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STUDY OF HEAT AND MASS TRANSFER IN UNSTEADY TWO DIMENSIONAL 

NANOFLUID FLOW BETWEEN PARALLEL PLATES 

In previous chapter, it is assumed that the concentration of fluid particles is uniform. But, in 

many real problems involving convection of nanofluids, mechanism such as thermophoresis 

and Brownian motion are evident, the concentration of nanofluids may not be considered as 

uniform. In this chapter, influence of magnetic field on two dimensional squeezing nanofluid 

flow considering heat and mass transfer between two plates is examined.  

  

6.1 Introduction  

Exploration of heat and mass transfer for time dependent squeezing viscous flow between two 

parallel plates, is vital in engineering such as cooling towers, damage of crops due to freezing, 

chemical processing equipment, formation and dispersion of fog and food processing. 

Sheikholeslami et al.  [76] studied unsteady nanofluid flow between parallel plates using 

Differential Transformation Method. 

Sheikholeslami et al. [74] considered two phase model to simulate the problem of unsteady 

nanofluid flow between parallel plates. Hatami et al. [16] examined unsteady squeezing 

nanofluid flow between parallel plates in presence of variable magnetic field. Sheikholeslami 

et al.  [71] discussed unsteady squeezing nanofluid flow and heat transfer, taking various 

nanoparticles in the study, but uniform mass distribution was considered. Usman et al. [112] 

extended above work by considering both heat and mass transfer characteristics.  

   

6.2 Novelty of the Problem 

The objective of this study is to scrutinize impact of magnetic field and thermal radiation on 

nanofluid flow through squeezing parallel plates. Novelty of the present work is the inclusion 

of effects of thermal interfacial resistance and Brownian motion on thermal conductivity along 

with micro mixing in suspensions. The simplified system of ODE is solved using HAM. Effects 
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of relevant parameters are discussed. In most of the studies, the concentration of fluid particles 

is considered to be uniform, but slips mechanism such as Brownian motion and thermophoresis 

are always evident in convection of nanofluids. These phenomenon are considered in present 

study. 

 

6.3 Mathematical Formulation of the Problem 

 

Figure 6.1: Physical Sketch of the Problem 

Fluid under consideration is Al2O3 − water nanofluid. A coordinate system is chosen as shown 

in Figure 6.1. Squeezing flow is supposed to be between two horizontal parallel moving plates 

situated at 𝑙(𝑡) = 𝐿(1 − 𝑎𝑡)1/2units apart. Here 𝐿 is the initial position of the plate, 𝑎 > 0 

signifies that plates are squeezed until they touch each other at 𝑡 =
1

𝑎
 and plates move in 

opposite direction for 𝑎 < 0. A uniform magnetic flux with density 𝐵(𝑡) = 𝐵/√1 − 𝑎𝑡 (𝐵 is 

the initial value) is applied. 

Under these assumptions, governing equations are: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                          (6.1) 
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𝜌𝑛𝑓 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝜇𝑛𝑓 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) − 𝜎𝑛𝑓𝐵2(𝑡)𝑢,                       (6.2) 

𝜌𝑛𝑓 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = 𝜇𝑛𝑓 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2),               (6.3)    

 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) +

𝜇𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(2 [(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

] + (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

) 

+
(𝜌𝑐𝑝)

𝑠

(𝜌𝑐𝑝)
𝑓

(
𝐷𝑇

𝑇𝑤
((

𝜕𝑇

𝜕𝑥
)

2

+ (
𝜕𝑇

𝜕𝑦
)

2

) + 𝐷𝐵 (
𝜕𝐶

𝜕𝑥

𝜕𝑇

𝜕𝑥
+

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
)) −

1

(𝜌𝑐𝑝)
𝑛𝑓

𝜕𝑞𝑟

𝜕𝑦
+

(𝜌𝑐𝑝)
𝑛𝑓

𝑄(𝑇−𝑇0)

