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THERMAL DIFFUSION AND HEAT GENERATION EFFECTS ON ONE 

DIMENSIONAL MHD NANOFLUID FLOW 

In nuclear enrichment, thermal power generation and many large scale industries involving 

liquid metals, knowledge of effects of heat generation and thermal diffusion is essential. 

Present investigation involves study of thermal diffusion and heat generation effects on 

unsteady magnetohydrodynamics flow of radiating and electrically conducting nanofluid past 

over an oscillating vertical plate through porous medium.   

 

4.1 Introduction of the Problem 

Heat generation is evident in numerous significant processes such as storage of radioactive 

supplies, reactor safety and byproducts of consumed nuclear fuel. Das et al. [10] investigated 

nanofluid flow of non-uniform heat generation/absorption. Study of Soret effect or Thermo-

diffusion is important in groundwater contaminant movement, solidification of alloys, oil-

reservoirs and chemical reactors. Nadeem et al. [48] discussed Thermo-diffusion effects on 

MHD nanofluid flow. Heat transfer in porous media has several uses such as geophysical 

processes, geothermal reservoirs, nuclear waste dumping and chemical reactor. Thus, coupled 

study of heat generation/absorption effects, thermal diffusion and heat transfer in nanofluid 

flow is significant in processes related to Uranium enrichment and nuclear reactors. Keeping 

this in view, investigations of previous chapters are extended taking heat generation and Soret 

effect into consideration.  

 

4.2 Novelty of the Problem 

Effects of thermal diffusion and heat generation on the unsteady natural convective 

magnetohydrodynamics flow of radiating and electrically conducting nanofluid past over an 

oscillating vertical plate embedded in porous medium are analyzed.  

 

https://www.sciencedirect.com/topics/chemistry/radioactive-material
https://www.sciencedirect.com/topics/chemistry/radioactive-material
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4.3 Formulation of the problem  

As shown in Figure 4.1, nanofluid flow is observed in positive 𝑦′ direction (i.e. normal to the 

plate) in presence of uniform magnetic field 𝐵.  

 

Figure 4.1: Physical sketch of the problem 

 

It is assumed that, initially temperature of both, fluid and the plate is 𝑇0 and concentration near 

the plate is 𝐶0. At time 𝑡′ > 0, temperature is considered to be 𝑇0 + (𝑇𝑤 − 𝑇0) 𝑡′

𝑡0
⁄ when time 

𝑡′ ≤  𝑡0 and 𝑇𝑤 when 𝑡′ > 𝑡0 . Concentration is assumed to be 𝐶0 + (𝐶𝑤 − 𝐶0) 𝑡′

𝑡0
⁄  when 

time 𝑡′ ≤  𝑡0 , 𝐶𝑤 when 𝑡′ > 𝑡0 . Oscillations of the plate is governed by 𝑢′ = 𝑢0 cos(ω′𝑡′), 

where  ω′ is the frequency of oscillation of the plate.  

Under above conventions; momentum, energy and mass transfer equations can be expressed as 

𝜌𝑛𝑓
𝜕𝑢′

𝜕𝑡′ = 𝜇𝑛𝑓
𝜕2𝑢′

𝜕𝑦′2 − 𝜎𝑛𝑓𝐵2𝑢′ −
𝜇𝑛𝑓𝜑

𝑘1
𝑢′ + 𝑔(𝜌𝛽)𝑛𝑓(𝑇′ − 𝑇0) + 𝑔(𝜌𝛽𝐶)𝑛𝑓(𝐶′ − 𝐶0),    (4.1) 

𝜕𝑇′

𝜕𝑡′ =
𝑘𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

𝜕2𝑇′

𝜕𝑦′2 +
𝑄(𝑇′−𝑇0)

(𝜌𝑐𝑝)
𝑛𝑓

,                 (4.2) 
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𝜕𝐶′

𝜕𝑡′ = 𝐷𝐶
𝜕2𝐶′

𝜕𝑦′2 + 𝐷𝑇
𝜕2𝑇′

𝜕𝑦′2 − 𝑘′(𝐶′ − 𝐶0),               (4.3) 

where  

𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑠,                (4.4) 

