FIGURES CAPTION

Figure 1.1:	Induced Current in a Moving Conductive Fluid in the Presence of a Magnetic	7
	Field	
Figure 1.2:	Relation between Faraday's Law and Lorentz Force.	12
Figure 2.1:	Physical Sketch of the Problem.	32
Figure 2.2:	Velocity profile for y and Nr at $t = 0.5$, $M = 3$, $Gr = 5$, $\phi = 0.03$, $Pr = 6.2$.	39
Figure 2.3:	Velocity profile for y and M at $t = 0.5$, $Gr = 5$, $\phi = 0.03$, $Pr = 6.2$,	39
	Nr = 0.5.	
Figure 2.4:	Velocity profile for y and t at $M = 3$, $Gr = 5$, $\phi = 0.03$, $Pr = 6.2$,	40
	Nr = 0.5.	
Figure 2.5:	Velocity profile for y and Gr at $M = 3, t = 0.5, \phi = 0.03, Pr = 6.2,$	40
	Nr = 0.5.	
Figure 2.6:	Velocity profile for y and Pr at $M = 3$, $t = 0.5$, $\emptyset = 0.03$, $Gr = 5$,	41
	Nr = 0.5.	
Figure 2.7:	Temperature profile for y and Nr at $M = 3, t = 0.5, \phi = 0.03, Gr = 5$,	41
	Pr = 6.2.	
Figure 2.8:	Temperature profile for y and Pr at $M = 3, t = 0.5, \phi = 0.03, Gr = 5,$	42
	Nr = 0.5.	
Figure 2.9:	Temperature profile for y and t at $M = 3$, $Nr = 0.5$, $\emptyset = 0.03$, $Gr = 5$,	42
	Pr = 6.2.	
Figure 2.10:	Velocity profile for different Nanofluids and Nr at $M = 3$, $t = 0.5$,	43
	$\phi = 0.03, Gr = 5, Pr = 6.2, \omega = 0.$	
Figure 2.11:	Temperature profile for different Nanofluids at $Nr = 0.5$, $M = 3$,	43
	$t = 0.5, \phi = 0.03, Gr = 5, Pr = 6.2, \omega = 0.$	
Figure 2.12:	Nusselt number for Pr and t at $M = 3$, $\phi = 0.03$, $Gr = 5$, $Nr = 0$, $\omega = 0$.	44
Figure 2.13:	Nusselt number for Nr and t at $M = 3$, $\phi = 0.03$, $Gr = 5$, $Pr = 6.2$,	44
	$\omega = 0.$	
Figure 2.14:	Skin friction for <i>Pr</i> and <i>t</i> at $M = 3$, $\emptyset = 0.03$, $Gr = 5$, $Nr = 0$, $\omega = 0$.	45
Figure 2.15:	Skin friction for Nr and t at $M = 3$, $\phi = 0.03$, $Gr = 5$, $Pr = 6.2$, $\omega = 0$.	45
Figure 3.1.1:	Physical sketch of the Problem.	52
Figure 3.1.2:	Velocity profile u for y and \emptyset at $\omega = \pi$, Pr = 6.2, M = 0.5,	64
	$Sc = 0.66, Gm = 5, Gr = 10, \kappa = 0.4 \text{ and } t = 0.4.$	
Figure 3.1.3:	Velocity profile u for y and κ at $\omega = \pi$, Pr = 6.2, M = 0.5,	64
	$Sc = 0.66, Gm = 5, Gr = 10, \phi = 0.03 and t = 0.4.$	
Figure 3.1.4:	Velocity profile <i>u</i> for <i>y</i> and <i>Sc</i> at $\omega = \pi$, Pr = 6.2, M = 0.5,	65

	$\kappa = 0.4$, Gm = 5, Gr = 10, $\emptyset = 0.03$ and t = 0.4.	
