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STUDY OF FLOW AND HEAT TRANSFER BEHAVIOR OF THREE DIMENSIONAL 

MHD NANOFLUID FLOW CONSIDERING THERMAL INTERFACIAL 

RESISTANCE AND MICRO MIXING IN SUSPENSIONS 

Many of the real world problems require three dimensional mathematical modelling, so the 

problems discussed in previous chapters need to be extended to three dimension. In this 

chapter, effect of magnetic field on three dimensional nanofluid flow between two horizontal 

parallel plates through porous medium is scrutinized. System under consideration is rotating. 

Effects of thermal interfacial resistance, nanoparticle volume fraction, Brownian motion, 

nanoparticle size, types of nanoparticle and base fluid on thermal conductivity are considered. 

Also, micro mixing in suspensions is taken into account while calculating viscosity.  

 

7.1 Introduction  

From an energy saving perception, enhancement of heat transfer performance in systems is 

vital subject. Low thermal conductivity of orthodox fluids such as water and oils is a key 

limitation in improving the performance of systems. Solids usually have a higher thermal 

conductivity than liquids. For example, aluminum (Al) has a thermal conductivity 350 times 

greater than water and 1500 times greater than engine oil. This limitation of the conventional 

fluids can be overcome by replacing them with nanofluids. Enhancement of heat transfer is 

vital in Industrial and engineering processes. High thermal conductivity of nanofluids is a boon 

in this direction, thus many researchers are working intensively considering heat transfer 

properties of nanofluids.   

Effect of magnetic field on electrically conducting fluids has many applications in almost all 

branches of science and engineering such as generators, coolant in huge nuclear power plants, 

plasma and bearings. Magnetohydrodynamics effect on convective flow of nanofluid was 

studied by Hayat et al. [23].  
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Oil extraction, Pollution of Ground water, filtering media, geothermal energy recovery and 

thermal energy storage are some problems involving heat transfer in porous media. 

Sheikholeslami and Shehzad [97] studied MHD nanofluid convective flow in a porous 

enclosure. Kataria and Mittal [30 - 31] analyzed velocity, mass and temperature of nanofluid 

flow in a porous medium.  

In real world problems, thermal radiation is evident which is reflected in study of various 

researchers. Kataria and Mittal [29] discussed optically thick nanofluid flow past an oscillating 

vertical plate in presence of radiation. Sheikholeslami et al.  [64] examined heat transfer 

characteristics in nanofluid flow between two horizontal parallel plates in a rotating system. 

 

7.2 Novelty of the Problem 

The aim of this study is to analyze heat transfer in nanofluid flow in presence of magnetic field 

and thermal radiation between horizontal parallel plates in a rotating system. Effects of many 

vital phenomenon like thermal interfacial resistance, nanoparticle volume fraction, Brownian 

motion and nanoparticle’s size on thermal conductivity are often neglected. 

Novelty of the present work is the inclusion of above phenomenon along with micro mixing in 

suspensions. The simplified system of ordinary differential equations are solved using the 

HAM. The effects of the pertinent parameters are discussed. 

 

7.3 Mathematical Formulation of the Problem 

Fluid under consideration is Al2O3 − water nanofluid. Flow is assumed to be between two 

horizontal parallel plates L units apart through a porous medium. A coordinate system (𝑥, 𝑦, 𝑧) 

is chosen such that origin is positioned at the lower plate and axis as shown in Figure 7.1. The 

lower plate is subject to stretching by two opposite forces in opposite directions. The plates 

along with the fluid rotate about 𝑦 axis with angular velocity Ω. A uniform magnetic flux with 

density B is applied along 𝑦-axis. 



