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MHD is the study of the motion of the electrically conducting fluid in the presence of magnetic 

field. Interaction between the electrically conducting fluid and a magnetic field is used as a control 

mechanism in material manufacturing industry, as the convection currents are suppressed by 

Lorentz force which is produced by the magnetic field. The study of magnetohydrodynamic 

(MHD) flow has essential applications in physics, chemistry and engineering. Industrial 

equipment, such as magnetohydrodynamic (MHD) generators, pumps and bearings are affected 

by the interaction between the electrically conducting fluid and a magnetic field.  

Research institutes like THE HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF 

(member of the Helmholtz Association of German Research Centres), MHD RESEARCH 

INSTITUTE based at the University of Latvia, THE MAX PLANCK INSTITUTE, Göttingen 

are dedicated to research related to MHD. 

First theory of laminar flow of an electrically conductive liquid in a homogenous magnetic field 

was introduced in 1937 by Hartman [1]. Huang et al. [2] discussed MHD waves and instabilities 

in the heat-conducting solar wind plasma. Wang et al. [3] studied energy of Alfven waves 

generated during magnetic reconnection. The set of equations which describe MHD are 

combination of the Navier-Stokes equations of fluid dynamics and Maxwell's 

equations of electromagnetism.  

The term ‘‘nanofluid” (the term was introduced by Choi and Eastman [4]) refers to a liquid 

containing a suspension of metallic or non-metallic nanometer-sized solid particles or fibers. The 

study of nanofluid flow is highly significant due to application of such fluids in heat transfer 

devices. Due to the higher thermal conductivity and convective heat transfer rates, nanofluids are 

used in a wide variety of engineering applications. The suspension of nanoparticles enhances the 

thermal conductivity and the convective heat transfer coefficients of several fluids such as oil, 

water and ethylene glycol mixture.  

In nanoparticles, due to the increase of surface area to the volume, some physical properties such 

as thermal, electrical, mechanical, optical and magnetic property of the materials can be changed 

significantly. The most important point is that nano structured materials exhibit different and 

unique properties as compared to the materials with the same compositions. Experimental studies 

conducted by Eastman et al. [5] have displayed that with 1%–5% volume of metallic oxide 

particles, the effective thermal conductivity of the resulting mixture can be increased by 20% 

compared to that of the base fluid. Numerical simulation of nanofluid flow in presence of magnetic 

field was carried out by Sheikholeslami et al. [6].  



 
 

 

In this thesis, effect of magnetic field on one, two and three dimensional unsteady free convective 

nanofluid flow with Heat and Mass transfer is discussed. This thesis consists of eight chapters.  

Chapter 1 is taken in order to build up a stronger structure in logical manner to provide 

knowledge of fundamentals of MHD flow, basic concepts of nanofluid, heat and mass 

transfer effects, radiation effects, heat generation effects and Soret effects. A brief history of 

the development of the subject is also given. Relevant literature has been surveyed. Further, 

Laplace transform technique for solving system of linear partial differential equations and 

Homotopy analysis method for solving system of non-linear equations are discussed. 

The gravity-driven convection heat transfer is a vital phenomenon in the cooling mechanism of 

many engineering systems like in electronics industry, solar collectors and cooling systems for 

nuclear reactors, because of its minimum cost, low noise, smaller size and reliability. There has 

been increasing interest in studying the problem of MHD with convection boundary layer flow 

and heat transfer characteristics over a vertical plate [7]. Aim of Chapter 2 is the study of gravity-

driven convective boundary layer flow of nanofluids past an oscillating vertical plate in the 

presence of a uniform transverse magnetic field and thermal radiation. The fluid flow is 

assumed to be induced due to the motion of the plate. Water based nanofluids containing 

nanoparticles of copper (Cu) and Silver (Ag) have been considered in the present work.  