Figure 3.1.5:	Velocity profile u for y and M at $\omega = \pi$, Gr = 10, Pr = 6.2, $\kappa = 0.4$,	65
	$Sc = 0.66, Gm = 5, \phi = 0.03 and t = 0.4.$	
Figure 3.1.6:	Temperature profile θ for y and \emptyset at $\omega = \pi$, Gr = 10, Pr = 6.2, M = 0.5,	66
	$\kappa = 0.4$, Sc = 0.66, Gm = 5 and t = 0.4.	
Figure 3.1.7:	Concentration profile C for y and Sc at $\omega = \pi$, Gr = 10, Pr = 6.2,	66
	$M = 0.5, \kappa = 0.4, Gm = 5, \phi = 0.03$ and $t = 0.4$.	
Figure 3.1.8:	A graph showing the grid independency.	67
Figure 3.2.1:	Physical sketch of the Problem.	72
Figure 3.2.2:	Velocity profile for y and \emptyset at $\gamma = 0.6$, $\kappa = 0.4$, $Sc = 0.5$, $Gm = 4$,	81
	t = 0.6, M = 3, Gr = 8, Nr = 5 and Pr = 6.2.	
Figure 3.2.3:	Velocity profile <i>u</i> for <i>y</i> and γ at $\kappa = 0.4$, $Sc = 0.5$, $Gm = 4$, $t = 0.6$, $M =$	81
	3, $Gr = 8$, $\emptyset = 0.02$, $Nr = 5$ and $Pr = 6.2$.	
Figure 3.2.4:	Velocity profile <i>u</i> for <i>y</i> and M at $\gamma = 0.6$, $\kappa = 0.4$, $Sc = 0.5$,	82
	$Gm = 4$, $t = 1$, $Gr = 8$, $\phi = 0.02$, $Nr = 5$ and $Pr = 6.2$.	
Figure 3.2.5:	Velocity profile <i>u</i> for <i>y</i> and <i>Nr</i> at $\gamma = 0.6$, $\kappa = 0.4$, $Sc = 0.5$,	82
	$Gm = 4$, $t = 0.6$, $M = 3$, $Gr = 8$, $\phi = 0.02$ and $Pr = 6.2$	
Figure 3.2.6:	Temperature profile for y and Nr at $\gamma = 0.6$, $\kappa = 0.4$, $Sc = 0.5$,	83
	$Gm = 4$, $t = 0.6$, $M = 3$, $Gr = 8$, $\phi = 0.02$ and $Pr = 6.2$	
Figure 3.2.7:	Temperature profile θ for y and Pr at $\gamma = 0.6$, $\kappa = 0.4$,	83
	$Sc = 0.5, Gm = 4, t = 0.6, M = 3, Gr = 8, \phi = 0.02 and Nr = 5.$	
Figure 3.2.8:	Concentration profile C for y and Sc at $\gamma = 0.6$, $\kappa = 0.4$,	84
	$Gm = 4$, $t = 0.6$, $M = 3$, $Gr = 8$, $\phi = 0.02$, $Nr = 5$ and $Pr = 6.2$.	