  Chapter 7 

141 
 

 

Figure 7.1: Physical Sketch of the Problem 

Under these assumptions, governing equations are: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0,                  (7.1) 

𝜌𝑛𝑓 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 2Ω𝑤) = 𝜇𝑛𝑓 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) − 𝜎𝑛𝑓𝐵2𝑢 −
𝜇𝑛𝑓𝜑

𝑘1
𝑢,            (7.2) 

𝜌𝑛𝑓 (𝑢
𝜕𝑣

𝜕𝑦
) = 𝜇𝑛𝑓 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2),                (7.3) 

𝜌𝑛𝑓 (𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
− 2Ω𝑤)

𝜕𝑤

𝜕𝑧
= 𝜇𝑛𝑓 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 ) − 𝜎𝑛𝑓𝐵2𝑤 −
𝜇𝑛𝑓𝜑

𝑘1
𝑤,           (7.4) 

(𝜌𝑐𝑝)
𝑛𝑓

(𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘𝑛𝑓 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
) + 𝜇𝑛𝑓 (2 [(

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

+ (
𝜕𝑤

𝜕𝑧
)

2

] +

                                                            (
𝜕𝑣

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2

+ (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

2

) −
𝜕𝑞𝑟

𝜕𝑦
,            (7.5) 

where 

𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑠,                (7.6)                    

𝜎𝑛𝑓 = 𝜎𝑓[1 +
3(𝜎−1)∅

(𝜎+2)−(𝜎−1)∅
], 𝜎 =

𝜎𝑠

𝜎𝑓
,               (7.7)  
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(𝜌𝑐𝑝)
𝑛𝑓

= (1 − ∅)(𝜌𝑐𝑝)𝑓 + ∅(𝜌𝑐𝑝)𝑠.              (7.8)         

Effects of thermal interfacial resistance, nanoparticle volume fraction, Brownian motion and 

nanoparticle’s size on thermal conductivity are considered. Also, micro mixing in suspensions 

is taken into account while calculating viscosity. 

𝑘𝑒𝑓𝑓 = 𝑘𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑘𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 = 𝑘𝑓 [1 − 3
∅(𝑘𝑓−𝑘𝑠,𝑅)

2𝑘𝑓+𝑘𝑠,𝑅+∅(𝑘𝑓−𝑘𝑠,𝑅)
] + 5 × 104∅𝜌𝑓𝑐𝑝𝑓√

𝜅𝑏𝑇

𝜌𝑠𝑑𝑠
𝐹(𝑇, ∅, 𝑑𝑠),     (7.9) 

𝑘𝑠,𝑅 =
𝑘𝑠𝑑𝑠

𝑅𝑓𝑘𝑠+𝑑𝑠
 ,                    (7.10) 

𝐹(𝑇, ∅, 𝑑𝑠) = (𝐴1 + 𝐴2 ln(𝑑𝑠) + 𝐴3 ln(∅) + 𝐴4 ln(∅) ln(𝑑𝑠) + 𝐴5 ln(𝑑𝑠
2)) ln(𝑇) +

                         (𝐴6 + 𝐴7 ln(𝑑𝑠) + 𝐴8 ln(∅) + 𝐴9 ln(∅) ln(𝑑𝑠) + 𝐴10 ln(𝑑𝑠
2)),             (7.11) 

with 

𝑅𝑓 = 4 ∗ 10−8𝐾𝑚2/𝑊 is thermal interfacial resistance,         

𝐴1 = 52.813488759,       𝐴2 = 6.115637295,      𝐴3 = 0.6955745084,     𝐴4 = .0417455552786,  

𝐴5 = 0.176919300241, 𝐴6 = −298.19819084, 𝐴7 = −34.532716906, 𝐴8 = −3.9225289283,  

𝐴9 = −0.2354329626,  𝐴10 = −0.999063481.                (7.12) 

(Here it must be noted that these values are not general and vary with nanofluids.) 

