√𝑆𝑐

2√𝑡
) −

𝑦√Sc 𝑡

2√𝜋
𝑒−

𝑦2𝑆𝑐

4𝑡           (3.1.94) 

𝑓12(𝑦, 𝑡) =
𝑒𝑑9𝑡

2
[𝑒−𝑦√𝑆𝑐 𝑑9  𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
− √𝑑9𝑡) + 𝑒𝑦√𝑆𝑐 𝑑9  𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
+ √𝑑9𝑡)]     (3.1.95) 
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Here 𝑢𝑠𝑖𝑛(𝑦, 𝑡) 𝑎𝑛𝑑 𝑢𝑐𝑜𝑠(𝑦, 𝑡) are the velocity profiles for sin and cosine oscillations 

respectively.  

3.1.5 Nusselt Number 

Using the equation (3.1.69), Nusselt number for Ramped wall temperature is 

𝑁𝑢 = −[𝐼8(𝑡) − 𝐼8(𝑡 − 1)𝐻(𝑡 − 1)]            (3.1.96) 

Using the equation (3.1.73), Nusselt number for Isothermal temperature is 

𝑁𝑢 = −[𝐼7(𝑡)]               (3.1.97) 

3.1.6 Sherwood Number 

Using the equation (3.1.70), Sherwood Number is 

𝑠ℎ = −[𝐼11(𝑡) − 𝐼11(𝑡 − 1)𝐻(𝑡 − 1)]           (3.1.98) 

3.1.7 Skin Friction 

Expressions of skin-friction for both cases are calculated from Equations (3.1.67-3.1.68) and 

(3.1.74 - 3.1.75). 

3.1.7.1 For ramped wall temperature 

𝐶𝑓𝑠𝑖𝑛
(𝑦, 𝑡) = 𝑖𝐼13(𝑡) + 𝐼20(𝑡) − 𝐼20(𝑡 − 1)𝐻(𝑡 − 1)        (3.1.99) 

𝐶𝑓𝑐𝑜𝑠
(𝑦, 𝑡) = 𝐼13(𝑡) + 𝐼20(𝑡) − 𝐼20(𝑡 − 1)𝐻(𝑡 − 1)        (3.1.100) 

3.1.7.2 For isothermal temperature 

𝐶𝑓𝑠𝑖𝑛
(𝑦, 𝑡) = 𝑖𝐼13(𝑡) + 𝐼17(𝑡) + 𝐼18(𝑡) − 𝐼18(𝑡 − 1)𝐻(𝑡 − 1) − 𝐼19(𝑡) − 𝐼16(𝑡) + 𝐼16(𝑡 − 1)𝐻(𝑡 − 1)  

   (3.1.101) 

𝐶𝑓𝑐𝑜𝑠
(𝑦, 𝑡) = 𝐼13(𝑡) + 𝐼17(𝑡) + 𝐼18(𝑡) − 𝐼18(𝑡 − 1)𝐻(𝑡 − 1) − 𝐼19(𝑡) − 𝐼16(𝑡) + 𝐼16(𝑡 − 1)𝐻(𝑡 − 1)   

   (3.1.102) 
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Where  

𝐼13(𝑦, 𝑠) =
1

2
𝐼1(𝑡) −

1

2
𝐼2(𝑡)           (3.1.103) 

𝐼14(𝑡) = 𝑑17𝐼3(𝑡) + 𝑑18𝐼4(𝑡) + 𝑑12𝐼5(𝑡) + 𝑑15𝐼6(𝑡)       (3.1.104) 

𝐼15(𝑡) = 𝑑13𝐼7(𝑡) + 𝑑11𝐼8(𝑡) + 𝑑12𝐼9(𝑡)         (3.1.105) 

𝐼16(𝑡) = 𝑑16𝐼10(𝑡) + 𝑑14𝐼11(𝑡) + 𝑑15𝐼12(𝑡)            (3.1.106) 

𝐼17(𝑡) = 𝑑11𝐼3(𝑡) − 𝑑11𝐼3(𝑡)           (3.1.107) 

𝐼18(𝑡) = 𝑑16𝐼3(𝑡) + 𝑑14𝐼4(𝑡) + 𝑑15𝐼6(𝑡)         (3.1.108) 

𝐼19(𝑡) = 𝑑11𝐼7(𝑡) − 𝑑11𝐼9(𝑡)           (3.1.109) 

𝐼20(𝑡) = 𝐼14(𝑡) − 𝐼15(𝑡) − 𝐼16(𝑡)          (3.1.110) 

𝐼1(𝑡) = 𝑒−𝑖ω𝑡√
𝑑2−𝑖ω

𝑑1
erf(√(𝑑2 − 𝑖ω)𝑡) +

𝑒−𝑑2𝑡

√𝜋𝑑1𝑡
        (3.1.111) 

𝐼2(𝑡) = 𝑒𝑖ω𝑡√
𝑑2+𝑖ω

𝑑1
erf(√(𝑑2 + 𝑖ω)𝑡) +

𝑒−𝑑2𝑡

√𝜋𝑑1𝑡
        (3.1.112) 

𝐼3(𝑡) = −√
𝑑2

𝑑1
erf(√𝑑2𝑡) +

𝑒−𝑑2𝑡

√𝜋𝑑1𝑡
          (3.1.113) 

𝐼4(𝑡) = −
1

√4𝑑2𝑑1
erf(√𝑑2𝑡) − 𝑡√

𝑑2

𝑑1
erf(√𝑑2𝑡) + √

𝑡

𝜋𝑑1
𝑒−𝑑2𝑡      (3.1.114) 

𝐼5(𝑡) = 𝑒𝑑6𝑡√
𝑑2+𝑑6

𝑑1
erf(√(𝑑2 + 𝑑6)𝑡) +

𝑒−𝑑2𝑡

√𝜋𝑑1𝑡
        (3.1.115) 

𝐼6(𝑡) = 𝑒𝑑9𝑡√
𝑑2+𝑑9

𝑑1
erf(√(𝑑2 + 𝑑9)𝑡) +

𝑒−𝑑2𝑡

√𝜋𝑑1𝑡
        (3.1.116) 
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𝐼7(𝑡) = √
1