𝜇𝑛𝑓 =
𝜇𝑓

(1−∅)2.5,                  (4.5) 

𝜎𝑛𝑓 = 𝜎𝑓 [1 +
3(𝜎−1)∅

(𝜎+2)−(𝜎−1)∅
],                 (4.6) 

𝜎 =
𝜎𝑠

𝜎𝑓
 ,                  (4.7) 

(𝜌𝛽)𝑛𝑓 = (1 − ∅)(𝜌𝛽)𝑓 + ∅(𝜌𝛽)𝑠,                 (4.8) 

𝑘𝑛𝑓 = 𝑘𝑓 [1 − 3
∅(𝑘𝑓−𝑘𝑠)

2𝑘𝑓+𝑘𝑠+∅(𝑘𝑓−𝑘𝑠)
],                       (4.9) 

(𝜌𝑐𝑝)
𝑛𝑓

= (1 − ∅)(𝜌𝑐𝑝)𝑓 + ∅(𝜌𝑐𝑝)𝑠,               (4.10) 

with boundary conditions  

𝑢′ = 0,     𝑇′ = 𝑇0,   𝐶′ = 𝐶0;  𝑎𝑠  𝑦′ ≥ 0 𝑎𝑛𝑑  𝑡′ = 0;             (4.11) 

𝑢′ = 𝑢0cos(ω′𝑡′), 

𝑇′ = {
𝑇0 + (𝑇𝑤 − 𝑇0) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑇𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

 , 

𝐶′ = {
𝐶0 + (𝐶𝑤 − 𝐶0) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝐶𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

 ,   𝑎𝑠  𝑡′ ≥ 0 𝑎𝑛𝑑 𝑦′ = 0;          (4.12) 

𝑢′ → 0, 𝑇′ → 𝑇0,   𝐶′ → 𝐶0;  𝑎𝑠  𝑦′ → ∞ 𝑎𝑛𝑑 𝑡′ ≥ 0.             (4.13) 

Introducing non dimensional variables  

𝑦 =
𝑢0𝑦′

𝑣𝑓
, 𝑡 =

𝑢0
2𝑡′

𝑣𝑓
, 𝑢 =

𝑢′

𝑢0
, 𝜃 =

𝑇′−𝑇0

𝑇𝑤−𝑇0
, 𝜔 =

𝑣𝑓𝜔′

𝑢0
2

, 𝐶 =
C′−𝐶0

𝐶𝑤−𝐶0
,            (4.14) 

System becomes: 

𝜕𝑢

𝜕𝑡
= 𝑎1

𝜕2𝑢

𝜕𝑦2 − (𝑎3𝑀 +
𝑎1

𝑘
) 𝑢 + 𝑎2𝐺𝑟𝜃 + 𝐺𝑚𝑎5𝐶,              (4.15) 
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𝜕𝜃

𝜕𝑡
= 𝑎4

𝜕2𝜃

𝜕𝑦2 + 𝐻𝜃,                  (4.16) 

𝜕𝐶

𝜕𝑡
=

1

𝑠𝑐

𝜕2𝐶

𝜕𝑦2
+ 𝑆𝑟

𝜕2𝜃

𝜕𝑦2
− 𝑅𝛾𝐶,                 (4.17) 

with initial and boundary conditions 

𝑢 = 0,     𝑇 = 𝑇0,   𝐶 = 𝐶0;  𝑎𝑠  𝑦 ≥ 0 𝑎𝑛𝑑  𝑡 = 0;          (4.18) 

𝑢 = cos(ω𝑡) ,     

𝜃 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    = 𝑡𝐻(𝑡) − (𝑡 − 1)𝐻(𝑡 − 1),  

𝐶 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    = 𝑡𝐻(𝑡) − (𝑡 − 1)𝐻(𝑡 − 1),   𝑦 = 0, 𝑡 > 0;      (4.19) 

𝑢 → 0, 𝜃 → 0, 𝐶 → 0    𝑎𝑠  𝑦 → ∞, 𝑡 > 0;               (4.20) 

where  

H (.) is Heaviside unit step function, 

𝑏0 = 1 − ∅,                  (4.21) 