Considering effects of micro mixing in suspensions on viscosity, 

𝜇𝑛𝑓 = 𝜇𝑠𝑡𝑎𝑡𝑖𝑐 + 𝜇𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 =
𝜇𝑓

(1−∅)2.5 +
𝑘𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛∗𝜇𝑓

𝑘𝑓∗𝑃𝑟𝑓
.                              (7.13) 

Considering temperature difference within the flow to be sufficiently small, using Taylor’s 

series and neglecting higher terms, 𝑞𝑟 [61] becomes 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
= −

4𝜎∗

3𝑘∗

𝜕(4𝑇0
3𝑇−3𝑇0

4)

𝜕𝑦
.                (7.14) 

The thermo-physical properties of water and nanoparticles are as in Table 1.1. 
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 Boundary conditions are 

𝑢 =  𝑎𝑥;  𝑣 =  0;  𝑤 =  0;  𝑇 =  𝑇𝑤 𝑎𝑡 𝑦 =  0,               (7.15) 

𝑢 =  0;  𝑣 =  0;  𝑤 =  0;  𝑇 =  𝑇𝐿 𝑎𝑡 𝑦 =  𝐿.                   (7.16) 

Introducing non dimensional variables 

𝜂 =
𝑦

𝐿
, 𝑢 = 𝑎𝑥𝑓′(𝜂), 𝑣 = −𝑎ℎ𝑓(𝜂), 𝑤 = 𝑎𝑥𝑔(𝜂), 𝜃(𝜂) =

T−𝑇𝐿

𝑇𝑤−𝑇𝐿
.            (7.17) 

Therefore, the governing momentum and energy equations for this problem are given in 

dimensionless form by: 

𝑎1𝑓𝑖𝑣 − 𝑅𝑒(𝑓′𝑓′′ − 𝑓𝑓′′′) − 2𝐾𝑟𝑔′ − (𝑎3𝑀2 +
𝑎1

𝑘
) 𝑓′′ = 0,            (7.18) 

𝑎1𝑔′′ − 𝑅𝑒(𝑓′𝑔 − 𝑓𝑔′) + 2𝐾𝑟𝑓′ − (𝑎3𝑀2 +
𝑎1

𝑘
) 𝑔 = 0,             (7.19) 

𝜃′′ + 𝑃𝑟(𝑅𝑒𝑎2𝑓𝜃′ + 𝐸𝑐𝑎4(4𝑓′2 + 𝑔2)) = 0,             (7.20) 

where 

𝑃𝑟 =
𝜇𝑓 (𝑐𝑝)

𝑓

𝑘𝑓
, 𝑀2 =  

𝜎𝑓𝐵0
2𝐿2

𝜌𝑓𝑣𝑓
,

1

𝜅
=

𝑣𝜑2

𝑘1𝑣𝑓
, 𝐾𝑟 =

Ω𝐿2

𝑣𝑓
, 𝑅𝑒 =

𝑎𝐿2

𝑣𝑓
, 𝐸𝑐 =

(𝑎𝐿)2

(𝑐𝑝)
𝑓

(𝜃0−𝜃𝐿)
 ,          (7.21) 

𝑏0 = 1 − ∅,                   (7.22) 

𝑏1 = (𝑏0 + ∅
𝜌𝑠

𝜌𝑓
),                  (7.23) 

𝑏2 =
1

𝑏0
2.5 ,                  (7.24) 

𝑏3 = (𝑏0 + ∅
(𝜌𝑐𝑝)𝑠

(𝜌𝑐𝑝)𝑓
),                  (7.25) 

𝑏4 =
𝑘𝑛𝑓

𝑘𝑓
,                   (7.26) 



  Chapter 7 

144 
 

𝑏5 =
𝜎𝑛𝑓

𝜎𝑓
,                   (7.27) 

𝑎1 =
1

𝑏0
2.5𝑏1

,                   (7.28) 

𝑎2 =
𝑏3

𝑏4+𝑁𝑟
,                  (7.29) 

𝑎3 =
𝑏5

𝑏1
,                   (7.30) 

𝑎4 =
𝑏2

𝑏4
,                   (7.31) 

𝑁𝑟 =
16𝜎∗𝑇0

3

3𝑘∗𝑘𝑓
 ;                  (7.32) 

subject to 

𝑓 = 0, 𝑓′ = 1, 𝑔 = 0, 𝜃 = 1 𝑎𝑡 𝜂 = 0,               (7.33) 

𝑓 = 0, 𝑓′ = 0, 𝑔 = 0, 𝜃 = 0 𝑎𝑡 𝜂 = 1.               (7.34) 

7.4 Solution by Homotopy analysis Method 

Equations (7.18) – (7.20) are coupled non-linear ordinary differential equations and exact 

solutions are not known. To solve these equations together with the boundary conditions (7.33) 

– (7.34), HAM [40] is applied. 