𝜋𝑎4𝑡
             (3.1.117) 

𝐼8(𝑡) =
1

2
√

𝑡

𝜋𝑎4
             (3.1.118) 

𝐼9(𝑡) = −𝑒𝑑6𝑡√
𝑑6

𝑎4
erf(√𝑑6𝑡) + √

1

𝜋𝑎4𝑡
         (3.1.119) 

𝐼10(𝑡) = √
𝑆𝑐

𝜋𝑡
             (3.1.120) 

𝐼11(𝑡) =
1

2
√

𝑡𝑆𝑐

𝜋
            (3.1.121) 

𝐼12(𝑡) = −𝑒𝑑9𝑡√𝑆𝑐 𝑑9 erf(√𝑑9𝑡) + √
𝑆𝑐

𝜋𝑡
         (3.1.122) 

3.1.8 Results and Discussion 

In this section, to get a clear insight on the physics of the problem, the obtained exact 

solutions are studied numerically and are elucidated with the help of graphs. Parametric study 

is performed for magnetic parameter 𝑀, Schimdt number 𝑆𝑐, permeability of porous 

medium 𝜅, phase angle 𝜔, volume fraction parameter ∅ and time 𝑡 through Figures 3.1.2 to 

3.1.8. Numerical values of skin-friction 𝐶𝑓, Nusselt number 𝑁𝑢 and Sherwood number 𝑆ℎ are 

computed and presented in Tables 3.1.1 to 3.1.3 for different parameters. 

Figure 3.1.2 displays the effect of nanoparticles volume fraction on nanofluid velocity. The 

nanofluid velocity decreases as volume fraction parameter increases. Since adding the 

particles leads to increase in dynamic viscosity and momentum diffusion of the fluid, it is 

clear that the thickness of the boundary layer decreases with increase in ϕ.  
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Figure 3.1.2: Velocity profile 𝑢 for 𝑦 and ∅ at 𝜔 = π, Pr = 6.2, M = 0.5, 

 Sc = 0.66, Gm = 5, Gr = 10, 𝜅 = 0.4 and t = 0.4 

 

 

Fig 3.1.3: Velocity profile 𝑢 for 𝑦 and 𝜅 at 𝜔 = π, Pr = 6.2, M = 0.5,  

Sc = 0.66, Gm = 5, Gr = 10, ∅ = 0.03 and t = 0.4 
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Figure 3.1.4: Velocity profile 𝑢 for 𝑦 and 𝑆𝑐 at 𝜔 = π, Pr = 6.2, M = 0.5,  

 𝜅 = 0.4, Gm = 5, Gr = 10, ∅ = 0.03 and t = 0.4 

 

 

 

Figure 3.1.5: Velocity profile 𝑢 for 𝑦 and 𝑀 at 𝜔 = π, Gr = 10, Pr = 6.2,   

𝜅 = 0.4, Sc = 0.66, Gm = 5, ∅ = 0.03 and t = 0.4  
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Figure 3.1.6: Temperature profile θ for 𝑦 and ∅ at 𝜔 = π, Gr = 10, Pr = 6.2,   

M = 0.5, 𝜅 = 0.4, Sc = 0.66, Gm = 5 and t = 0.4  

 

Figure 3.1.7: Concentration profile C for y and Sc at ω = π, Gr = 10, Pr = 6.2,  

M = 0.5, κ = 0.4, Gm = 5, ∅ = 0.03 and t = 0.4  
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Figure 3.1.8: A graph showing the grid independency. 

Figure 3.1.3 shows velocity profile for various values of permeability parameter 𝜅 by keeping 

other parameters fixed. It is found that velocity increases with increase in 𝜅. With increase in 

𝜅, the resistance of the porous medium decreases which increases the momentum of the flow 

regime, ultimately enhances the velocity field. Figure 3.1.4 depicts the effect of Schimdt 

number 𝑆𝑐 on the nanofluid velocity. It has been observed that the velocity decreases with an 

increase in the Schmidt number. Figure 3.1.5 reveals that the nanofluid velocity decreases for 

increasing values of magnetic parameter 𝑀. Physically, it is due to the transverse magnetic 

field resulting in resistive Lorentz force and upon increasing the values of 𝑀, this drag force 

increases, leading to the deceleration of the flow. Figure 3.1.6 exhibits the temperature profile 

for different values of volume fraction of nanoparticles, when the other parameters are fixed. 

It is observed that temperature of the nanofluid increases with increasing volume fraction of 

nanoparticles. Figure 3.1.7 exhibits the effect of thermo-diffusion on the species 

concentration for both ramped temperature and isothermal plates. It is evident from Figure 

3.1.7 that, 𝐶 decreases on increasing 𝑆𝑐 throughout the boundary layer region. It is evident 

from Figure 3.1.8 that the results are independent of the grid size. The numerical values of 
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skin friction 𝐶𝑓 computed from the analytical expressions, are presented in Table 3.1.1.  

Tables 3.1.2 and 3.1.3 exhibit Nusselt number 𝑁𝑢 and Sherwood number 𝑆ℎ.  

It is found from Table 3.1.1 that, for both ramped or isothermal temperature plates, skin 

friction  𝐶𝑓  reduces with the progress of time. The increased skin friction is generally a 

disadvantage in technical applications. It is observed that the skin friction due to the 

nanofluid flow decreases with an increase in either Grashof number 𝐺𝑟 or mass Grashof 

number 𝐺𝑚 or Schimdt number 𝑆𝑐 or permeability of porous medium 𝜅. Consequently, the 

hot nanofluid near the plate surface is carried away quickly as Grashof number 𝐺𝑟 increases. 

Therefore, the skin friction at the plate reduces. It is observed from Table 3.1.2 that, Nusselt 

number 𝑁𝑢 decreases on increasing 𝑡 for ramped temperature and otherwise for isothermal 

case. Table 3.1.3 shows that, Sherwood number 𝑆ℎ decreases with increase in 𝑡 or Schimdt 

number 𝑆𝑐 for both ramped temperature and isothermal plates. 