𝑏1 = (𝑏0 + ∅
𝜌𝑠

𝜌𝑓
),                                                                                                               (4.22)    

𝑏2 = (𝑏0 + ∅
(𝜌𝛽)𝑠

(𝜌𝛽)𝑓
),                 (4.23) 

𝑏3 = (𝑏0 + ∅
(𝜌𝑐𝑝)𝑠

(𝜌𝑐𝑝)𝑓
),                  (4.24) 

𝑏4 =
𝑘𝑛𝑓

𝑘𝑓
,                  (4.25) 

𝑏5 =
𝜎𝑛𝑓

𝜎𝑓
,                  (4.26) 

𝑏6 =
𝑏4

𝑏3
,                  (4.27) 
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𝑏7 = (𝑏0 + ∅
(𝜌𝛽)𝑐

(𝜌𝛽)𝑓
),                  (4.28) 

𝑎1 =
1

𝑏0
2.5𝑏1

,                  (4.29) 

𝑎2 =
𝑏2

𝑏1
,                  (4.30) 

𝑎3 =
𝑏5

𝑏1
,                  (4.31) 

𝑎4 =
𝑏6

𝑝𝑟
,                  (4.32) 

𝑎5 =
𝑏7

𝑏1
,                  (4.33) 

𝐻 = 𝑎1𝑏6,                  (4.34) 

𝑃𝑟 =
𝜇𝑓 (𝜌𝑐𝑝)

𝑓

𝜌𝑓𝑘𝑓
 ,                              (4.35) 

𝑀 =
𝜎𝑓𝐵2𝑣𝑓

𝜌𝑓𝑢0
2  ,                                        (4.36) 

1

𝑘
=

𝑣𝑓𝜑2

𝑘1𝑢0
2 ,                     (4.37) 

𝐺𝑟 =
𝑔𝛽𝑓(𝑇𝑤−𝑇0)𝑣𝑓

𝑢0
3

 ,                   (4.38) 

𝑆𝑐 =
𝑣𝑓

𝐷𝐶
 ,                    (4.39) 

𝑆𝑟 =
𝐷𝑇(𝑇𝑤−𝑇0)

𝑣𝑓(𝐶𝑤−𝐶0)
,       (4.40) 

𝑅𝛾 =
𝑣𝑓𝑘′

𝑢0
2 ,       (4.41) 

𝐺𝑚 =
𝑔𝛽𝑐𝑣𝑓(𝐶𝑤−𝐶0)

𝑢0
3

.                         (4.42) 
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4.4 Solution of the problem 

Solutions for the system is derived in a similar way as in previous chapters. 

 

4.4.1 For ramped wall temperature and ramped surface concentration 

The solution of the problem for ramped wall temperature and ramped surface concentration is 

derived by solving equations (4.15) to (4.17) with initial and boundary conditions (4.18) to 

(4.20) and is given by 

𝜃(𝑦, 𝑡) = 𝑓9(𝑦, 𝑡) − 𝑓9(𝑦, 𝑡 − 1)𝐻(𝑡 − 1),              (4.43) 

𝐶(𝑦, 𝑡) = ℎ2(𝑦, 𝑡) − ℎ2(𝑦, 𝑡 − 1)𝐻(𝑡 − 1),               (4.44) 

𝑢(𝑦, 𝑡) = 𝑔1(𝑦, 𝑡) + ℎ1(𝑦, 𝑡) − ℎ1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1).             (4.45) 

4.4.2 For isothermal temperature and ramped surface concentration 

Here equations will be same except formula of 𝜃  in (4.19), which will be 𝜃 = 1 𝑎𝑡 𝑦 = 0,  

 𝑡 ≥ 0. The solution of the problem in this case is derived by solving equations (4.15) to (4.17) 

with new initial and boundary conditions. The solution is  

𝜃(𝑦, 𝑡) = 𝑓8(𝑦, 𝑡),                    (4.46) 