Initial guess is given by: 

𝑓0(𝜂) =
−2

𝑒2−4𝑒+3
+

𝑒−1

𝑒−3
𝜂 +

2−𝑒

𝑒2−4𝑒+3
𝑒𝜂 +

𝑒

𝑒2−4𝑒+3
𝑒−𝜂; 𝑔0(𝜂) = 0; 𝜃0(𝜂) = 1 − 𝜂;          (7.35) 

with auxiliary linear operators: 

𝐿𝑓 =
𝜕4𝑓

𝜕𝜂4 −
𝜕2𝑓

𝜕𝜂2  , 𝐿𝑔 =
𝜕2𝑔

𝜕𝜂2 −  
𝜕𝑔

𝜕𝜂
  ,   𝐿𝜃 =  

𝜕2𝜃

𝜕𝜂2 ,                                                         (7.36) 

satisfying 

𝐿𝑓(𝐶1 + 𝐶2 𝜂 + 𝐶3𝑒𝜂 + 𝐶4𝑒−𝜂) = 0,   𝐿𝑔(𝐶5 + 𝐶6𝑒𝜂) = 0,    𝐿𝜃( 𝐶7 + 𝐶8𝜂) = 0,                          (7.37) 
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where 𝑐1,   𝑐2, … , 𝑐8  are the arbitrary constants. 

The zeroth order deformation problems are constructed as follows: 

(1 − 𝑝)𝐿𝑓[𝑓(𝜂;  𝑝) − 𝑓0(𝜂)] = 𝑝ℏ𝑓𝑁𝑓[𝑓(𝜂;  𝑝), 𝑔(𝜂;  𝑝), 𝜃(𝜂;  𝑝)],                                                   (7.38) 

(1 − 𝑝)𝐿𝑔[𝑔(𝜂;  𝑝) − 𝑔0(𝜂)] = 𝑝ℏ𝑔𝑁𝑔[𝑓(𝜂;  𝑝), 𝑔(𝜂;  𝑝), 𝜃(𝜂;  𝑝)],                                                  (7.39)                                                           

(1 − 𝑝)𝐿𝜃[𝜃(𝜂;  𝑝) − 𝜃0(𝜂)] = 𝑝ℏ𝜃𝑁𝜃[𝑓(𝜂;  𝑝), 𝑔(𝜂;  𝑝), 𝜃(𝜂;  𝑝)],                                                 (7.40) 

subject to the boundary conditions: 

𝑓(0;  𝑝) = 0,      𝑓′(0;  𝑝) = 1;                                                                                                     (7.41) 

𝑓(1;  𝑝) = 0,      𝑓′(1;  𝑝) = 0;                                    (7.42) 

𝑔(0;  𝑝) = 0,      𝑔(1;  𝑝) = 0;                                  (7.43) 

𝜃(0;  𝑝) = 1,      𝜃(1;  𝑝) = 0.                                                               (7.44)                                 

The nonlinear operators are defined as  

𝑁𝑓[𝑓(𝜂;  𝑝), 𝑔(𝜂;  𝑝), 𝜃(𝜂;  𝑝)] =  𝑎1
𝜕4𝑓̂

𝜕𝜂4 − 𝑅𝑒 ( 
𝜕𝑓̂

𝜕𝜂

𝜕2𝑓̂

𝜕𝜂2 − 𝑓
𝜕3𝑓̂

𝜕𝜂3) − 2𝐾𝑟 
𝜕𝑔̂

𝜕𝜂
− (𝑎3𝑀2 +

𝑎1

𝑘
)