In the mathematical formulation, flow is confined to y > 0, where y is the coordinate measured in 

the normal direction to the plate. The fluid is assumed to be electrically conducting with a uniform 

magnetic field of strength B0, applied in a direction perpendicular to the plate. At time t = 0, the 

plate is at rest with the constant ambient temperature T0. At time t > 0, the plate begins to oscillate 

in its own plane according to 𝑢0 sin ωt, where 𝑢0 is amplitude of the plate oscillations and the 

temperature of the plate is raised or lowered to Tw. As we have optically thick nanofluid, we can 

use Rosseland approximation [8] for radiative flux.  Under the above assumptions, the momentum 

and energy equations in the presence of thermal radiation and magnetic field past an oscillating 

vertical plate can be expressed as 

 

𝜌𝑛𝑓
𝜕𝑢

𝜕𝑡
= 𝜇𝑛𝑓

𝜕2𝑢

𝜕𝑦2 + 𝑔(𝜌𝛽)𝑛𝑓(𝑇 − 𝑇0) − 𝜎𝑛𝑓𝐵2𝑢                  (1) 

(𝜌𝑐𝑝)
𝑛𝑓

𝜕𝑇

𝜕𝑡
= 𝑘𝑛𝑓

𝜕2𝑇

𝜕𝑦2 −
𝜕𝑞𝑟

𝜕𝑦
                                                               (2)  

Where  



 
 

𝜌𝑛𝑓 = (1 − ∅)𝜌𝑓 + ∅𝜌𝑠                           (3) 

𝜇𝑛𝑓 =
𝜇𝑓

(1−∅)2.5                       (4) 

𝜎𝑛𝑓 = 𝜎𝑓[1 +
3(𝜎−1)∅

(𝜎+2)−(𝜎−1)∅
], 𝜎 =

𝜎𝑠

𝜎𝑓
                    (5) 

(𝜌𝛽)𝑛𝑓 = (1 − ∅)(𝜌𝛽)𝑓 + ∅(𝜌𝛽)𝑠                    (6) 

𝑘𝑛𝑓 = 𝑘𝑓[1 − 3
∅(𝑘𝑓−𝑘𝑠)

2𝑘𝑓+𝑘𝑠+∅(𝑘𝑓−𝑘𝑠)
]                               (7) 

(𝜌𝑐𝑝)
𝑛𝑓

= (1 − ∅)(𝜌𝑐𝑝)𝑓 + ∅(𝜌𝑐𝑝)𝑠                              (8) 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
                                  (9) 

The momentum and energy conservation equations are made dimensionless and analytic solution 

is obtained using the Laplace transform. The results for velocity and temperature are obtained and 

plotted graphically. It is found that the velocity of the nanofluid increases with radiation 

parameter Nr, Grashof number Gr and time while decreases with increase in magnetic field and 

Prandtl number Pr. Temperature of nano-fluids increases with time while decreases with increase 

in Nr and Pr. This result of Chapter 2 is published in Journal of the Nigerian Mathematical 

Society (Elsevier) [9].  

The convective heat transfer phenomena in nature are often attended by mass transfer. Convective 

mass transfer process creates the support of various procedures in the chemical engineering. This 

appears like sufficient purpose to contain mass transfer in heat convection as well. Heat and Mass 

transfer problems, involving porous media have many engineering applications such as ground 

water pollution, geothermal energy recovery, flow through filtering media, thermal energy storage 

and crude oil extraction. Vadasz [10] explained heat and mass transfer in porous media. 