𝐶(𝑦, 𝑡) = 𝑓13(𝑦, 𝑡) − 𝑓13(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) + 𝑔12(𝑦, 𝑡) − 𝑔13(𝑦, 𝑡),           (4.47) 

𝑢(𝑦, 𝑡) = 𝑔1(𝑦, 𝑡) + 𝑔5(𝑦, 𝑡) + 𝑔6(𝑦, 𝑡) − 𝑔6(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) + 𝑔7(𝑦, 𝑡) − 𝑔8(𝑦, 𝑡) +

                   𝑔8(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) − 𝑔9(𝑦, 𝑡).                         (4.48) 

4.4.3 For isothermal temperature and constant concentration 

Here equations will be same except formula of 𝜃 and 𝐶 in equation (4.19) that becomes  
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𝐶 = 1, 𝜃 = 1 𝑎𝑡 𝑦 = 0, 𝑡 ≥ 0. The solution of the problem in this case is derived by solving 

equations (4.15) to (4.17) with new initial and boundary conditions. The solution is 

𝜃(𝑦, 𝑡) = 𝑓8(𝑦, 𝑡)                     (4.49) 

𝐶(𝑦, 𝑡) = 𝑓12(𝑦, 𝑡) + 𝑔12(𝑦, 𝑡) − 𝑔13(𝑦, 𝑡)                (4.50) 

𝑢(𝑦, 𝑡) = ℎ3(𝑦, 𝑡)                   (4.51) 

Expressions of Nusselt number Nu, Sherwood Number Sh and Skin friction 𝐶𝑓 for all three 

cases, are calculated from equations (4.43) to (4.48),  

4.5 Nusselt Number:  

4.5.1 For ramped wall temperature and ramped surface concentration 

𝑁𝑢 = −[𝐽9(𝑡) − 𝐽9(𝑡 − 1)𝐻(𝑡 − 1)].               (4.52) 

4.5.2 For isothermal temperature and ramped surface concentration 

𝑁𝑢 = −[𝐽8(𝑡)].                  (4.53) 

4.5.3 For isothermal temperature and constant concentration 

𝑁𝑢 = −[𝐽8(𝑡)]                 (4.54)

  

4.6 Sherwood Number: 

4.6.1 For ramped wall temperature and ramped surface concentration 

𝑆ℎ = −[𝐽32(𝑡) − 𝐽32(𝑡 − 1)𝐻(𝑡 − 1)].               (4.55) 

4.6.2 For isothermal temperature and ramped surface concentration 

𝑆ℎ = −[𝐽13(𝑡) − 𝐽13(𝑡 − 1)𝐻(𝑡 − 1) + 𝐽27(𝑡) − 𝐽28(𝑡)].             (4.56) 

4.6.3 For isothermal temperature and constant concentration 

𝑆ℎ = −[𝐽12(𝑡) + 𝐽27(𝑡) − 𝐽28(𝑡)]                                                            (4.57) 
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4.7 Skin friction: 

4.7.1 For ramped wall temperature and ramped surface concentration 

𝐶𝑓 = 𝐽16(𝑡) + 𝐽31(𝑡) − 𝐽31(𝑡 − 1)𝐻(𝑡 − 1).               (4.58) 

4.7.2 For isothermal temperature and ramped surface concentration 

𝐶𝑓 = 𝐽16(𝑡) + 𝐽20(𝑡) + 𝐽21(𝑡) − 𝐽21(𝑡 − 1)𝐻(𝑡 − 1) + 𝐽22(𝑡) − 𝐽23(𝑡) + 𝐽23(𝑡 − 1) 

         ∗ 𝐻(𝑡 − 1) − 𝐽24(𝑡).                 (4.59) 

4.7.3 For isothermal temperature and constant concentration 

𝐶𝑓 = 𝐽33(𝑡)                                        (4.60) 

4.8 Results and Discussion 

To understand the physics of the problem, the obtained analytical solutions are studied 

numerically and are explained with the help of graphs. Parametric study is performed for 

volume fraction parameter 𝜙, permeability of porous medium 𝜅, Soret number 𝑆𝑟, Heat 

generation Parameter 𝐻 and magnetic parameter 𝑀 from Figure 4.2 to Figure 4.9. Numerical 

values of skin-friction 𝐶𝑓, Nusselt number 𝑁𝑢 and Sherwood number 𝑆ℎ are computed and 

presented in tables. Figure 4.2 displays the effect of volume fraction of nanoparticles on 

nanofluid velocity. The nanofluid velocity increases as volume fraction parameter decreases. 