𝜕2𝑓̂

𝜕𝜂2,     

        (7.45) 

𝑁𝑔[𝑓(𝜂;  𝑝), 𝑔(𝜂;  𝑝), 𝜃(𝜂;  𝑝)] = 𝑎1
𝜕2𝑔̂

𝜕𝜂2 − 𝑅𝑒 (𝑔 
𝜕𝑓̂

𝜕𝜂
− 𝑓 

𝜕𝑔̂

𝜕𝜂
) + 2𝐾𝑟 

𝜕𝑓̂

𝜕𝜂
− (𝑎3𝑀2 +

𝑎1

𝑘
) 𝑔,     (7.46) 

𝑁𝜃[𝑓(𝜂;  𝑝), 𝑔(𝜂;  𝑝), 𝜃(𝜂;  𝑝)] =    
𝜕2𝜃̂

𝜕𝜂2 + 𝑃𝑟 (𝑅𝑒𝑎2𝑓
𝜕𝜃̂

𝜕𝜂
+ 𝐸𝑐𝑎4 (4 (

𝜕𝑓̂

𝜕𝜂
)

2

+ 𝑔2)),                    (7.47) 

where 𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝) and 𝜃̂(𝜂;  𝑝) are unknown functions with respect to 𝜂  and 𝑝.  ℏ𝑓, ℏ𝑔 

and  ℏ𝜃 are the non-zero auxiliary parameters and 𝑁𝑓, 𝑁𝑔 and 𝑁𝜃  are the nonlinear operators.  

Also,  𝑝 ∈ (0, 1) is an embedding parameter. For 𝑝 = 0 and 𝑝 = 1,  

𝑓(𝜂; 0) = 𝑓0(𝜂), 𝑓(𝜂; 1) = 𝑓(𝜂),                                                                                                              (7.48)                    
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𝑔(𝜂; 0) = 𝑔0(𝜂), 𝑔(𝜂; 1) = 𝑔(𝜂),                                (7.49) 

𝜃(𝜂; 0) =  𝜃0(𝜂), 𝜃(𝜂; 1) =  𝜃(𝜂).                                                       (7.50)                                                                             

In other words, when variation of 𝑝 is taken from 0 to 1 then 𝑓(𝜂;  𝑝), 𝑔̂(𝜂;  𝑝) and 𝜃(𝜂;  𝑝) 

vary from𝑓0(𝜂),  𝑔0(𝜂) and 𝜃0(𝜂) to 𝑓(𝜂), 𝑔(𝜂) and 𝜃(𝜂) respectively. Taylor’s series 

expansion of these functions yield the following: 

𝑓(𝜂;  𝑝) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)𝑝𝑚,∞
𝑚=1                    (7.51) 

𝑔(𝜂;  𝑝) = 𝑔0(𝜂) + ∑ 𝑔𝑚(𝜂)𝑝𝑚,∞
𝑚=1                   (7.52) 

𝜃(𝜂;  𝑝) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑝𝑚,∞
𝑚=1                   (7.53) 

where 

𝑓𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝑓(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

 ,                                 (7.54)                                              

𝑔𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝑔(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

 ,                             (7.55)                                                                       

𝜃𝑚(𝜂) =
1

𝑚!
[

𝜕𝑚𝜃(𝜂; 𝑝)

𝜕𝑝𝑚 ]
𝑝=0

.                           (7.56)                                                                                                          

It should be noted that the convergence in the above series strongly depends upon ℏ𝑓 , ℏ𝑔 

and ℏ𝜃. Assuming that these nonzero auxiliary parameters are chosen so that Equations (7.51) 

– (7.53) converges at 𝑝 = 1. Hence, one can obtain the following: 

𝑓(𝜂) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂),∞
𝑚=1                    (7.57) 

𝑔(𝜂) = 𝑔0(𝜂) + ∑ 𝑔𝑚(𝜂),∞
𝑚=1                    (7.58) 