𝜌𝑛𝑓
,        (6.4) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 +
𝜕2𝐶

𝜕𝑧2) +
𝐷𝑇

𝑇𝑤
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2),            (6.5) 

where 

𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑠,                                                   (6.6) 

𝜎𝑛𝑓 = 𝜎𝑓[1 +
3(𝜎−1)∅

(𝜎+2)−(𝜎−1)∅
], 𝜎 =

𝜎𝑠

𝜎𝑓
,               (6.7) 

(𝜌𝑐𝑝)
𝑛𝑓

= (1 − ∅)(𝜌𝑐𝑝)𝑓 + ∅(𝜌𝑐𝑝)𝑠,              (6.8)  

𝑘𝑛𝑓 = 𝑘𝑓 [1 − 3
∅(𝑘𝑓−𝑘𝑠)

2𝑘𝑓+𝑘𝑠+∅(𝑘𝑓−𝑘𝑠)
].                            (6.9)    

Considering effects of micro mixing in suspensions on viscosity,  

𝜇𝑛𝑓 = 𝜇𝑠𝑡𝑎𝑡𝑖𝑐 + 𝜇𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 =
𝜇𝑓

(1−∅)2.5 +
𝑘𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛∗𝜇𝑓

𝑘𝑓∗𝑃𝑟𝑓
.                                           (6.10) 

The thermo-physical properties of water and nanoparticles are as in Table 1.1. 

𝑞𝑟 [61] becomes: 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
= −

4𝜎∗

3𝑘∗

𝜕(4𝑇0
3𝑇−3𝑇0

4)

𝜕𝑦
.                (6.11) 

Boundary conditions are 

𝑢 =  0;  𝑣 =  
𝑑𝑙

𝑑𝑡
;  𝑇 =  𝑇𝐿; 𝐶 = 𝐶𝐿 𝑎𝑡 𝑦 =  𝑙(𝑡),                           (6.12) 
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𝜕𝑢

𝜕𝑦
= 0;  𝑣 =  0; 

𝜕𝑇

𝜕𝑦
= 0;

𝜕𝐶

𝜕𝑦
= 0 𝑎𝑡 𝑦 = 0.                                                                                                                (6.13) 

Introducing non dimensional variables 

𝜂 =
𝑦

𝐿(1−𝑎𝑡)
1
2

, 𝑢 =
𝑎𝑥

2(1−𝑎𝑡)
𝑓′(𝜂), 𝑣 =

−𝑎𝐿

(1−𝑎𝑡)
1
2

𝑓(𝜂), 𝜃(𝜂) =
T

𝑇𝐿
,   𝐶(𝜂) =

𝐶

𝐶𝐿
,   

𝐵(𝑡) =
𝐵

(1−𝑎𝑡)1/2  , 𝛿 =  
𝐿

𝑥
, 𝜆 =

𝑄2𝐿(𝑇𝐿−𝑇0)(1−𝑎𝑡)

𝑘𝑓𝑇𝐿𝜌𝑓
.                    (6.14) 

Therefore, dimensionless form of governing momentum, energy and mass transfer equations 

for this problem are given by: 

𝑎1𝑓𝑖𝑣 − 𝑆(𝑓′𝑓′′ + (−𝑓 + 𝜂)𝑓′′′ + 3𝑓′′) − 𝑎3𝑀2𝑓′′ = 0,                        (6.15) 

𝜃′′ + 𝑃𝑟(𝑆𝑎2(𝑓 − 𝜂)𝜃′ + 𝐸𝑐𝑎4(4𝛿2𝑓′2 + 𝑓′′2)) + 𝑁𝑏𝐶′𝜃′ + 𝑁𝑡𝜃′2
+ 𝑎2𝜃𝜆 = 0,        (6.16) 

𝑁𝑏C′′ + 𝑁𝑡𝜃′′ + 𝑆 ∙ 𝑁𝑏 ∙ 𝑆𝑐(𝑓𝐶′ − 𝜂𝐶′′) = 0,              (6.17) 

where 

𝑃𝑟 =
𝜇𝑓 (𝜌𝑐𝑝)