Since adding the particles leads to increase in dynamic viscosity and momentum diffusion of 

the fluid, it is clear that the thickness of the boundary layer decreases with increase in 𝜙. Figure 

4.3 exhibits temperature profile for different values of volume fraction of nanoparticles, when 

other parameters are fixed. It is observed that velocity of the nanofluid increases with 

increasing volume fraction of nanoparticles. 
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Figure 4.2:  Velocity profile 𝑢 for 𝑦 and ∅ at  κ = 0.4, Sc = 0.22, Gm = 10,  

𝐺𝑟 = 5, 𝑆𝑟 = 15, 𝑅𝛾 = 10, 𝑁𝑟 = 5, 𝐻 = 10 and 𝑡 = 0.4 

 

  

 

Figure 4.3:  Temperature profile θ for 𝑦 and ∅ at  𝜅 = 0.4, 𝑆𝑐 = 0.22, 𝐺𝑚 = 10,  

𝐺𝑟 = 5, 𝑆𝑟 = 15, 𝑅𝛾 = 10, 𝑁𝑟 = 5, 𝐻 = 10 and 𝑡 = 0.4 
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Figure 4.4:  Velocity profile 𝑢 for 𝑦 and 𝜅 at  ∅ = 0.01, 𝑆𝑐 = 0.22, 𝐺𝑚 = 10,  

𝐺𝑟 = 5, 𝑆𝑟 = 15, 𝑅𝛾 = 10, 𝑁𝑟 = 5, 𝐻 = 10 and 𝑡 = 0.4 

 

 

Figure 4.5:  Velocity profile 𝑢 for 𝑦 and 𝑆𝑟 at  ∅ = 0.01, 𝜅 = 0.4, 𝑆𝑐 = 0.22,  

𝐺𝑚 = 10, 𝐺𝑟 = 5, 𝑅𝛾 = 10, 𝑁𝑟 = 5, 𝐻 = 10 and 𝑡 = 0.4 
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Figure 4.6:  Concentration profile 𝐶 for 𝑦 and 𝑆𝑟 at  ∅ = 0.01, 𝜅 = 0.4, 𝑆𝑐 = 0.22,  

𝐺𝑚 = 10, 𝐺𝑟 = 5, 𝑅𝛾 = 10, 𝑁𝑟 = 5, 𝐻 = 10 and 𝑡 = 0.4 

 

 

Figure 4.7:  Velocity profile u for y and 𝐻 at  ∅ = 0.01, 𝜅 = 0.4, 𝑆𝑐 = 0.22,  

𝐺𝑚 = 10, 𝐺𝑟 = 5, 𝑆𝑟 = 15, 𝑅𝛾 = 10, 𝑁𝑟 = 5 𝑎𝑛𝑑 𝑡 = 0.4 
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Figure 4.8:  Temperature profile θ for 𝑦 and 𝐻 at ∅ = 0.01, 𝜅 = 0.4, 𝑆𝑐 = 0.22,  

𝐺𝑚 = 10, 𝐺𝑟 = 5, 𝑆𝑟 = 15, 𝑅𝛾 = 10, 𝑁𝑟 = 5 and 𝑡 = 0.4 

 

 

Figure 4.9:  Velocity profile 𝑢 for 𝑦 and 𝑀 at 𝑃𝑟 = 6.2, 𝜅 = 0.4, 𝑆𝑐 = 0.22,  

𝐺𝑚 = 10, 𝐺𝑟 = 5, 𝑆𝑟 = 15, 𝑅𝛾 = 10, 𝑁𝑟 = 5 and 𝑡 = 0.4 
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Figure 4.4 shows velocity profile for various values of permeability parameter 𝜅 by keeping 

other parameters fixed. It is found that velocity increases with increase in 𝜅. With increase in 