𝜃(𝜂) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂).∞
𝑚=1                    (7.59) 

Differentiating the zeroth order deformation (7.38) – (7.40) and (7.41) – (7.44) m times with 

respect to 𝑝 and substituting 𝑝 = 0, and finally dividing by 𝑚!, the mth order deformation  
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 (𝑚 ≥ 1) is 

𝐿𝑓[𝑓𝑚(𝜂) − χ𝑚𝑓𝑚−1(𝜂)] = ℏ𝑓𝑅𝑓,𝑚(𝜂),                                                                (7.60)                                                            

𝐿𝑔[𝑔𝑚(𝜂) − χ𝑚𝑔𝑚−1(𝜂)] = ℏ𝑔𝑅𝑔,𝑚(𝜂),                                                 (7.61)                                                                          

𝐿𝜃[𝜃𝑚(𝜂) − χ𝑚𝜃𝑚−1(𝜂)] = ℏ𝜃𝑅𝜃,𝑚(𝜂),                                 (7.62)                                                                          

subject to the boundary conditions 

𝑓𝑚(0) = 𝑓𝑚
′ (0) = 0,                                                      (7.63)      

𝑓𝑚(1) = 𝑓𝑚
′ (1) = 0,                                               (7.64)              

𝑔𝑚(0) = 𝑔𝑚(1) = 0,                    (7.65) 

𝜃𝑚(0) = 𝜃𝑚(1) = 0,                   (7.66) 

with 

𝑅𝑓,𝑚(𝜂) = 𝑎1𝑓𝑚−1
𝑖𝑣 − 𝑅𝑒(∑ 𝑓𝑗

′𝑓𝑚−1−𝑗
′′𝑚−1

𝑗=0 − ∑ 𝑓𝑗𝑓𝑚−1−𝑗
′′′𝑚−1

𝑗=0 ) − 2𝐾𝑟𝑔𝑚−1
′ − (𝑎3𝑀2 +

𝑎1

𝑘
) 𝑓𝑚−1

′′ ,                     

        (7.67) 

𝑅𝑔,𝑚(𝜂) = 𝑎1𝑔𝑚−1
′′ − 𝑅𝑒(∑ 𝑓𝑗

′𝑚−1
𝑗=0 𝑔𝑚−1−𝑗 − ∑ 𝑓𝑗𝑔𝑚−1−𝑗

′𝑚−1
𝑗=0 ) + 2𝐾𝑟𝑓𝑚−1

′ − (𝑎3𝑀2 +
𝑎1

𝑘
) 𝑔𝑚−1,  

        (7.68) 

𝑅𝜃,𝑚(𝜂) = 𝜃
𝑚−1

′′ + 𝑃𝑟 (𝑅𝑒𝑎2 ∑ 𝑓𝑗𝜃𝑚−1−𝑗
′𝑚−1

𝑗=0 + 𝐸𝑐𝑎4(4 ∑ 𝑓𝑗
′𝑓𝑚−1−𝑗

′𝑚−1
𝑗=0 + ∑ 𝑔𝑗

𝑚−1
𝑗=0 𝑔𝑚−1−𝑗)),    

        (7.69) 

With 

 𝜒𝑚 = {
0, 𝑚 ≤ 1
1, 𝑚 > 1

 .                             (7.70) 

Solving the corresponding mth order deformation equations,  

𝑓𝑚(𝜂) = 𝑓𝑚
∗ (𝜂) + 𝐶1 + 𝐶2 𝜂 + 𝐶3𝑒𝜂 + 𝐶4𝑒−𝜂 ,               (7.71) 
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𝑔𝑚(𝜂) = 𝑔𝑚
∗ (𝜂) + 𝐶5 + 𝐶6𝑒𝜂 ,                 (7.72) 

𝜃𝑚(𝜂) = 𝜃𝑚
∗ (𝜂) + 𝐶7 + 𝐶8𝜂.                   (7.73) 

Here 𝑓𝑚
∗  , 𝑔𝑚

∗  𝑎𝑛𝑑 𝜃𝑚
∗   are given by are particular solution of the corresponding mth order 

equations and the constants 𝐶𝑖( 𝑖 = 1, 2, … , 8) are to be determined by the boundary conditions. 