Investigation of MHD nanofluid flow in porous channel has been carried out by Sheikholeslami 

[11]. Section 1 of chapter 3 deals with the mathematical modelling of flow, heat and mass 

transfer in the unsteady natural convection MHD flow of electrically conducting nanofluid, 

past over an oscillating vertical plate. Plate with different boundary conditions through porous 

medium is studied. In this case, governing equations can be expressed as  

𝜌𝑛𝑓
𝜕𝑢

𝜕𝑡
= 𝜇𝑛𝑓

𝜕2𝑢

𝜕𝑦2 − 𝜎𝑛𝑓𝐵2𝑢 −
𝜇𝑛𝑓𝜑

𝑘1
𝑢 + 𝑔(𝜌𝛽)𝑛𝑓(𝑇 − 𝑇0) + 𝑔(𝜌𝛽𝐶)𝑛𝑓(𝐶 − 𝐶0)    (10) 

(𝜌𝑐𝑝)
𝑛𝑓

𝜕𝑇

𝜕𝑡
= 𝑘𝑛𝑓

𝜕2𝑇

𝜕𝑦2                                                                           (11)  

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑦2
                       (12) 



 
 

𝑢 = 0,     𝑇 = 𝑇0,   𝐶 = 𝐶0;  𝑎𝑠  𝑦 ≥ 0 𝑎𝑛𝑑  𝑡 < 0         (13) 

𝑢 = sin(𝑤𝑡) 𝑜𝑟 cos(𝑤𝑡) ,     

𝑇 = {
𝑇0 + (𝑇𝑤 − 𝑇0) 𝑡

𝑡0
⁄ 𝑖𝑓  0 < 𝑡 < 𝑡0

𝑇𝑤                           𝑖𝑓     𝑡 ≥ 𝑡0

 ,      

𝐶 = {
𝐶0 + (𝐶𝑤 − 𝐶0) 𝑡

𝑡0
⁄ 𝑖𝑓  0 < 𝑡 < 𝑡0

𝐶𝑤                           𝑖𝑓     𝑡 ≥ 𝑡0

 ,   𝑎𝑠  𝑡 ≥ 0 𝑎𝑛𝑑 𝑦 = 0       (14) 

 𝑢 → 0, 𝑇 → 𝑇0,   𝐶 → 𝐶0;  𝑎𝑠  𝑦 → ∞ 𝑎𝑛𝑑 𝑡 ≥ 0      (15) 

The governing non-dimensional system of linear partial differential equations (10) to (12) with 

initial and boundary conditions (13) to (15) are solved analytically using Laplace transform. This 

result is published in Applied Thermal Engineering (Elsevier) [12].In Section 2 of Chapter 3, 

work of Kataria and Mittal [12] is extended considering radiation effects on unsteady MHD flow 

of non-Newtonian electrically conducting Casson nanofluids near an infinite vertical plate with 

ramped wall temperature in a porous medium, published in Mathematics Today [13].  

The effect of heat generation is very important in industrial processes. A thorough observation of 

the literature shows that, study of the effects of internal heat generation is limited.  Thus, Chapter 

4 analyzes the effects of thermal diffusion and heat generation on the unsteady natural 

convection flow of radiating and electrically conducting nanofluid past over an oscillating 

vertical plate embedded in porous medium. Thus equations (11) and (12) are replaced by 

equations (16) and (17).  

𝜕𝑇

𝜕𝑡
=

𝑘𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

𝜕2𝑇

𝜕𝑦2 +
𝑄(𝑇−𝑇0)

(𝜌𝑐𝑝)
𝑛𝑓

                                              (16)  

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑦2 + 𝐷𝑇
𝜕2𝑇

𝜕𝑦2 − 𝑘′ (𝐶 − 𝐶0)                   (17) 

The governing dimensionless equations (10), (16) and (17) with initial and boundary conditions 

(13) to (15) are solved analytically using Laplace transform technique. This result included in 

Chapter 4, is published in Journal of Molecular Liquids (Elsevier) [14].  Features of the fluid 

flow, heat and mass transfer characteristics are analyzed by plotting graphs and the physical 

aspects are discussed in detail. Skin friction, Nusselt number and Sherwood number are derived 

and represented through tabular form.  