Table 3.1.1: Skin friction variation 

 

∅ 𝑃𝑟 𝑀 𝑆𝑐 𝐺𝑟 𝐺𝑚 𝜅 𝑡  𝐶𝑓 for  

Ramped  

temperature 

 𝐶𝑓 for 

isothermal 

temperature 

0.05 5 0.5 1.5 10 5 0.6 0.4 -10.0413 -3.7254 

0.1 5 0.5 1.5 10 5 0.6 0.4 -7.0138 -3.0141 

0.15 5 0.5 1.5 10 5 0.6 0.4 -5.3196 -2.6330 

0.15 6 0.5 1.5 10 5 0.6 0.4 -5.8340 -2.5817 

0.15 7 0.5 1.5 10 5 0.6 0.4 -6.3083 -2.5390 

0.15 5 0.6 1.5 10 5 0.6 0.4 -5.0336 -2.5646 

0.15 5 0.7 1.5 10 5 0.6 0.4 -4.7467 -2.4943 
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0.15 5 0.5 2 10 5 0.6 0.4 -5.7819 -3.0954 

0.15 5 0.5 2.5 10 5 0.6 0.4 -6.1914 -3.5048 

0.15 5 0.5 1.5 11 5 0.6 0.4 -5.6877 -2.7324 

0.15 5 0.5 1.5 12 5 0.6 0.4 -6.0557 -2.8318 

0.15 5 0.5 1.5 10 6 0.6 0.4 -5.6474 -2.9608 

0.15 5 0.5 1.5 10 7 0.6 0.4 -5.9751 -3.2885 

0.15 5 0.5 1.5 10 5 0.7 0.4 -5.5890 -2.6963 

0.15 5 0.5 1.5 10 5 0.8 0.4 -5.8455 -2.7557 

0.15 5 0.5 1.5 10 5 0.6 0.5 -6.4490 -3.1649 

0.15 5 0.5 1.5 10 5 0.6 0.6 -7.5796 -3.6939 

 

Table 3.1.2: Nusselt number variation 

∅ 𝑃𝑟 𝑡 𝑁𝑢 for Ramped 

Temperature 

𝑁𝑢 for isothermal 

Temperature 

0.05 5 0.4 -0.3692 -1.8462 

0.1 5 0.4 -0.3427 -1.7134 

0.15 5 0.4 -0.3186 -1.5932 

0.15 6 0.4 -0.3490 -1.7452 

0.15 7 0.4 -0.3770 -1.8850 

0.15 5 0.5 -0.3562 -1.4250 

0.15 5 0.6 -0.3902 -1.3008 
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Table 3.1.3: Sherwood Number variation 

𝑆𝑐 𝑡 Sherwood Number 𝑆ℎ 

1.5 0.4 -0.2185 

2.0 0.4 -0.2523 

2.5 0.4 -0.2821 

1.5 0.5 -0.2443 

1.5 0.6 -0.2676 

 

3.1.9 Conclusion 

Key findings of this section are summarized as follows 

 Nanofluid velocity decreases with increase in magnetic parameter 𝑀 and Schimdt 

number 𝑆𝑐.  

 Nanofluid velocity is more for isothermal temperature as compared to ramped plate. 

 Concentration decreases with increase in Schimdt number 𝑆𝑐.  

 Nusselt number 𝑁𝑢 decreases on increasing 𝑡 for ramped temperature and otherwise 

for isothermal case. 

 Sherwood number 𝑆ℎ decreases with increase in 𝑡 or Schimdt number 𝑆𝑐 for both 

ramped temperature and isothermal plates. 

 Nanofluid velocity decreases with increase in volume fraction parameter ∅. 

 Skin friction and Nusselt number increases with increase in volume fraction 

parameter ∅. 
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3.2 SECTION II: STUDY OF THERMAL RADIATION EFFECTS ON MHD 

CASSON NANOFLUID FLOW WITH HEAT AND MASS TRANSFER IN POROUS 

MEDIUM  

Present investigation is concerned with natural convective flow of Casson nanofluid past an 

oscillating vertical plate with ramped or isothermal wall temperature in presence of magnetic 

field and radiation. Fluid passes through a porous medium.  

 

3.2.1 Introduction of the problem 

A distinctive nanofluid namely Casson nanofluid which is ideal to fit rheological data for 

fluids like blood. Such fluids behaves as solid when yield stress is more than the shear stress, 

and it starts to deform when yield stress becomes lesser than shear stress. This study has 

number of applications in polymer extrusion, paper production, glass blowing, paint 

production, aerodynamic extrusion of plastic sheet, crude oil and food industries including 

chocolate, honey, mayonnaise production etc. Usman et al. [113] investigated Casson 

nanofluid with heat and mass transfer in presence of magnetic field. Casson MHD nanofluid 

flow past horizontal stretching was studied by Kamram et al. [27]. 

Thermal radiation effects have significant uses in space technology and heat transfer 

processes in polymer processing industry as the quality of the product depends on the heat 

controlling factors. Thus investigation of thermal radiation effects on Casson nanofluid flow 

can be a boon in polymer and crude oil industries. Oyelakin et al. [55] discussed effects of 

thermal radiations on unsteady Casson nanofluid flow. 

 

3.2.2 Novelty of the problem 

Velocity, temperature and concentration profiles associative with natural convective 

boundary layer MHD flow of Casson nanofluid past an oscillating vertical plate in presence 
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of a uniform transverse magnetic field with ramped wall temperature are analyzed. This 

investigation may find applications in magnetic nanomaterial processing and cooling 

processes in industries and reactors. 

 

3.2.3 Mathematical Formulation of the Problem 

 

 

Figure 3.2.1: Physical sketch of the problem. 