 

7.4.1 Convergence of solutions 

Convergence of the HAM solutions and their rate of approximations strongly depend on the 

values of the auxiliary parameters ℏ𝑓 , ℏ𝑔 and ℏ𝜃. For this purpose the associated h-curves are 

plotted in Figure 7.2. It clearly suggests admissible range for the auxiliary parameters.  

 

Figure 7.2: H-Curve of 𝑓”(0), 𝑔′(0), 𝜃′(0) for different values of ℏ𝑓 , ℏ𝑔, ℏ𝜃 at 𝑀 = 1,  

𝐾𝑟 = 1, 𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝜙 = 0.04, 𝜅 = 0.2, 𝑁𝑟 = 0.1 𝑎𝑛𝑑 𝑅𝑒 =  0.1.  

 

7.5 Results and Discussion  

In this section, to acquire a rich understanding on the physics of the problem, the solutions are 

obtained using appropriate codes in Mathematica.  Obtained results are explained with the help 

of graphs. Parametric study is performed for Reynolds number 𝑅𝑒, Radiation parameter 𝑁𝑟, 
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Magnetic parameter 𝑀, nanoparticle volume fraction ∅, Permeability parameter 𝜅 and Rotation 

parameter 𝐾𝑟  in Figures 7.3 – 7.18. 

 

Figure 7.3: Temperature Profile θ for different values of  𝜂 and Re  at 𝑀 = 1, 𝐾𝑟 = 1, 

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝜙 = 0.04, 𝜅 = 0.2 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  

 

 

Figure 7.4: Temperature Profile θ for different values of  𝜂 and Nr  at 𝑀 = 1, 𝐾𝑟 = 1, 

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝜙 = 0.04, 𝜅 = 0.2 𝑎𝑛𝑑 𝑅𝑒 = 0.1.  
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Figure 7.5:  Velocity profile 𝑓‘ for different values of 𝜂  and Re  at 𝑀 = 1, 𝐾𝑟 = 1, 

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝜙 = 0.04, 𝜅 = 0.2 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  

 

 

Figure 7.6:  Velocity profile 𝑔 for different values of 𝜂  and Re  at 𝑀 = 1, 𝐾𝑟 = 1, 

𝑃𝑟 = 7.2,  𝐸𝑐 =  0.01, 𝜙 = 0.04, 𝜅 = 0.2 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  
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Figure 7.7:  Velocity profile 𝑔 for different values of 𝜂  and M  at 𝑅𝑒 = 0.1, 𝐾𝑟 = 1, 

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝜙 = 0.04, 𝜅 = 0.2 𝑎𝑛𝑑 𝑁𝑟 = 0.1. 

 

  

 

Figure 7.8:  Velocity profile 𝑔  for different values of 𝜂  and 𝜙  at  𝑅𝑒 = 0.1, 𝐾𝑟 = 1, 

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝜅 = 0.2 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  
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Figure 7.9:  Velocity profile 𝑓 for different values of 𝜂  and 𝜅  at  𝑅𝑒 = 0.1, 𝐾𝑟 = 1, 

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝜙 = 0.04 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  

 

 

 

Figure 7.10:  Velocity profile 𝑓‘ for different values of 𝜂  and 𝜅  at  𝑅𝑒 = 0.1, 𝐾𝑟 = 1, 

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝜙 = 0.04 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  
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Figure 7.11:  Velocity profile 𝑔  for different values of 𝜂  and 𝜅  at  𝑅𝑒 = 0.1, 𝐾𝑟 = 1, 

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝜙 = 0.04 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  

 

 

 

Figure 7.12:  Velocity profile 𝑓 for different values of 𝜂  and 𝐾𝑟  at  𝑅𝑒 = 0.1, 𝜅 = 0.2,  