𝑓

𝜌𝑓𝑘𝑓
,                    (6.18) 

𝑀2 =  
𝜎𝑓𝑎𝐵2𝐿2

𝜌𝑓𝑣𝑓
,                   (6.19) 

𝑆 =
𝑎𝐿2

2𝑣𝑓
,                   (6.20) 

𝐸𝑐 =
𝜌𝑓(𝑎𝑥)2

 (𝜌𝑐𝑝)
𝑓

𝑇𝐿4(1−𝑎𝑡)2,                            (6.21) 

𝑏0 = 1 − ∅,                   (6.22) 

𝑏1 = (𝑏0 + ∅
𝜌𝑠

𝜌𝑓
),                  (6.23) 

𝑏2 =
1

𝑏0
2.5,                  (6.24) 

𝑏3 = (𝑏0 + ∅
(𝜌𝑐𝑝)𝑠

(𝜌𝑐𝑝)𝑓
),                  (6.25) 
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𝑏4 =
𝑘𝑛𝑓

𝑘𝑓
,                  (6.26) 

𝑏5 =
𝜎𝑛𝑓

𝜎𝑓
,                   (6.27) 

𝑎1 =
1

𝑏0
2.5𝑏1

,                   (6.28) 

𝑎2 =
𝑏3

𝑏4+𝑁𝑟
,                  (6.29) 

𝑎3 =
𝑏5

𝑏1
,                   (6.30) 

𝑎4 =
𝑏2

𝑏4
,                   (6.31) 

𝑁𝑟 =
16𝜎∗𝑇0

3

3𝑘∗𝑘𝑓
,                    (6.32)   

subject to 

𝑓 = 0, 𝑓′′ = 0, 𝜃′ = 0, 𝐶′ = 0 𝑎𝑡 𝜂 = 0,               (6.33) 

𝑓 = 1, 𝑓′ = 0, 𝜃 = 1, 𝐶 = 1 𝑎𝑡 𝜂 = 1.                         (6.34) 

6.4 Solution by Homotopy analysis Method 

Equations (6.15) – (6.17) subject to boundary conditions (6.33) – (6.34) are solved using 

Homotopy analysis method (HAM) [40].  

Initial guess is: 

𝑓0(𝜂) = (3𝜂 − 𝜂3)/2; 𝜃0(𝜂) = 1; 𝐶0(𝜂) = 1;                               (6.35) 

with auxiliary linear operators: 

𝐿𝑓 =
𝜕4𝑓

𝜕𝜂4  , 𝐿𝜃 =  
𝜕2𝜃

𝜕𝜂2  , 𝐿𝐶 =  
𝜕2𝐶

𝜕𝜂2,                                                             (6.36) 

such that 

𝐿𝑓(𝐶1 + 𝐶2 𝜂 + 𝐶3𝜂2 + 𝐶4𝜂3) = 0, 𝐿𝜃( 𝐶5 + 𝐶6𝜂) = 0, 𝐿𝐶( 𝐶7 + 𝐶8𝜂) = 0,                                (6.37) 

where 𝑐1,   𝑐2, … , 𝑐8  are the arbitrary constants. 
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The zeroth order deformation problems are constructed as follows: 

(1 − 𝑝)𝐿𝑓[𝑓(𝜂;  𝑝) − 𝑓0(𝜂)] = 𝑝ℏ𝑓𝑁𝑓[𝑓(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)],                                                   (6.38) 

(1 − 𝑝)𝐿𝜃[𝜃(𝜂;  𝑝) − 𝜃0(𝜂)] = 𝑝ℏ𝜃𝑁𝜃[𝑓(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)],                        (6.39) 

(1 − 𝑝)𝐿𝐶[�̂�(𝜂;  𝑝) − 𝐶0(𝜂)] = 𝑝ℏ𝐶𝑁𝐶[𝑓(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)],                                                 (6.40) 

subject to the boundary conditions: 

𝑓(0;  𝑝) = 0,      𝑓′′(0;  𝑝) = 0;                                                                                         (6.41)                  