Unsteady MHD flow of non-Newtonian electrically conducting Casson nanofluid near an 

infinite vertical plate with ramped wall temperature in porous medium is considered. As 

shown in Figure 3.2.1, 𝑥 axis is along the wall in the upward direction and 𝑦′ axis is normal 

to it. A uniform transverse magnetic field 𝐵 is applied in 𝑦′ direction. Initially, temperature 

and concentration near the plate is assumed to be  𝑇0 and 𝐶0 respectively. Temperature of the 

wall is 𝑇0 + (𝑇𝑤 − 𝑇0) 𝑡′

𝑡0
⁄  when 0 < 𝑡′ ≤  𝑡0 and 𝑇𝑤 for 𝑡′ > 𝑡0 . Similarly, concentration 

near the plate is 𝐶0 + (𝐶𝑤 − 𝐶0) 𝑡′

𝑡0
⁄  for 0 < 𝑡′ ≤  𝑡0 and 𝐶𝑤 when 𝑡′ > 𝑡0 . Effects of 
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viscous dissipation, Ohmic dissipation, induced magnetic and electric fields are neglected. 

Nanofluid under consideration is assumed to be single phase. 

Under above assumptions, governing equations are given below: 

𝜌𝑛𝑓
𝜕𝑢′

𝜕𝑡′ = 𝜇𝑛𝑓 (1 +
1

𝛾
)

𝜕2𝑢′

𝜕𝑦′2 − 𝜎𝑛𝑓𝐵2𝑢′ −
𝜇𝑛𝑓𝜑

𝑘1
𝑢′ + 𝑔(𝜌𝛽)𝑛𝑓(𝑇′ − 𝑇0) + 𝑔(𝜌𝛽𝐶)𝑛𝑓(𝐶′ − 𝐶0),  

     (3.2.1) 

(𝜌𝑐𝑝)
𝑛𝑓

𝜕𝑇′

𝜕𝑡′
= 𝑘𝑛𝑓

𝜕2𝑇′

𝜕𝑦′2 −
𝜕𝑞𝑟

𝜕𝑦′
 ,                                                        (3.2.2) 

𝜕𝐶′

𝜕𝑡′ = 𝐷
𝜕2𝐶′

𝜕𝑦′2 ,               (3.2.3) 

where  

𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑠,                                                                                                  (3.2.4) 

𝜇𝑛𝑓 =
𝜇𝑓

(1−∅)2.5
,                                                                                                                  (3.2.5) 

𝜎𝑛𝑓 = 𝜎𝑓 [1 +
3(𝜎−1)∅

(𝜎+2)−(𝜎−1)∅
], 𝜎 =

𝜎𝑠

𝜎𝑓
,                                                                    (3.2.6) 

(𝜌𝛽)𝑛𝑓 = (1 − ∅)(𝜌𝛽)𝑓 + ∅(𝜌𝛽)𝑠,                                                                               (3.2.7) 

𝑘𝑛𝑓 = 𝑘𝑓 [1 − 3
∅(𝑘𝑓−𝑘𝑠)

2𝑘𝑓+𝑘𝑠+∅(𝑘𝑓−𝑘𝑠)
],                                                                              (3.2.8) 

(𝜌𝑐𝑝)
𝑛𝑓

= (1 − ∅)(𝜌𝑐𝑝)𝑓 + ∅(𝜌𝑐𝑝)𝑠,                                                                           (3.2.9) 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇′4

𝜕𝑦′
.                                                                                (3.2.10) 

Considering Rosseland approximation [61], 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕(4𝑇0
3𝑇′−3𝑇0

4)

𝜕𝑦′ .                        (3.2.11) 
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Using this 𝑞𝑟 in (3.2.2): 

(𝜌𝑐𝑝)
𝑛𝑓

𝜕𝑇′

𝜕𝑡′ = (𝑘𝑛𝑓 +
16𝜎∗𝑇0

3

3𝑘∗ )
𝜕2𝑇′

𝜕𝑦′2.                               (3.2.12)       

Initial and boundary conditions are 

𝑢′ = 0,     𝑇′ = 𝑇0,   𝐶′ = 𝐶0;  𝑎𝑠  𝑦′ ≥ 0 𝑎𝑛𝑑  𝑡′ < 0,            (3.2.13) 

𝑢′ = 𝑢0 sin(ω′𝑡′) 𝑜𝑟 𝑢0 cos(ω′𝑡′) ,     

𝑇′ = {
𝑇0 + (𝑇𝑤 − 𝑇0) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑇𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

 ,      

𝐶′ = {
𝐶0 + (𝐶𝑤 − 𝐶0) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝐶𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

 ,   𝑎𝑠  𝑡′ ≥ 0 𝑎𝑛𝑑 𝑦′ = 0;        (3.2.14) 

 𝑢′ → 0, 𝑇′ → 𝑇0,   𝐶′ → 𝐶0;  𝑎𝑠  𝑦′ → ∞ 𝑎𝑛𝑑 𝑡′ ≥ 0.         (3.2.15) 

Introducing non dimensional variables 

𝑦 =
𝑢0𝑦′

𝑣𝑓
, 𝑡 =

𝑢0
2𝑡′

𝑣𝑓
, 𝑢 =

𝑢′

𝑢0
, 𝜃 =

𝑇′−𝑇0

𝑇𝑤−𝑇0
, 𝐶 =

𝐶′−𝐶0

𝐶𝑤−𝐶0
, 𝜔 =

𝑣𝑓ω′

𝑢0
2 ,                       (3.2.16) 

Equations (3.2.1), (3.2.2) and (3.2.3) become  

𝜕𝑢

𝜕𝑡
= (1 +

1

𝛾
) 𝑎1

𝜕2𝑢

𝜕𝑦2 − (𝑎3𝑀 +
𝑎1

𝑘
) 𝑢 + 𝐺𝑟𝑎2𝜃 + 𝐺𝑚𝑎5𝐶,                    (3.2.17) 

𝜕𝜃

𝜕𝑡
= 𝑎4

𝜕2𝜃

𝜕𝑦2,                          (3.2.18) 

𝜕𝐶

𝜕𝑡
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑦2,                          (3.2.19) 

with initial and boundary conditions 

𝑢 = 𝜃 =  𝐶 = 0 ,            𝑦 ≥ 0, 𝑡 = 0,           (3.2.20) 
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𝑢 = sin(𝑤𝑡) 𝑜𝑟 cos(𝑤𝑡),    