Figure 3.2.9:	Skin Friction for \emptyset and t at $\gamma = 0.6$, $\kappa = 0.4$, $Sc = 0.5$,	84
	Gm = 4, M = 3, Gr = 8, Nr = 5 and Pr = 6.2	
Figure 3.2.10:	Nusselt number for \emptyset and t at $\gamma = 0.6$, $\kappa = 0.4$, $Sc = 0.5$,	85
	$Gm = 4$, $M = 3$, $Gr = 8$, $\phi = 0.02$, $Nr = 5$ and $Pr = 6.2$	
Figure 4.1:	Physical sketch of the Problem	90
Figure 4.2:	profile <i>u</i> for <i>y</i> and \emptyset at $\kappa = 0.4$, Sc = 0.22, Gm = 10,	97
	$Gr = 5, Sr = 15, R_{\gamma} = 10, Nr = 5, H = 10 \text{ and } t = 0.4$	
Figure 4.3:	Temperature profile θ for y and \emptyset at $\kappa = 0.4$, Sc = 0.22, Gm = 10,	97
	$Gr = 5, Sr = 15, R_{\gamma} = 10, Nr = 5, H = 10 \text{ and } t = 0.4$	
Figure 4.4:	Velocity profile u for y and κ at $\emptyset = 0.01$, Sc = 0.22, Gm = 10,	98
	Gr = 5, Sr = 15, R_{γ} = 10, Nr = 5, H = 10 and t = 0.4	
Figure 4.5:	Velocity profile <i>u</i> for <i>y</i> and <i>Sr</i> at $\emptyset = 0.01$, $\kappa = 0.4$, Sc = 0.22,	98

	$Gm = 10, Gr = 5, R_{\gamma} = 10, Nr = 5, H = 10 and t = 0.4$	
Figure 4.6:	Concentration profile C for y and Sr at $\phi = 0.01$, $\kappa = 0.4$, Sc = 0.22,	99
	Gm = 10, Gr = 5, R_{γ} = 10, Nr = 5, H = 10 and t = 0.4	
Figure 4.7:	Velocity profile u for y and H at $\emptyset = 0.01, \kappa = 0.4, Sc = 0.22,$	99
	Gm = 10, Gr = 5, Sr = 15, R_{γ} = 10, Nr = 5 and t = 0.4	
Figure 4.8:	Temperature profile θ for y and H at $\phi = 0.01$, $\kappa = 0.4$, Sc = 0.22,	100
	Gm = 10, Gr = 5, Sr = 15, R_{γ} = 10, Nr = 5 and t = 0.4	
Figure 4.9:	Velocity profile u for y and M at $Pr = 6.2$, $\kappa = 0.4$, $Sc = 0.22$,	100
	$Gm = 10, Gr = 5, Sr = 15, R_{\gamma} = 10, Nr = 5 and t = 0.4$	
Figure 5.1:	Physical sketch of the Problem	106
Figure 5.2:	H-Curve of $f''(0)$ for different values of \hbar_f at $\phi = 0.03$, $M = 0.6$,	112
	$Nr = 0.6, Pr = 7.0, S = 0.9, Ec = 0.02, \delta = 0.02 \text{ and } \lambda = 1.4.$	
Figure 5.3:	H-Curve of $\theta'(0)$ for different values of \hbar_{θ} at $\phi = 0.03$, $M = 0.6$,	113
	$Nr = 0.6, Pr = 7.0, S = 0.9, Ec = 0.02, \delta = 0.02 \text{ and } \lambda = 1.4.$	
Figure 5.4:	Velocity profile <i>f</i> for different values of η and <i>M</i> at <i>S</i> = 0.9, <i>Nr</i> = 0.6,	114
	$Pr = 7.0, \phi = 0.03, Ec = 0.02, \delta = 0.02 \text{ and } \lambda = 1.4.$	
Figure 5.5:	Velocity profile f' for different values of η and M at $S = 0.9$, $Nr = 0.6$,	114
	$Pr = 7.0, \phi = 0.03, Ec = 0.02, \delta = 0.02 \text{ and } \lambda = 1.4.$	
Figure 5.6:	Velocity profile <i>f</i> for different values of η and <i>S</i> at $M = 0.6$, $Nr = 0.6$,	115
	$Pr = 7.0, \phi = 0.03, Ec = 0.02, \delta = 0.02 \text{ and } \lambda = 1.4.$	
Figure 5.7:	Velocity profile f' for different values of η and S at $M = 0.6, Nr = 0.6$,	115
	$Pr = 7.0, \phi = 0.03, Ec = 0.02, \delta = 0.02 \text{ and } \lambda = 1.4.$	
Figure 5.8:	Velocity profile <i>f</i> for different values of η and ϕ at $M = 0.6$,	116
F: 50	$Nr = 0.6, Pr = 7.0, S = 0.9, Ec = 0.02, \delta = 0.02$ and $\lambda = 1.4$.	116
Figure 5.9:	Velocity profile f' for different values of η and ϕ at $M = 0.6$,	116
Figure 5.10:	$Nr = 0.6, Pr = 7.0, S = 0.9, Ec = 0.02, \delta = 0.02 \text{ and } \lambda = 1.4.$ Temperature profile θ for different values of η and M at $S = 0.9$,	117
Figure 3.10.	$Nr = 0.6, Pr = 7.0, \phi = 0.03, Ec = 0.02, \delta = 0.02 and \lambda = 1.4.$	117
Figure 5.11:	Temperature profile θ for different values of η and $S M = 0.6$,	117
i igui e cilli	$Nr = 0.6, Pr = 7.0, \phi = 0.03, Ec = 0.02, \delta = 0.02 and \lambda = 1.4.$	117
Figure 5.12:	Temperature profile θ for different values of η and ϕ at $M = 0.6$,	118
6	$Nr = 0.6, Pr = 7.0, S = 0.9, Ec = 0.02, \delta = 0.02$ and $\lambda = 1.4$.	