𝑓(1;  𝑝) = 1,      𝑓′(1;  𝑝) = 0;                                                 (6.42)       

𝜃′(0;  𝑝) = 0,      𝜃(1;  𝑝) = 1;                             (6.43) 

�̂�′(0;  𝑝) = 0,     �̂�(1;  𝑝) = 1.                              (6.44) 

The nonlinear operators are defined as  

𝑁𝑓[𝑓(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)] =  𝑎1
𝜕4�̂�

𝜕𝜂4 − 𝑆 ( 
𝜕�̂�

𝜕𝜂

𝜕2�̂�

𝜕𝜂2 + (−𝑓 + 𝜂)
𝜕3�̂�

𝜕𝜂3 + 3
𝜕2�̂�

𝜕𝜂2) − 𝑎3𝑀2 𝜕2�̂�

𝜕𝜂2,           

          

                               (6.45) 

𝑁𝜃[𝑓(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)] =
𝜕2�̂�

𝜕𝜂2 + 𝑃𝑟 (𝑆𝑎2(𝑓 − 𝜂)
𝜕�̂�

𝜕𝜂
+ 𝐸𝑐𝑎4 (4𝛿2 (

𝜕�̂�

𝜕𝜂
)

2

+
𝜕2�̂�

𝜕𝜂2

2

)) +

                                                             𝑁𝑏
𝜕�̂�

𝜕𝜂

𝜕�̂�

𝜕𝜂
+ 𝑁𝑡 (

𝜕�̂�

𝜕𝜂
)

2

+ 𝑎2𝜃𝜆,                    (6.46) 

𝑁𝐶[𝑓(𝜂;  𝑝), 𝜃(𝜂;  𝑝), �̂�(𝜂;  𝑝)] = 𝑁𝑏
𝜕2�̂�

𝜕𝜂2 + 𝑁𝑡
𝜕2�̂�

𝜕𝜂2 + 𝑆𝑁𝑏𝑆𝑐 (𝑓
𝜕�̂�

𝜕𝜂
− 𝜂

𝜕2�̂�

𝜕𝜂2),          (6.47) 

where 𝑓(𝜂;  𝑝),  �̂�(𝜂;  𝑝) and �̂�(𝜂;  𝑝) are unknown functions with respect to 𝜂  and 𝑝.  ℏ𝑓 , ℏ𝜃 

and  ℏ𝐶 are non-zero auxiliary parameters and 𝑁𝑓, 𝑁𝜃 and 𝑁𝐶  are nonlinear operators.  

Also,  𝑝 ∈ (0, 1) is an embedding parameter. For 𝑝 = 0 and 𝑝 = 1,  

𝑓(𝜂; 0) = 𝑓0(𝜂), 𝑓(𝜂; 1) = 𝑓(𝜂),                          (6.48) 

𝜃(𝜂; 0) =  𝜃0(𝜂), 𝜃(𝜂; 1) =  𝜃(𝜂),                         (6.49) 

�̂�(𝜂; 0) =  𝐶0(𝜂), �̂�(𝜂; 1) =  𝐶(𝜂).                            (6.50) 
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In other words, when variation of  𝑝 is taken from 0 to 1 then 𝑓(𝜂;  𝑝), 𝜃(𝜂;  𝑝) and �̂�(𝜂;  𝑝) 

vary from 𝑓0(𝜂), 𝜃0(𝜂) and 𝐶0(𝜂) to 𝑓(𝜂), 𝜃(𝜂) and 𝐶(𝜂) respectively. Taylor’s series 

expansion of these functions yield the following: 

𝑓(𝜂;  𝑝) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)𝑝𝑚,∞
𝑚=1                                (6.51) 

𝜃(𝜂;  𝑝) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑝𝑚,∞
𝑚=1                              (6.52)  

�̂�(𝜂;  𝑝) = 𝐶0(𝜂) + ∑ 𝐶𝑚(𝜂)𝑝𝑚∞
𝑚=1 ,                 (6.53) 

where 

𝑓𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝑓(𝜂; 𝑝)