𝜃 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    = 𝑡𝐻(𝑡) − (𝑡 − 1)𝐻(𝑡 − 1),    

𝐶 = 𝑡,   𝑦 = 0, 𝑡 > 0;            (3.2.21) 

𝑢 → 0, 𝜃 → 0, 𝐶 → 0    𝑎𝑠  𝑦 → ∞, 𝑡 > 0;          (3.2.22) 

where 

H (.) is Heaviside unit step function, 

𝑏0 = 1 − ∅,               (3.2.23) 

𝑏1 = (𝑏0 + ∅
𝜌𝑠

𝜌𝑓
),              (3.2.24) 

𝑏2 = (𝑏0 + ∅
(𝜌𝛽)𝑠

(𝜌𝛽)𝑓
),              (3.2.25) 

𝑏3 = (𝑏0 + ∅
(𝜌𝑐𝑝)

𝑠

(𝜌𝑐𝑝)
𝑓

),              (3.2.26) 

𝑏4 =
𝑘𝑛𝑓

𝑘𝑓
,               (3.2.27) 

𝑏5 =
𝜎𝑛𝑓

𝜎𝑓
,               (3.2.28) 

𝑏6 =
𝑏4

𝑏3
,               (3.2.29) 

𝑏7 = (𝑏0 + ∅
(𝜌𝛽)𝑐

(𝜌𝛽)𝑓
),              (3.2.30) 

𝑎1 =
1

𝑏0
2.5𝑏1

,               (3.2.31) 

𝑎2 =
𝑏2

𝑏1
,               (3.2.32) 
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𝑎3 =
𝑏5

𝑏1
,               (3.2.33) 

𝑎4 =
𝑏4+𝑁𝑟

𝑏3𝑃𝑟
,               (3.2.34) 

𝑎5 =
𝑏7

𝑏1
,               (3.2.35) 

𝑃𝑟 =
𝜇𝑓 (𝜌𝑐𝑝)

𝑓

𝜌𝑓𝑘𝑓
 ,                      (3.2.36) 

𝑀 =
𝜎𝑓𝐵2𝑣𝑓

𝜌𝑓𝑢0
2 ,  (3.2.37) 

1

𝑘
=

𝑣𝑓𝜑2

𝑘1𝑢0
2
,                (3.2.38) 

𝐺𝑟 =
𝑣𝑓𝑔𝛽(𝑇𝑤−𝑇0)

𝑢0
3  ,               (3.2.39) 

𝛾 =
𝜇𝐵√2𝜋𝑐

𝑃𝛾
,                (3.2.40) 

𝑆𝑐 =
𝑣𝑓

𝐷
,                 (3.2.41) 

𝐺𝑚 =
𝑔𝛽𝑐𝑣𝑓(𝐶𝑤−𝐶0)

𝑢0
3 ,               (3.2.42) 

𝑁𝑟 =
16𝜎∗𝑇0

3

3𝑘∗𝑘𝑓
.                (3.2.43) 

3.2.4 Solution of the Problem 

Taking Laplace transform of equations (3.2.17) – (3.2.19) with initial and boundary 

conditions (3.2.20) – (3.2.22)   

�̅� = (1 − 𝑒−𝑠)𝐹8(𝑦, 𝑠),                         (3.2.44) 

𝐶̅ = 𝐹11(𝑦, 𝑠),               (3.2.45) 
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�̅�𝑠𝑖𝑛(𝑦, 𝑠) =
𝑖

2
𝐹1(𝑦, 𝑠) −

𝑖

2
𝐹2(𝑦, 𝑠) + (1 − 𝑒−𝑠)𝐺1(𝑦, 𝑠) + 𝐺2(𝑦, 𝑠) − (1 − 𝑒−𝑠)𝐺3(𝑦, 𝑠) −

                        𝐺4(𝑦, 𝑠),              (3.2.46) 

�̅�𝑐𝑜𝑠(𝑦, 𝑠) =
1

2
𝐹1(𝑦, 𝑠) +

1

2
𝐹2(𝑦, 𝑠) + (1 − 𝑒−𝑠)𝐺1(𝑦, 𝑠) + 𝐺2(𝑦, 𝑠) − (1 − 𝑒−𝑠)𝐺3(𝑦, 𝑠) −

                        𝐺4(𝑦, 𝑠),               (3.2.47) 

where 

𝐹1(𝑦, 𝑠) =
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠+𝑖𝑤
,                          (3.2.48) 

𝐹2(𝑦, 𝑠) =  
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠−𝑖𝑤
,               (3.2.49) 

𝐺1(𝑦, 𝑠) = 𝑑13𝐹3(𝑦, 𝑠) + 𝑑11𝐹4(𝑦, 𝑠) + 𝑑12𝐹5(𝑦, 𝑠),            (3.2.50) 

𝐺2(𝑦, 𝑠) = 𝑑16𝐹3(𝑦, 𝑠) + 𝑑14𝐹4(𝑦, 𝑠) + 𝑑15𝐹6(𝑦, 𝑠),          (3.2.51) 

𝐺3(𝑦, 𝑠) = 𝑑13𝐹7(𝑦, 𝑠) + 𝑑11𝐹8(𝑦, 𝑠) + 𝑑12𝐹9(𝑦, 𝑠),          (3.2.52) 

𝐺4(𝑦, 𝑠) = 𝑑16𝐹10(𝑦, 𝑠) + 𝑑14𝐹11(𝑦, 𝑠) + 𝑑15𝐹12(𝑦, 𝑠),          (3.2.53) 

𝐹3(𝑦, 𝑠) =
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠
,                          (3.2.54) 

𝐹4(𝑦, 𝑠) =
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠2 ,                          (3.2.55) 

𝐹5(𝑦, 𝑠) =
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠−𝑑6
,                        (3.2.56) 