Figure 5.13:	Temperature profile θ for different values of η and δ at $S = 0.9$,	118
-	$Nr = 0.6, M = 0.6, \phi = 0.03, Ec = 0.02, Pr = 7.0 and \lambda = 1.4.$	
Figure 5.14:	Temperature profile θ for different values of η and Ec at $S = 0.9$,	119

	$Nr = 0.6, M = 0.6, \phi = 0.03, \delta = 0.02, Pr = 7.0 \text{ and } \lambda = 1.4.$	
Figure 5.15:	Temperature profile θ for different values of η and Pr at $S = 0.9$,	119
	$Nr = 0.6, M = 0.6, \phi = 0.03, Ec = 0.02, \delta = 0.02$ and $\lambda = 1.4$.	
Figure 5.16:	Effect of magnetic parameter M and ϕ on Skin friction coefficient at $Nr =$	120
	1.8, $Pr = 6.2$, $S = 0.9$, $Ec = 1.1$, $\delta = 0.1$ and $\lambda = 1.4$.	
Figure 5.17:	Effect of magnetic parameter M and ϕ on Nusselt Number at $Nr = 1.8$,	120
	$Pr = 6.2, S = 0.9, Ec = 1.1, \delta = 0.1 \text{ and } \lambda = 1.4.$	
Figure 5.18:	Effect of Squeezing parameter S and ϕ on Skin friction coefficient at $Nr =$	121
	1.8, $Pr = 6.2$, $M = 0.6$, $Ec = 1.1$, $\delta = 0.1$ and $\lambda = 1.4$.	
Figure 5.19:	Effect of Squeezing parameter S and ϕ on Nusselt Number at $M = 0.6$,	121
	$Pr = 6.2, Nr = 1.8, Ec = 1.1, \delta = 0.1 \text{ and } \lambda = 1.4.$	
Figure 6.1:	Physical sketch of the problem	124
Figure 6.2:	H-Curve of f'' for h_f at $\phi = 0.02$, $M = 0.5$, $Nr = 1.0$, $Pr = 10.0$,	131
	$S = 0.3, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Nt = 0.1 and Sc = 0.3.$	
Figure 6.3:	H-Curve of θ' for \hbar_{θ} at $\phi = 0.02$, $M = 0.5$, $Nr = 1.0$, $Pr = 10.0$,	131
	$S = 0.3, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Nt = 0.1 and Sc = 0.3.$	
Figure 6.4:	H-Curve of C' for \hbar_C at $\phi = 0.02$, $M = 0.5$, $Nr = 1.0$, $Pr = 10.0$,	132
	$S = 0.3, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Nt = 0.1 and Sc = 0.3.$	
Figure 6.5:	Figure 6.5: Concentration profile <i>C</i> for η and <i>S</i> at $\phi = 0.02$, $M = 0.5$,	133
	$Nr = 1.0, Pr = 6.2, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1,$	
	$Nt = 0.1 \ and \ Sc = 0.3.$	
Figure 6.6:	Concentration profile C for η and ϕ at $S = 0.3$, $M = 0.5$, $Nr = 1.0$,	133
	$Pr = 6.2, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Nt = 0.1$ and	
	Sc = 0.3.	