𝜕𝑝𝑚
]

𝑝=0
 ,                                (6.54) 

𝜃𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝜃(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

,                             (6.55) 

𝐶𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝐶(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

.                         (6.56) 

It should be noted that the convergence in the above series strongly depends upon ℏ𝑓 , ℏ𝜃 

and ℏ𝐶. Assuming that these nonzero auxiliary parameters are chosen so that Equations (6.51) 

- (6.53) converge at 𝑝 = 1. Hence, one can obtain the following: 

𝑓(𝜂) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂),∞
𝑚=1                  (6.57) 

𝜃(𝜂) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂),∞
𝑚=1                  (6.58) 

𝐶(𝜂) = 𝐶0(𝜂) + ∑ 𝐶𝑚(𝜂)∞
𝑚=1 .                 (6.59) 

Differentiating the zeroth order deformation (6.38) – (6.40) and (6.41) – (6.44) m times with 

respect to 𝑝 and substituting 𝑝 = 0, and finally dividing by 𝑚!; the mth order deformation 

(𝑚 ≥ 1) is 

𝐿𝑓[𝑓𝑚(𝜂) − 𝜒𝑚𝑓𝑚−1(𝜂)] = ℏ𝑓𝑅𝑓,𝑚(𝜂),                                         (6.60) 
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𝐿𝜃[𝜃𝑚(𝜂) − 𝜒𝑚𝜃𝑚−1(𝜂)] = ℏ𝜃𝑅𝜃,𝑚(𝜂),                                                (6.61) 

𝐿𝐶[𝐶𝑚(𝜂) − 𝜒𝑚𝐶𝑚−1(𝜂)] = ℏ𝐶𝑅𝐶,𝑚(𝜂),                                                            (6.62) 

subject to the boundary conditions 

𝑓𝑚(0) = 𝑓𝑚
′′(0) = 0,                                                     (6.63) 

𝑓𝑚(1) = 𝑓𝑚
′ (1) = 0,                                                                                                 (6.64) 

𝜃𝑚(0) = 𝜃𝑚(1) = 0,                                                                      (6.65) 

𝐶𝑚
′ (0) = 𝐶𝑚(1) = 0,                                (6.66) 

with  

𝑅𝑓,𝑚(𝜂) = 𝑎1𝑓𝑚−1
𝑖𝑣 − 𝑆(∑ 𝑓𝑗

′𝑓𝑚−1−𝑗
′′𝑚−1

𝑗=0 − ∑ 𝑓𝑗𝑓𝑚−1−𝑗
′′′ + 𝜂𝑓𝑚−1

′′′ + 𝑓𝑚−2
′′′ + 3𝑓𝑚−1

′′𝑚−1
𝑗=0 ) −  

       𝑎3𝑀2𝑓𝑚−1
′′ ,                                      (6.67) 

𝑅𝜃,𝑚(𝜂) = 𝜃𝑚−1
′′ + 𝑃𝑟 (𝑆𝑎2(∑ 𝑓𝑗𝜃𝑚−1−𝑗

′𝑚−1
𝑗=0 − 𝜂𝜃𝑚−1

′ − 𝜃𝑚−2
′ ) +

                    𝐸𝑐𝑎4(4𝛿2 ∑ 𝑓𝑗
′𝑓𝑚−1−𝑗

′𝑚−1
𝑗=0 +  ∑ 𝑓𝑗

′′𝑓𝑚−1−𝑗
′′𝑚−1

𝑗=0 )) + 𝑁𝑏 ∑ 𝐶𝑗
′𝜃𝑚−1−𝑗

′𝑚−1
𝑗=0 +

                    𝑁𝑡 ∑ 𝜃𝑗
′𝜃𝑚−1−𝑗

′𝑚−1
𝑗=0 + 𝑎2𝜆𝜃𝑚−1,                            (6.68) 