Two dimensional MHD flow problems are of more importance and realistic compared to one 

dimensional problems. Due to this reason, Chapter 5 is dedicated to the study of effects of 

magnetic field on two dimensional nanofluid flow with heat transfer. Fluid under consideration 

https://www.sciencedirect.com/science/journal/01677322


 
 

is Al2O3-Water nanofluid. Squeezing flow is assumed to be between two horizontal parallel plates,  

𝑙(𝑡) = 𝐿(1 − 𝑎𝑡)1/2units apart (Here L is the initial position of the plate, 𝑎 > 0 signifies that plates 

are squeezed until they touch each other at 𝑡 =
1

𝑎
 and plates move in opposite direction for 𝑎 < 0). 

A uniform magnetic flux with density 𝐵(𝑡) = 𝐵0/√1 − 𝑎𝑡 (𝐵0 is the initial value) is applied. 

Under these assumptions, governing equations are: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                  (18) 

𝜌𝑛𝑓 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝜇𝑛𝑓 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) − 𝜎𝑛𝑓𝐵2(𝑡)𝑢                     (19) 

𝜌𝑛𝑓 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) = 𝜇𝑛𝑓 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)             (20) 

(𝜌𝑐𝑝)
𝑛𝑓

(
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘𝑒𝑓𝑓 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) + 𝜇𝑛𝑓 (2 [(

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

] + (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

) 

                                                            −
𝜕𝑞𝑟

𝜕𝑦
+

(𝜌𝑐𝑝)
𝑛𝑓

𝑄(𝑇−𝑇0)

𝜌𝑛𝑓
                   (21) 

Effects of thermal interfacial resistance, nanoparticle volume fraction, Brownian motion, 

nanoparticle size and base fluid on thermal conductivity [15] are considered. Also micro mixing 

in suspensions is taken into account while calculating viscosity. 

𝑘𝑒𝑓𝑓 = 𝑘𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑘𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 = 𝑘𝑓 [1 − 3
∅(𝑘𝑓−𝑘𝑠,𝑅)

2𝑘𝑓+𝑘𝑠,𝑅+∅(𝑘𝑓−𝑘𝑠,𝑅)
] + 5 × 104∅𝜌𝑓𝑐𝑝𝑓√

𝜅𝑏𝑇

𝜌𝑠𝑑𝑠
𝐹(𝑇, ∅, 𝑑𝑠),  (22) 

Subject to 

𝑢 =  0;  𝑣 =  
𝑑𝑙

𝑑𝑡
;  𝑇 =  𝑇𝐿 𝑎𝑡 𝑦 =  𝑙(𝑡)                          (23) 

𝑢 =  0;  𝑣 =  0; 
𝜕𝑇

𝜕𝑦
= 0 𝑎𝑡 𝑦 = 0                         (24) 

The governing dimensionless system obtained from Equations (18) to (22) subject to boundary 

conditions (23) and (24) are solved using Homotopy analysis method (HAM), derived by Liao 

[16]. In this chapter, the solutions are obtained using appropriate codes in Mathematica. From 

graphical presentation, we conclude that Skin friction can be minimized by decreasing nanoparticle 

volume fraction ∅, whereas Nusselt number surges with ∅.  

Above work is further extended in Chapter 6, considering mass transfer.  

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) +

𝜇𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(2 [(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

] + (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

) 



 
 

+
(𝜌𝑐𝑝)

𝑠

(𝜌𝑐𝑝)
𝑓

(
𝐷𝑇

𝑇𝑤
((

𝜕𝑇

𝜕𝑥
)

2

+ (
𝜕𝑇

𝜕𝑦
)

2

) + 𝐷𝐵 (
𝜕𝐶

𝜕𝑥

𝜕𝑇

𝜕𝑥
+

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
)) −

1

(𝜌𝑐𝑝)
𝑛𝑓

𝜕𝑞𝑟

𝜕𝑦
+

(𝜌𝑐𝑝)
𝑛𝑓

𝑄(𝑇−𝑇0)

𝜌𝑛𝑓
       (25) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 +
𝜕2𝐶

𝜕𝑧2) +
𝐷𝑇

𝑇𝑤
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2)         (26) 

The governing equations will be (18) - (20), (22), (25) - (26) subject to boundary conditions (23) 

and (24). Solution is obtained using HAM and discussed in detail. These results are communicated 

for publication. 