𝜅, the resistance of the porous medium decreases which increases the momentum of the flow 

regime, ultimately enhances the velocity field. Figure 4.5 depicts the velocity profile for 

different values of Soret number 𝑆𝑟 in both the cases. The Soret number defines the effect of 

the temperature gradients inducing significant mass diffusion effects. It is noticed that an 

increase in Soret number results in an increase in velocity. Figure 4.6 exhibits effect of thermo-

diffusion on the species concentration for both ramped temperature and isothermal plates. It is 

evident from Figure 4.6 that, 𝐶 increases on increasing 𝑆𝑟 throughout the boundary layer 

region. Figure 4.7 demonstrates effect of the heat generation parameter 𝐻 on velocity profile. 

It is evident that increasing values of 𝐻 tends to increase velocity distribution. The 

dimensionless temperature profile along vertical plate is shown in Figure 4.8 with variations of 

heat generation parameter. It is clear that temperature distribution rises in presence of heat 

generation. Additional energy is generated in boundary layer due to the presence of heat source. 

Figure 4.9 reveals that nanofluid velocity decreases for increasing values of magnetic 

parameter 𝑀. Physically, it is due to the transverse magnetic field resulting in resistive Lorentz 

force and upon increasing values of 𝑀, this drag force increases leading to the deceleration of 

the flow.  

Values of skin friction 𝐶𝑓 are presented in Table 4.1. Skin friction tends to increase with volume 

fraction parameter ∅ and Grashof number 𝐺𝑟 while decreases with increase in permeability of 

porous medium 𝜅, Grashof number 𝐺𝑚, heat generation / absorption parameter 𝐻 (Negative 

sign of H signifies that heat is absorbed) and Schimdt number 𝑆𝑐 in the case of isothermal 

temperature and ramped concentration.  

 

http://www.sciencedirect.com/science/article/pii/S2212540X16300220#f0075
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Table 4.1: Skin friction variation 

 

In case of ramped temperature and ramped concentration, Skin friction increases with increase 

in permeability of porous medium 𝜅 and Mass Grashof number 𝐺𝑚 and otherwise for volume 

fraction parameter ∅, Schimdt number 𝑆𝑐 and Grashof number 𝐺𝑟. If isothermal temperature 

and constant Surface concentration are considered then skin friction increases with increase in 

Grashof number 𝐺𝑟 and decreases with increase in porous medium 𝜅, Schimdt number 𝑆𝑐, 

∅ 𝑆𝑐 𝐺𝑟 𝐺𝑚 𝜅 

 

 

 

𝐻 𝑆𝑟 𝑡 Skin friction 

𝐶𝑓 for 

Ramped  

temperature 

and ramped 

concentration 

Skin friction 

𝐶𝑓 for 

isothermal 

temperature 

and ramped 

concentration 

Skin friction 

𝐶𝑓 for 

isothermal 

temperature 

and constant 

Surface 

concentration. 