𝐹6(𝑦, 𝑠) =
𝑒

−𝑦√
𝑠+𝑑2

𝑑1

𝑠−𝑑9
,                          (3.2.57) 
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𝐹7(𝑦, 𝑠) =
e

−y√s
𝑎4⁄

𝑠
,                          (3.2.58) 

𝐹8(𝑦, 𝑠) =
e

−y√s
𝑎4⁄

𝑠2 ,                          (3.2.59) 

𝐹9(𝑦, 𝑠) =
e

−y√s
𝑎4⁄

𝑠−𝑑6
,                          (3.2.60) 

𝐹10(𝑦, 𝑠) =
1

𝑠
𝑒−𝑦√𝑠𝑐 𝑠,                         (3.2.61) 

𝐹11(𝑦, 𝑠) =
1

𝑠2
𝑒−𝑦√𝑠𝑐 𝑠,                         (3.2.62) 

𝐹12(𝑦, 𝑠) =
1

𝑠−𝑑9
𝑒−𝑦√𝑠𝑐 𝑠.                            (3.2.63) 

 Inverse Laplace transform of equations (3.2.44) – (3.2.47), give rise to following solutions. 

3.2.4.1 Solutions for Plate with Ramped Wall Temperature 

𝜃(𝑦, 𝑡) = 𝑓8(𝑦, 𝑡) − 𝑓8(𝑦, 𝑡 − 1)𝐻(𝑡 − 1),           (3.2.64)     

𝐶(𝑦, 𝑡) = 𝑓11(𝑦, 𝑡),              (3.2.65) 

𝑢𝑠𝑖𝑛(𝑦, 𝑡) =
𝑖

2
𝑓1(𝑦, 𝑡) −

𝑖

2
𝑓2(𝑦, 𝑡) + 𝑔1(𝑦, 𝑡) − 𝑔1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) + 𝑔2(𝑦, 𝑡) −

                      𝑔3(𝑦, 𝑡) + 𝑔3(𝑦, 𝑡 − 1)  𝐻(𝑡 − 1) − 𝑔4(𝑦, 𝑡),         (3.2.66) 

𝑢𝑐𝑜𝑠(𝑦, 𝑡) =
1

2
𝑓1(𝑦, 𝑡) −

1

2
𝑓2(𝑦, 𝑡) + 𝑔1(𝑦, 𝑡) − 𝑔1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) + 𝑔2(𝑦, 𝑡) −

                      𝑔3(𝑦, 𝑡) + 𝑔3(𝑦, 𝑡 − 1)  𝐻(𝑡 − 1) − 𝑔4(𝑦, 𝑡).         (3.2.67) 

3.2.4.2 Solutions for Plate with Constant Temperature 

Here the initial and boundary conditions are the same except Eq. (3.2.21), which is 

𝜃 = 1 𝑎𝑡 𝑦 = 0, 𝑡 ≥ 0.                                       (3.2.68) 
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Concentration will be same as given in equation (3.2.65) and expressions of temperature 

𝜃(𝑦, 𝑡) and velocity 𝑢(𝑦, 𝑡) are given below. (Similar steps as in section 3.1) 

θ(y, t) = 𝑓7(𝑦, 𝑡),                         (3.2.69) 

𝑢𝑠𝑖𝑛(𝑦, 𝑡) =
𝑖

2
𝑓1(𝑦, 𝑡) −

𝑖

2
𝑓2(𝑦, 𝑡) + (𝑑11 + 𝑑16)𝑓3(𝑦, 𝑡) + 𝑑14𝑓4(𝑦, 𝑡) − 𝑑11𝑓5(𝑦, 𝑡) +

             𝑑15𝑓6(𝑦, 𝑡) − 𝑑11 𝑓7(𝑦, 𝑡) + 𝑑11 𝑓9(𝑦, 𝑡) − 𝑑16 𝑓10(𝑦, 𝑡) − 𝑑14𝑓11(𝑦, 𝑡) − 𝑑15𝑓12(𝑦, 𝑡),           

     (3.2.70) 

𝑢𝑐𝑜𝑠(𝑦, 𝑡) =
1

2
𝑓1(𝑦, 𝑡) +

1

2
𝑓2(𝑦, 𝑡) + (𝑑11 + 𝑑16)𝑓3(𝑦, 𝑡) + 𝑑14𝑓4(𝑦, 𝑡) − 𝑑11𝑓5(𝑦, 𝑡) +

             𝑑15𝑓6(𝑦, 𝑡) − 𝑑11 𝑓7(𝑦, 𝑡) + 𝑑11 𝑓9(𝑦, 𝑡) − 𝑑16 𝑓10(𝑦, 𝑡) − 𝑑14𝑓11(𝑦, 𝑡) − 𝑑15𝑓12(𝑦, 𝑡),      

     (3.2.71) 

Here 𝑢𝑠𝑖𝑛(𝑦, 𝑡) 𝑎𝑛𝑑 𝑢𝑐𝑜𝑠(𝑦, 𝑡) are the velocity profiles for sin and cosine oscillations 

respectively. 

3.2.5 Nusselt Number 

 Using the equation (3.2.64), Nusselt number for Ramped wall temperature is 

𝑁𝑢 = −[ℎ8(𝑡) − ℎ8(𝑡 − 1)𝐻(𝑡 − 1)].           (3.2.72) 

Using the equation (3.2.69), Nusselt number for Isothermal temperature is 

𝑁𝑢 = −[ℎ7(𝑡)].              (3.2.73) 

3.2.6 Sherwood Number 

Using the equation (3.2.65), Sherwood Number is 

𝑠ℎ = −[ℎ11(𝑡)].              (3.2.74) 

3.2.7 Skin Friction 

Expressions of skin-friction for both cases are calculated from Equations. (3.2.66-3.2.67) and 

(3.2.69-3.2.70) using the relation 



Chapter 3 

80 
 

𝐶𝑓
∗(𝑦, 𝑡) = − 𝜇𝐵 (1 +

1

𝛾
) 𝐶𝑓 .             (3.2.75) 