𝑅𝐶,𝑚(𝜂) = 𝑁𝑏𝐶𝑚−1
′′ + 𝑁𝑡𝜃𝑚−1

′′ +  𝑆𝑁𝑏𝑆𝑐 (∑ 𝑓𝑗𝐶𝑚−1−𝑗
′𝑚−1

𝑗=0 − 𝜂𝐶𝑚−1
′′ − 𝐶𝑚−2

′′ ),          (6.69) 

where 

 𝜒𝑚 = {
0, 𝑚 ≤ 1
1, 𝑚 > 1

.                    (6.70) 

Solving the corresponding mth order deformation equations,  

𝑓𝑚(𝜂) = 𝑓𝑚
∗ (𝜂) + 𝐶1 + 𝐶2 𝜂 + 𝐶3𝜂2 + 𝐶4𝜂3,                            (6.71) 

𝜃𝑚(𝜂) = 𝜃𝑚
∗ (𝜂) + 𝐶5 + 𝐶6𝜂,                 (6.72) 

𝐶𝑚(𝜂) = 𝐶𝑚
∗ (𝜂) +  𝐶7 + 𝐶8𝜂.                  (6.73) 
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Here fm
∗  , θm

∗   and Cm
∗   are given by are particular solutions of the corresponding mth order 

equations and constants Ci( i = 1, 2, … , 8) are to be determined by the boundary conditions.  

 

6.4.1 Convergence of solution 

Figures 6.2 – 6.4 clearly suggest admissible range for auxiliary parameters ℏ𝑓 , ℏ𝜃 and ℏ𝐶.  

 

Figure 6.2: H-Curve of 𝑓′′ for  ℏ𝑓 at 𝜙 = 0.02, 𝑀 = 0.5, 𝑁𝑟 = 1.0, 𝑃𝑟 = 10.0, 𝑆 = 0.3, 𝐸𝑐 =

0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑆𝑐 = 0.3.  

 

 

Figure 6.3: H-Curve of  𝜃′ for ℏ𝜃 at 𝜙 = 0.02, 𝑀 = 0.5, 𝑁𝑟 = 1.0, 𝑃𝑟 = 10.0, 𝑆 = 0.3,   

𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑆𝑐 = 0.3.  



Chapter 6 

132 
 

 

Figure 6.4: H-Curve of 𝐶′ for ℏ𝐶 at 𝜙 = 0.02, 𝑀 = 0.5, 𝑁𝑟 = 1.0, 𝑃𝑟 = 10.0, 𝑆 = 0.3,   

𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑆𝑐 = 0.3.   

 

6.5 Results and Discussion  

This section is dedicated to the physics of the problem through graphical representation of 

concentration profile. Solution is obtained using Mathematica.  Effects of different parameters: 

squeezing parameter 𝑆, Magnetic parameter 𝑀, Radiation parameter 𝑁𝑟, nanoparticle volume 

fraction ∅, Eckert number 𝐸𝑐, and Schmidt Number 𝑆𝑐 on concentration are represented 

through Figures 6.5 – 6.11. Figures 6.12 – 6.15 represent effects of pertinent parameters on 

Skin friction 𝐶𝑓 and Nusselt number 𝑁𝑢.  It is evident from Figure 6.5 that concentration 

increases with 𝑆. It is clear from Figure 6.6 that concentration decreases with increase in 

nanoparticle volume fraction. Increment in concentration with 𝑀 is evident from Figure 6.7. 

Decrease in concentration profile with increasing values of 𝑆𝑐 is evident through Figure 6.8. 

Figure 6.9 shows that concentration can be decreased by considering higher values of 𝑁𝑡. 
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Figure 6.5: Concentration profile 𝐶 for 𝜂  and 𝑆 at 𝜙 = 0.02, 𝑀 = 0.5, 𝑁𝑟 = 1.0,   

𝑃𝑟 = 6.2,    𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑆𝑐 = 0.3.  