Figure 6.7:	Concentration profile <i>C</i> for η and <i>M</i> at <i>S</i> = 0.3, ϕ = 0.02, <i>Nr</i> = 1.0,	134
	$Pr = 6.2, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Nt = 0.1$ and	
	Sc = 0.3.	
Figure 6.8:	Concentration profile <i>C</i> for η and <i>Sc</i> at <i>S</i> = 0.3, ϕ = 0.02, <i>Nr</i> = 1.0,	134
	$Pr = 6.2, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Nt = 0.1$ and	
	M=0.5.	
Figure 6.9:	Concentration profile <i>C</i> for η and <i>Nt</i> at <i>S</i> = 0.3, ϕ = 0.02, <i>Nr</i> = 1.0,	135
	$Pr = 6.2, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Sc = 0.3 and M = 0.5.$	
Figure 6.10:	Concentration profile <i>C</i> for η and <i>Nb</i> at <i>S</i> = 0.3, ϕ = 0.02,	135
	$Nr = 1.0, Nt = 0.1, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Pr = 6.2, Sc = 0.3$	
	and $M = 0.5$.	
Figure 6.11:	Concentration profile <i>C</i> for η and Ec at <i>S</i> = 0.3, ϕ = 0.02, <i>Nb</i> = 0.1,	136

	$Nt = 0.1, \lambda = 1.2, Nr = 1.0, \delta = 0.15, Pr = 6.2, Sc = 0.3 and M = 0.5.$	
Figure 6.12:	Effect of magnetic parameter M and S on C_f at $\phi = 0.02$, $Nr = 1.0$,	136
	$Pr = 6.2, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Nt = 0.1$ and	
	Sc = 0.3.	
Figure 6.13:	Effect of magnetic parameter M and S on Nu at $\phi = 0.02$, $Nr = 1.0$,	137
	$Pr = 6.2, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Nt = 0.1$ and	
	Sc = 0.3.	
Figure 6.14:	Effect of nanoparticle volume fraction ϕ and Nr on Nu at $M = 0.5$,	137
	$S = 0.3, Pr = 6.2, Ec = 0.05, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Nt = 0.1$	
	and $Sc = 0.3$.	
Figure 6.15:	Effect of Eckert number Ec and ϕ on Nu at $M = 0.5, Nr = 1.0, Pr = 6.2$,	138
	$S = 0.3, \delta = 0.15, \lambda = 1.2, Nb = 0.1, Nt = 0.1 and Sc = 0.3.$	
Figure 7.1:	Physical Sketch of the Problem	141
Figure 7.2:	H-Curve of $f''(0), g'(0), \theta'(0)$ for different values of $\hbar_f, \hbar_g, \hbar_\theta$ at $M = 1$,	148
	$Kr = 1, Pr = 7.2, Ec = 0.01, \phi = 0.04, \kappa = 0.2, Nr = 0.1$ and	
	Re = 0.1.	