3.2.7.1 For ramped wall temperature 

𝐶𝑓𝑠𝑖𝑛
(𝑦, 𝑡) =

𝑖

2
ℎ1(𝑡) −

𝑖

2
ℎ2(𝑡) + ℎ13(𝑡) − ℎ13(𝑡 − 1)𝐻(𝑡 − 1) + ℎ14(𝑡) + ℎ15(𝑡) +

                      ℎ15(𝑡 − 1)𝐻(𝑡 − 1) + ℎ5(𝑡) − ℎ16(𝑡),          (3.2.76) 

𝐶𝑓𝑐𝑜𝑠
(𝑦, 𝑡) =

1

2
ℎ1(𝑡) +

1

2
ℎ2(𝑡) + ℎ13(𝑡) − ℎ13(𝑡 − 1)𝐻(𝑡 − 1) + ℎ14(𝑡) + ℎ15(𝑡) +

                       ℎ15(𝑡 − 1)𝐻(𝑡 − 1) + ℎ5(𝑡) − ℎ16(𝑡).          (3.2.77) 

3.2.7.2 For isothermal temperature 

𝐶𝑓𝑠𝑖𝑛
(𝑦, 𝑡) =

𝑖

2
ℎ1(𝑡) −

𝑖

2
ℎ2(𝑡) + (𝑑11 + 𝑑16)ℎ3(𝑡) + 𝑑14ℎ4(𝑡) − 𝑑11ℎ5(𝑡) + 𝑑15ℎ6(𝑡) −

                      𝑑11ℎ7(𝑡) + 𝑑11ℎ9(𝑡) − 𝑑16ℎ10(𝑡) − 𝑑14ℎ11(𝑡) − 𝑑15ℎ12(𝑡),       (3.2.78) 

𝐶𝑓𝑐𝑜𝑠
(𝑦, 𝑡) =

1

2
ℎ1(𝑡) +

1

2
ℎ2(𝑡) + (𝑑11 + 𝑑16)ℎ3(𝑡) + 𝑑14ℎ4(𝑡) − 𝑑11ℎ5(𝑡) + 𝑑15ℎ6(𝑡) −

                     𝑑11ℎ7(𝑡) + 𝑑11ℎ9(𝑡) − 𝑑16ℎ10(𝑡) − 𝑑14ℎ11(𝑡) − 𝑑15ℎ12(𝑡).       (3.2.79) 

3.2.8 Results and Discussion 

To understand the physics of the problem, the obtained analytical solutions are studied numerically 

and are elucidated with the help of graphs. Parametric study is performed for Casson parameter 𝛾, 

magnetic parameter 𝑀, Schimdt number 𝑆𝑐, permeability of porous medium 𝜅, phase angle 𝜔𝑡, 

volume fraction parameter ∅ and radiation parameter  Nr in Figure 3.2.2 to Figure 3.2.10. Numerical 

values of skin-friction, Nusselt number and Sherwood number are computed and presented in tables 

for different parameters. It is evident from Figure 3.2.2 that velocity increases with decrease in 

volume fraction parameter ∅. Figure 3.2.3 depicts that velocity decreases with increasing values of 

Casson nanofluid parameter 𝛾 for 𝜔𝑡 = 𝜋 and otherwise for 𝜔𝑡 = 0. Increase in Casson parameter 

shortens the velocity boundary layer thickness. It is observed that the non-Newtonian behavior 

disappears and the nanofluid behaves like a Newtonian nanofluid for sufficiently large values of 𝛾. 
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Figure 3.2.2: Velocity profile for 𝑦 and ∅ at 𝛾 = 0.6, 𝜅 =  0.4, 𝑆𝑐 = 0.5,  

𝐺𝑚 = 4,   𝑡 = 0.6, 𝑀 = 3, 𝐺𝑟 = 8,  𝑁𝑟 = 5 𝑎𝑛𝑑 𝑃𝑟 = 6.2 

 

Figure 3.2.3: Velocity profile u for y and γ at κ =  0.4, Sc = 0.5,  

Gm = 4,   t = 0.6, M = 3, Gr = 8,  ∅ = 0.02, Nr = 5 and Pr = 6.2 
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Figure 3.2.4: Velocity profile 𝑢 for 𝑦 and M at 𝛾 = 0.6, 𝜅 =  0.4, 𝑆𝑐 = 0.5,  

𝐺𝑚 = 4,   𝑡 = 1, 𝐺𝑟 = 8,  ∅ = 0.02, 𝑁𝑟 = 5 𝑎𝑛𝑑 𝑃𝑟 = 6.2. 

 

   

 

Figure 3.2.5: Velocity profile 𝑢  for 𝑦 and 𝑁𝑟 at 𝛾 = 0.6, 𝜅 =  0.4, 𝑆𝑐 = 0.5,  

𝐺𝑚 = 4,   𝑡 = 0.6, 𝑀 = 3, 𝐺𝑟 = 8,  ∅ = 0.02 𝑎𝑛𝑑 𝑃𝑟 = 6.2 
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Figure 3.2.6: Temperature profile for 𝑦 and 𝑁𝑟 at  𝛾 = 0.6, 𝜅 =  0.4, 𝑆𝑐 = 0.5,  

𝐺𝑚 = 4,   𝑡 = 0.6, 𝑀 = 3, 𝐺𝑟 = 8,  ∅ = 0.02 𝑎𝑛𝑑 𝑃𝑟 = 6.2 

  

 

Figure 3.2.7: Temperature profile 𝜃 for 𝑦 and 𝑃𝑟 at 𝛾 = 0.6, 𝜅 =  0.4, 

𝑆𝑐 = 0.5, 𝐺𝑚 = 4,   𝑡 = 0.6, 𝑀 = 3, 𝐺𝑟 = 8,  ∅ = 0.02 𝑎𝑛𝑑 𝑁𝑟 = 5. 
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Figure 3.2.8: Concentration profile 𝐶 for 𝑦 and 𝑆𝑐 at 𝛾 = 0.6, 𝜅 =  0.4,  

𝐺𝑚 = 4,   𝑡 = 0.6, 𝑀 = 3, 𝐺𝑟 = 8,  ∅ = 0.02, 𝑁𝑟 = 5 𝑎𝑛𝑑 𝑃𝑟 = 6.2. 