Chapter 7 deals with three dimensional nanofluid flow in the presence of magnetic 

field through porous medium. System under consideration is rotating. Effects of thermal 

interfacial resistance, nanoparticle volume fraction, Brownian motion and nanoparticle size on 

thermal conductivity are considered. Also micro mixing in suspensions is taken into account while 

calculating viscosity. In this case, flow is assumed to be between two horizontal parallel plates, L 

units apart, through a porous medium. A coordinate system (𝑥, 𝑦, 𝑧) is chosen such that origin is 

positioned at the lower plate. The lower plate is subject to stretching by two equal forces in 

opposite directions. The plates along with the fluid rotate about y axis, with angular velocity Ω. A 

uniform magnetic flux with density B is applied along y-axis. Under these assumptions, governing 

equations are: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                (27) 

𝜌𝑛𝑓 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 2Ω𝑤) = 𝜇𝑛𝑓 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) − 𝜎𝑛𝑓𝐵2𝑢 −
𝜇𝑛𝑓𝜑

𝑘1
𝑢          (28) 

𝜌𝑛𝑓 (𝑣
𝜕𝑣

𝜕𝑦
) = 𝜇𝑛𝑓 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2)              (29) 

𝜌𝑛𝑓 (𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
− 2Ω𝑤) = 𝜇𝑛𝑓 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 ) − 𝜎𝑛𝑓𝐵2𝑤 −
𝜇𝑛𝑓𝜑

𝑘1
𝑤         (30) 

(𝜌𝑐𝑝)
𝑛𝑓

(𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
) = 𝑘𝑛𝑓 (

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2) + 𝜇𝑛𝑓 (2 [(
𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

+ (
𝜕𝑤

𝜕𝑧
)

2

] +

                                                            (
𝜕𝑣

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2

+ (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

2

) −
𝜕𝑞𝑟

𝜕𝑦
         (31) 

Subject to 

𝑢 =  𝑎𝑥;  𝑣 =  0;  𝑤 =  0;  𝑇 =  𝑇𝑤 𝑎𝑡 𝑦 =  0            (32) 

𝑢 =  0;  𝑣 =  0;  𝑤 =  0;  𝑇 =  𝑇𝐿 𝑎𝑡 𝑦 =  𝐿               (33) 

HAM is applied to solve the linearized system. This result is published in Chinese Journal of 

Physics (Elsevier) [17].  



 
 

We have extended this work in Chapter 8, taking mass transfer into account. Mathematical 

modelling of the problem give rise to system of the equations (27) - (30) along with equations  

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
=

𝑘𝑛𝑓

(𝜌𝑐𝑝)
𝑛𝑓

(
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2) +
(𝜌𝑐𝑝)

𝑠

(𝜌𝑐𝑝)
𝑓

(
𝐷𝑇

𝑇𝑤
((

𝜕𝑇

𝜕𝑥
)

2

+ (
𝜕𝑇

𝜕𝑦
)

2

+ (
𝜕𝑇

𝜕𝑧
)

2

) +

                                       𝐷𝐵 (
𝜕𝐶

𝜕𝑥

𝜕𝑇

𝜕𝑥
+

𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝜕𝐶

𝜕𝑧

𝜕𝑇

𝜕𝑧
)) −

1

(𝜌𝑐𝑝)
𝑛𝑓

𝜕𝑞𝑟

𝜕𝑦
                                    (34) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 +
𝜕2𝐶

𝜕𝑧2) +
𝐷𝑇

𝑇𝑤
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +
𝜕2𝑇

𝜕𝑧2)         (35) 

subject to the conditions (32) - (33). HAM is employed to solve the simplified system and obtained 

solutions are explained through graphs. Results are communicated. 
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