Figure 7.3:	Temperature Profile θ for different values of η and Re at $M = 1, Kr = 1$,	149
	$Pr = 7.2, Ec = 0.01, \phi = 0.04, \kappa = 0.2 \text{ and } Nr = 0.1.$	
Figure 7.4:	Temperature Profile θ for different values of η and Nr at $M = 1, Kr = 1$,	149
	$Pr = 7.2, Ec = 0.01, \phi = 0.04, \kappa = 0.2 \text{ and } Re = 0.1.$	
Figure 7.5:	Velocity profile f' for different values of η and Re at $M = 1, Kr = 1$,	150
	$Pr = 7.2, Ec = 0.01, \phi = 0.04, \kappa = 0.2 \text{ and } Nr = 0.1.$	
Figure 7.6:	Velocity profile g for different values of η and Re at $M = 1, Kr = 1$,	150
	$Pr = 7.2, Ec = 0.01, \phi = 0.04, \kappa = 0.2 \text{ and } Nr = 0.1.$	
Figure 7.7:	Velocity profile g for different values of η and M at $Re = 0.1, Kr = 1$,	151
	$Pr = 7.2, Ec = 0.01, \phi = 0.04, \kappa = 0.2 \text{ and } Nr = 0.1.$	
Figure 7.8:	Velocity profile g for different values of η and ϕ at $Re = 0.1, Kr = 1$,	151
	$Pr = 7.2, Ec = 0.01, M = 1, \kappa = 0.2 \text{ and } Nr = 0.1.$	
Figure 7.9:	Velocity profile f for different values of η and κ at $Re = 0.1, Kr = 1$,	152
	$Pr = 7.2, Ec = 0.01, M = 1, \phi = 0.04 \text{ and } Nr = 0.1.$	
Figure 7.10:	Velocity profile f' for different values of η and κ at $Re = 0.1, Kr = 1$,	152
	$Pr = 7.2, Ec = 0.01, M = 1, \phi = 0.04 \text{ and } Nr = 0.1.$	
Figure 7.11:	Velocity profile g for different values of η and κ at $Re = 0.1, Kr = 1$,	153
	$Pr = 7.2, Ec = 0.01, M = 1, \phi = 0.04 \text{ and } Nr = 0.1.$	
Figure 7.12:	Velocity profile <i>f</i> for different values of η and Kr at $Re = 0.1$, $\kappa = 0.2$,	153

XXIII

	$Pr = 7.2, Ec = 0.01, M = 1, \phi = 0.04 \text{ and } Nr = 0.1.$	
Figure 7.13:	Velocity profile f' for different values of η and Kr at $Re = 0.1$, $\kappa = 0.2$,	154
	$Pr = 7.2, Ec = 0.01, M = 1, \phi = 0.04 and Nr = 0.1.$	
Figure 7.14:	Velocity profile <i>g</i> for different values of η and Kr at $Re = 0.1$, $\kappa = 0.2$,	154
	$Pr = 7.2, Ec = 0.01, M = 1, \phi = 0.04 \text{ and } Nr = 0.1.$	
Figure 7.15:	Effect of magnetic parameter M and Re on Skin friction coefficient at	155
	$Kr = 1, \kappa = 0.2, Pr = 7.2, Ec = 0.01, M = 1, \phi = 0.04 \text{ and } Nr = 0.1.$	
Figure 7.16:	Effect of magnetic parameter M and Kr on Skin friction coefficient at	155
	$\phi = 0.04, \kappa = 0.2, Pr = 7.2, Ec = 0.01, M = 1, Re = 0.1 and Nr = 0.1.$	
Figure 7.17:	Effect of magnetic parameter M and <i>Re</i> on Nusselt number at $\phi = 0.04$,	156
	$\kappa = 0.2, Pr = 7.2, Ec = 0.01, M = 1, Kr = 1 and Nr = 0.1.$	
Figure 7.18:	Effect of magnetic parameter M and Kr on Nusselt number at $Re = 0.1$,	156
	$\kappa = 0.2, Pr = 7.2, Ec = 0.01, M = 1, \phi = 0.04 \text{ and } Nr = 0.1.$	
Figure 8.1:	Physical Sketch of the Problem	161
Figure 8.2:	H-Curve of $f''(0)$ for \hbar_f at $\kappa = 0.2$, $\phi = 0.04$, $M = 0.5$, $Kr = 0.5$,	169
	Pr = 6.2, $Re = 0.5$, $Nt = 0.5$, $Nb = 0.5$, $Sc = 0.5$ and $Nr = 2.0$.	
Figure 8.3:	H-Curve of $g'(0)$ for \hbar_g at $\kappa = 0.2$, $\phi = 0.04$, $M = 0.5$, $Kr = 0.5$,	170
	Pr = 6.2, Re = 0.5, Nt = 0.5, Nb = 0.5, Sc = 0.5 and Nr = 2.0.	