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝜙 = 0.04 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  
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Figure 7.13:  Velocity profile 𝑓‘ for different values of 𝜂  and 𝐾𝑟  at  𝑅𝑒 = 0.1,   𝜅 = 0.2,  

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝜙 = 0.04 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  

  

 

Figure 7.14:  Velocity profile 𝑔 for different values of 𝜂  and 𝐾𝑟  at  𝑅𝑒 = 0.1,   𝜅 = 0.2,  

𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝜙 = 0.04 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  
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Figure 7.15: Effect of magnetic parameter M and 𝑅𝑒 on Skin friction coefficient at    

𝐾𝑟 =  1, 𝜅 = 0.2, 𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝜙 = 0.04 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  

 

 

Figure 7.16: Effect of magnetic parameter M and 𝐾𝑟 on Skin friction coefficient at 

𝜙 = 0.04,    𝜅 = 0.2, 𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝑅𝑒 = 0.1 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  
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Figure 7.17:  Effect of magnetic parameter M and 𝑅𝑒 on Nusselt number at   𝜙 = 0.04,  

𝜅 = 0.2,   𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝐾𝑟 = 1 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  

 

 

Figure 7.18:  Effect of magnetic parameter M and 𝐾𝑟 on Nusselt number at   𝑅𝑒 = 0.1,   

𝜅 = 0.2,   𝑃𝑟 = 7.2, 𝐸𝑐 =  0.01, 𝑀 = 1, 𝜙 = 0.04 𝑎𝑛𝑑 𝑁𝑟 = 0.1.  
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Figure 7.3 demonstrates the effects of Reynolds number on temperature profile. It is observed 

that temperature boundary layer thicknesses diminishes with an intensification of Reynolds 

number. Figure 7.4 illustrates that temperature increases with radiation. Figures 7.5 – 7.14 

show effects of different parameters on velocity profile. Figure 7.5 and 7.6 depict that velocity 

decreases with rise in Reynolds number 𝑅𝑒. It is justified as Reynolds number signifies the 

inertia effect over the viscous effect. It is evident from Figure 7.7 that velocity component in 𝑧 

direction increases with magnetic field.  Figure 7.8 illustrates role of nanoparticle volume 

fraction on fluid flow. Figures 7.9 – 7.11 show effects of permeability parameter  𝜅 on velocity 

profile. It is observed that velocity increases with increase in 𝜅. Physically it is justified as the 

resistance of the medium decreases which increase in values of 𝜅. Decrease in 𝑓 and 𝑓′ whereas 

increase in 𝑔  with increasing values of rotation parameter 𝐾𝑟 are observed through Figures 

7.12 – 7.14. Effect of Reynolds number on skin friction can be found in Figure 7.15. It is clear 

that Skin friction increases with increase in 𝑅𝑒. Figure 7.16 shows that skin friction can also 

be decayed by decreasing rotation parameter 𝐾𝑟. Effects of pertinent parameters like Reynolds 

number 𝑅𝑒 and  rotation parameter 𝐾𝑟 on Nusselt number are shown in Figures 7.17 and 7.18 

respectively. It is observed that the Nusselt number has a direct stimulus with Reynolds number 

𝑅𝑒 but, it has a conflicting association with the rotation parameter 𝐾𝑟.  

 

7.6 Conclusion 

The most important concluding remarks can be summarized as follows: 

 Nanofluid velocity declines with escalation in Reynolds number 𝑅𝑒 and Nanoparticle 

volume fraction parameter ∅.   

 Nanofluid velocity increases with permeability parameter  𝜅. 

 Nanofluid temperature can be increased by increasing of radiation parameter 𝑁𝑟. 

 Nanofluid temperature tends to decrease with rising values of Reynolds number 𝑅𝑒. 
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 Skin friction can be reduced by decreasing Reynolds number 𝑅𝑒 or the rotation 

parameter 𝐾𝑟.  

 Nusselt number decreases with increase in the rotation parameter 𝐾𝑟. 