 .   

 

Figure 3.2.9: Skin Friction for ∅ and 𝑡 at 𝛾 = 0.6, 𝜅 =  0.4, 𝑆𝑐 = 0.5,  

𝐺𝑚 = 4, 𝑀 = 3, 𝐺𝑟 = 8, 𝑁𝑟 = 5 𝑎𝑛𝑑 𝑃𝑟 = 6.2 
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. 

  

 

Figure 3.2.10: Nusselt number for ∅ and 𝑡 at 𝛾 = 0.6, 𝜅 =  0.4, 𝑆𝑐 = 0.5,  

𝐺𝑚 = 4,   𝑀 = 3, 𝐺𝑟 = 8,  ∅ = 0.02, 𝑁𝑟 = 5 𝑎𝑛𝑑 𝑃𝑟 = 6.2 

Figure 3.2.4 shows that the nanofluid velocity diminish with increase in magnetic parameter 𝑀. 

Impact of 𝑁𝑟 and 𝜔 on the velocity is shown in Figure 3.2.5. It is evident that the fluid 

velocity increases with 𝑁𝑟 for different values of 𝜔. Figure 3.2.6 illustrates that there is increase 

in temperature with increase in radiation parameter 𝑁𝑟. Increase in 𝑁𝑟 signifies the release of heat 

energy into the flow region and so the fluid temperature increases. It is observed from Figure 3.2.7 

that the nanofluid temperature decreases as 𝑃𝑟 increases. It is justified as thermal conductivity of 

nanofluid decreases with increasing Prandtl number 𝑃𝑟. It is illustrated from Figure 3.2.8, that 

concentration decreases on increasing 𝑆𝑐 for both cases (ramped and isothermal plates). With increase 

in 𝑆𝑐, the viscous boundary layer becomes relatively thicker than concentration boundary layer. As a 

result of greater concentration gradient, mass flux increases. Figure 3.2.9 and Figure 3.2.10 depict that 

both Skin friction and Nusselt number 𝑁𝑢 increase with increase in volume fraction ∅. The 
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numerical values of skin friction 𝐶𝑓, Nusselt number 𝑁𝑢 and Sherwood number 𝑆ℎ are 

exhibited in tabular form through Tables 3.2.1 to Tables 3.2.3. 

It is observed from Table 3.2.1 that, for both temperature cases, skin friction decreases with 

the progress of time. Skin friction is disliked in most of the technical applications. It is 

observed that increase in any one of the parameters 𝐺𝑟, 𝐺𝑚, 𝑆𝑐 or 𝜅 decreases skin friction 

whereas increases with Casson parameter 𝛾. It is revealed from Table 3.2.2 that, 𝑁𝑢 

decreases with increase in 𝑡 for ramped temperature and otherwise for isothermal case. It is 

found from Table 3.2.3 that, Sherwood number 𝑆ℎ decreases with increase in 𝑡 or Schimdt 

number 𝑆𝑐. 

Table 3.2.1: Skin friction variation 

𝒕 𝜸 𝑺𝒄 𝑮𝒓 𝑮𝒎 𝜿 Skin friction 

𝑪𝒇 or Ramped  

temperature 

Skin friction 

𝑪𝒇 for 

isothermal 

temperature 

0.2 2 3 1 2 0.4 -0.5963 -0.4916 

0.2 2.1 3 1 2 0.4 -0.5739 -0.4780 

0.2 2.2 3 1 2 0.4 -0.5541 -0.4658 

0.2 2 3.1 1 2 0.4 -0.6564 -0.5517 

0.2 2 3.2 1 2 0.4 -0.7218 -0.6171 

0.2 2 3 1.1 2 0.4 -0.6170 -0.5018 

0.2 2 3 1.2 2 0.4 -0.6378 -0.5121 

0.2 2 3 1 2.1 0.4 -0.6157 -0.5110 

0.2 2 3 1 2.2 0.4 -0.6352 -0.5304 

0.2 2 3 1 2 0.5 -0.8477 -0.6788 
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0.2 2 3 1 2 0.6 -1.1275 -0.8834 

0.3 2 3 1 2 0.4 -0.8219 -0.6613 

0.4 2 3 1 2 0.4 -1.0461 -0.8280 

 

Table 3.2.2: Nusselt number variation 

  𝒕 Nusselt number for 

Ramped Temperature 

Nusselt number for 

isothermal Temperature 

0.2 -0.1982 -1.9823 

0.3 -0.2428 -1.6185 

0.4 -0.2803 -1.4017 

 

Table 3.2.3: Sherwood Number variation 

  𝒕 𝑺𝒄 Sherwood Number 

0.2 3 -0.2185 

0.3 3 -0.2676 

0.4 3 -0.3090 

0.2 3.1 -0.2221 

0.2 3.2 -0.2257 

 

3.2.9 Conclusions 

Vital remarks are summarized as follows: 

 Nanofluid velocity decreases with increase in volume fraction parameter ∅. 
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 Velocity of the nanofluid increases with increase in radiation parameter 𝑁𝑟 for 

different frequencies of oscillation 𝜔 of the plate. 

 Nanofluid velocity is getting decelerated with increase in magnetic parameter 𝑀.  

 Nanofluid velocity is more for 𝜔𝑡 = 𝜋 than 𝜔𝑡 = 0. 

 Nanofluid velocity is more for isothermal temperature compared to ramped plate. 

 Temperature of nanofluid increases with increase in the radiation parameter 𝑁𝑟. 

 Nanofluid temperature decreases with rise in values of Prandtl number 𝑃𝑟.  

 Concentration tends to decrease with increase in Schimdt number 𝑆𝑐. 

 Nusselt number 𝑁𝑢 increases with time 𝑡 for isothermal case and otherwise for 

ramped temperature case. 

 Sherwood number 𝑆ℎ decreases with increase in 𝑡 or Schimdt number 𝑆𝑐 for both 

ramped temperature and isothermal plate. 