Figure 8.4:	H-Curve of $\theta'(0)$ for \hbar_{θ} at $\kappa = 0.2$, $\phi = 0.04$, $M = 0.5$, $Kr = 0.5$,	170
	Pr = 6.2, Re = 0.5, Nt = 0.5, Nb = 0.5, Sc = 0.5 and Nr = 2.0.	
Figure 8.5:	H-Curve of $C'(0)$ for $\hbar_{\rm C}$ at $\kappa = 0.2$, $\phi = 0.04$, $M = 0.5$, $Kr = 0.5$,	171
	Pr = 6.2, Re = 0.5, Nt = 0.5, Nb = 0.5, Sc = 0.5 and Nr = 2.0.	
Figure 8.6:	Concentration profile <i>C</i> for η and <i>Nb</i> at $\phi = 0.04$, $M = 0.5$, $Pr = 6.2$,	172
	$\kappa = 0.2$, $Re = 0.5$, $Nt = 0.5$, $Kr = 0.5$, $Sc = 0.5$ and $Nr = 2.0$.	
Figure 8.7:	Concentration profile <i>C</i> for η and <i>Nr</i> at $\phi = 0.04$, $M = 0.5$, $Pr = 6.2$,	172
	$\kappa = 0.2, Re = 0.5, Nb = 0.5, Kr = 0.5, Sc = 0.5 and Nt = 0.5.$	
Figure 8.8:	Concentration profile for η and <i>Nt</i> at ϕ = 0.04, <i>M</i> = 0.5, <i>Pr</i> = 10,	173
	$\kappa = 0.2$, $Re = 0.5$, $Nb = 0.5$, $Kr = 0.5$, $Sc = 0.5$ and $Nr = 2.0$.	
Figure 8.9:	Effect of M and κ on C_f at $\phi = 0.04$, $Nt = 0.5$, $Pr = 6.2$, $Re = 0.5$,	173
	Nb = 0.5, Kr = 0.5, Sc = 0.5 and Nr = 2.0.	
Figure 8.10:	Effect of M and κ on Nu at $Kr = 0.5$, $Nt = 0.5$, $Pr = 6.2$, $\phi = 0.04$,	174
	Nb = 0.5, Re = 0.5, Sc = 0.5 and Nr = 2.0.	
Figure 8.11:	Effect of M and Pr on Nu at $\kappa = 0.2$, Nr = 2.0, $\phi = 0.04$, Nt = 0.5,	174
	Kr = 0.5, Re = 0.5, Sc = 0.5 and Nb = 0.5.	
Figure 8.12:	Effect of M and Sc on Nu at $\kappa = 0.2$, Nr = 2.0, $\phi = 0.04$, Nt = 0.5,	175

Kr = 0.5, Pr = 6.2, Re = 0.5 and Nb = 0.5.

- Figure 8.13: Effect of M and Kr on Sh at $\kappa = 0.2$, Nr = 2.0, $\phi = 0.04$, Nt = 0.5, 175 Sc = 0.5, Pr = 6.2, Re = 0.5 and Nb = 0.5.
- Figure 8.14: Effect of M and Nr on Sh at $\kappa = 0.2$, Nb = 0.5, $\phi = 0.04$, Nt = 0.5, 176 Sc = 0.5, Pr = 6.2, Re = 0.5 and Kr = 0.5.
- Figure 8.15: Effect of M and Nt on Sh at $\kappa = 0.2$, Nr = 2.0, $\phi = 0.04$, Nb = 0.5, 176 Sc = 0.5, Pr = 6.2, Re = 0.5 and Kr = 0.5.
- Figure 8.16: Effect of M and Pr on Sh at $\kappa = 0.2$, Nr = 2.0, Nt = 0.5, Nb = 0.5, 177Sc = 0.5, $\phi = 0.04$, Re = 0.5 and Kr = 0.5.
- Figure 8.17: Effect of *M* and Re on *Sh* at $\kappa = 0.2$, Nr = 2.0, Nt = 0.5, Nb = 0.5, 177 Sc = 0.5, $\phi = 0.04$, Pr = 6.2 and Kr = 0.5.