 

 

Figure 6.6:  Concentration profile 𝐶 for 𝜂  and 𝜙  at 𝑆 = 0.3, 𝑀 = 0.5, 𝑁𝑟 = 1.0,   

𝑃𝑟 = 6.2,    𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑆𝑐 = 0.3.  
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Figure 6.7: Concentration profile 𝐶 for 𝜂  and 𝑀  at 𝑆 = 0.3, 𝜙 = 0.02, 𝑁𝑟 = 1.0,   

𝑃𝑟 = 6.2,    𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑆𝑐 = 0.3.  

 

 

Figure 6.8: Concentration profile 𝐶 for 𝜂  and 𝑆𝑐  at 𝑆 = 0.3, 𝜙 = 0.02, 𝑁𝑟 = 1.0,   

𝑃𝑟 = 6.2,    𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑀 = 0.5.  
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Figure 6.9: Concentration profile 𝐶 for 𝜂  and 𝑁𝑡 at 𝑆 = 0.3, 𝜙 = 0.02, 𝑁𝑟 = 1.0,   

𝑃𝑟 = 6.2,    𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑆𝑐 = 0.3 𝑎𝑛𝑑 𝑀 = 0.5.  

 

 

Figure 6.10: Concentration profile 𝐶 for 𝜂  and 𝑁𝑏 at 𝑆 = 0.3, 𝜙 = 0.02, 𝑁𝑟 = 1.0,  

𝑁𝑡 = 0.1, 𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑃𝑟 = 6.2, 𝑆𝑐 = 0.3 𝑎𝑛𝑑 𝑀 = 0.5.  
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Figure 6.11:  Concentration profile 𝐶 for 𝜂  and  Ec at  𝑆 = 0.3, 𝜙 = 0.02, 𝑁𝑏 = 0.1,  

𝑁𝑡 = 0.1, λ = 1.2, Nr = 1.0, δ = 0.15, 𝑃𝑟 = 6.2, 𝑆𝑐 = 0.3 𝑎𝑛𝑑 𝑀 = 0.5.   

 

 

Figure 6.12: Effect of magnetic parameter M and S on 𝐶𝑓 at 𝜙 = 0.02, 𝑁𝑟 = 1.0,  

𝑃𝑟 = 6.2, 𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑆𝑐 = 0.3.   
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Figure 6.13: Effect of magnetic parameter M and S on 𝑁𝑢 at 𝜙 = 0.02, 𝑁𝑟 = 1.0,   

𝑃𝑟 = 6.2, 𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑆𝑐 = 0.3.  

 

 

Figure 6.14: Effect of nanoparticle volume fraction 𝜙 and 𝑁𝑟  on 𝑁𝑢 at 𝑀 = 0.5, 𝑆 = 0.3,  

𝑃𝑟 = 6.2, 𝐸𝑐 = 0.05, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑆𝑐 = 0.3.  
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Figure 6.15: Effect of Eckert number Ec and 𝜙  on 𝑁𝑢 at 𝑀 = 0.5, 𝑁𝑟 = 1.0,   𝑃𝑟 = 6.2,     

𝑆 = 0.3, δ = 0.15, λ = 1.2, 𝑁𝑏 = 0.1, 𝑁𝑡 = 0.1 𝑎𝑛𝑑 𝑆𝑐 = 0.3.  

 

Effects of 𝑁𝑏 on concentration profile is evident from Figure 6.10. It is observed that 

concentration increases with increase in 𝑁𝑏. Figure 6.11 demonstrates that concentration 

profile decreases with rise in values of 𝐸𝑐. Figure 6.12 shows skin friction for different values 

of M and 𝑆. It is seen that, Skin friction increases with increase in either of parameters. Figures 

6.13 – 6.15 illustrate effects of different physical parameters on Nusselt Number. It is evident 

that 𝜙 tends to increase the values of Nusselt number while 𝑆 and 𝑁𝑟 has reverse effect on it.  

 

6.6 Conclusion 

The most important concluding remarks can be summarized as follows: 

 Concentration can be increased by increasing 𝑀 or 𝑆. 

 Concentration declines with increasing values of 𝐸𝑐. 

 Skin friction can be reduced by diminishing 𝑆.  

 Nu increases with increase in ∅ or 𝐸𝑐. 