0.01 0.22 2 1 0.8 -1 0.2 0.3 1.2017 0.3952 4.6550 

0.02 0.22 2 1 0.8 -1 0.2 0.3 0.8486 0.4829 4.4977 

0.03 0.22 2 1 0.8 -1 0.2 0.3 0.5192 0.5598 4.3634 

0.01 0.23 2 1 0.8 -1 0.2 0.3 -2.6398 0.1296 4.6178 

0.01 0.24 2 1 0.8 -1 0.2 0.3 -6.2069 -0.1480 4.5803 

0.01 0.22 2.1 1 0.8 -1 0.2 0.3 -2.2015 0.6354 4.8951 

0.01 0.22 2.2 1 0.8 -1 0.2 0.3 -5.6046 0.8756 5.1353 

0.01 0.22 2 1.1 0.8 -1 0.2 0.3 8.1282 -0.0455 4.1747 

0.01 0.22 2 1.2 0.8 -1 0.2 0.3 15.0546 -0.4863 3.6945 

0.01 0.22 2 1 0.85 -1 0.2 0.3 6.8968 -0.2796 4.0705 

0.01 0.22 2 1 0.9 -1 0.2 0.3 10.9933 -0.8632 3.5881 

0.01 0.22 2 1 0.8 -1.5 0.2 0.3 3.3604 -1.9725 2.2872 

0.01 0.22 2 1 0.8 -2 0.2 0.3  2.1061 -2.7285 1.5312 

0.01 0.22 2 1 0.8 -1 0.3 0.3 37.0956 -0.5471 3.7126 

0.01 0.22 2 1 0.8 -1 0.4 0.3 72.9896 -1.4894 2.7703 

0.01 0.22 2 1 0.8 -1 0.3 0.4 1.3824 0.3225 4.3055 

0.01 0.22 2 1 0.8 -1 0.3 0.5 1.5331 0.2186 4.0566 
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mass Grashof number 𝐺𝑚, volume fraction parameter ∅  and heat absorption parameter 𝐻. The 

increased skin friction is generally a disadvantage in the technical applications. 

Table 4.2: Nusselt number variation 

∅ 𝐻 𝑡 Nusselt number 𝑁𝑢 for 

Ramped Temperature 

Nusselt number 𝑁𝑢 

for isothermal Temperature 

0.01 -1 0.3 0.7585 1.3060 

0.02 -1 0.3 0.7436 1.2817 

0.03 -1 0.3 0.7292 1.2580 

0.01 -1.5 0.3 0.7647 1.3370 

0.01 -2 0.3 0.7710 1.3678 

0.01 -1 0.3 0.7492 1.2900 

0.01 -1 0.3 0.7403 1.2747 

0.01 -1 0.4 0.8806 1.1489 

0.01 -1 0.5 0.9899 1.0436 

 

Table 4.3: Sherwood number variation 

𝑆𝑐 𝑆𝑟 𝑡 Sherwood Number 

𝑆ℎ for Ramped  

temperature and 

ramped 

concentration 

Sherwood Number 

𝑆ℎ for isothermal 

temperature and 

ramped 

concentration 

Sherwood Number 𝑆ℎ 

for isothermal 

temperature and 

constant Surface 

concentration. 

0.22 0.2 0.3 -11.8866 0.1999 0.4047 

0.23 0.2 0.3 -11.0634 0.2058 0.4152 

0.24 0.2 0.3 -10.3027 0.2116 0.4255 

0.22 0.3 0.3 -21.4403 0.1534 0.3582 

0.22 0.4 0.3 -30.9940 0.1070 0.3117 

0.22 0.2 0.4 -10.6005 0.2437 0.3395 

0.22 0.2 0.5 -9.7496 0.2818 0.2941 
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It is evident from Table 4.2 that, Nusselt number Nu decreases on increasing t for ramped 

temperature and otherwise for isothermal case. It is evident that in either case Nu decreases 

with increase in volume fraction parameter ∅ and increases with increase in heat absorption 

parameter.  Table 4.3 shows that Sherwood number Sh increases with increase in t or Schimdt 

number Sc for all thermal cases and otherwise for Soret number Sr for all cases. 

4.9 Conclusion 

Key results can be summarized as follows. 

 Nanofluid velocity decreases with increase in volume fraction parameter ∅. 

 Nanofluid velocity increases with increase in permeability parameter 𝜅, Heat generation 

Parameter 𝐻 and Soret number 𝑆𝑟 while decreases with increase in magnetic parameter 

𝑀. 

 Nanofluid velocity is more for isothermal temperature compared to ramped plate. 

 Nanofluid temperature is getting accelerated with the progress of volume fraction 

parameter ∅ and heat generation parameter 𝐻. 

 Concentration increases with increase in Soret number  𝑆𝑟. 

 Nusselt number 𝑁𝑢 decreases on increasing 𝑡 for ramped temperature and otherwise for 

isothermal case. 

 For isothermal temperature and ramped surface concentration, Skin friction 𝐶𝑓 increases 

with increase in volume fraction parameter ∅. 


