
Chapter 2

Modified Finch and Skea stellar

model compatible with

observational data

In this chapter, we study the physically acceptable stable stellar solutions of Ein-

stein’s field equations on the background of a paraboloidal spacetime given by Finch-

Skea ansatz [Finch and Skea, 1989]. All the regularity conditions and stability con-

ditions are verified for the observed pulsars and we found that, it matches with the

observed masses and radii along with the physical plausibility requirements.

2.1 Introduction

An Ansatz proposed by Duorah and Ray [1987] for the metric potential grr corre-

sponding to a static spherically symmetric perfect fluid space-time, has been used

by Finch and Skea [1989] and they developed a stellar model which was later shown

to comply with all the physical requirements of a realistic star by Delgaty and Lake

[1998]. Consequently, the Finch-Skea model has been explored by many investigators
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in different astrophysical contexts, particularly for the studies of cold compact stellar

objects (see for example, Hansraj and Maharaj [2006], Tikekar and Jotania [2009],

Banerjee et al. [2013]). One noticeable feature of the Finch-Skea model is that it as-

sumes isotropy in pressure. However, theoretical investigations of Ruderman [1972]

and Canuto [1974], amongst others have shown that anisotropy might develop in

the high density regime of compact stellar objects. In other words, radial and trans-

verse pressures might not be equal at the interior of ultra-compact stars. Bowers

and Liang [1974] have extensively discussed the conditions under which anisotropy

might occur at stellar interiors which include presence of type-3A super fluid, elec-

tromagnetic field, rotation etc. They have also established the non-negligible effects

of local anisotropy on the maximum equilibrium mass and surface redshift of the

distribution. Accordingly, different anisotropic stellar models have been developed

and effects of anisotropy on physical properties of stellar configurations have been

analyzed by many investigators, viz., Maharaj and Maartens [1989], Gokhroo and

Mehra [1994], Patel and Mehta [1995], Tikekar and Thomas [1998, 1999, 2005],

Thomas et al. [2005], Thomas and Ratanpal [2007]. Impacts of anisotropy on the

stability of a stellar configuration have been studied by Dev and Gleiser [2002, 2003,

2004] respectively. Sharma and Maharaj [2007] and Thirukkanesh and Maharaj

[2008] have obtained analytic solutions of compact anisotropic stars by assuming a

linear equation of state(EOS). To solve the Einstein-Maxwell system, Komathiraj

and Maharaj [2007a] have used a linear equation of state. By assuming a linear EOS,

Sunzu et al. [2014] have reported solutions for a charged anisotropic quark star. Fer-

oze and Siddiqui [2011] and Maharaj and Takisa [2012] have used a quadratic-type

EOS for obtaining solutions of anisotropic distributions. Varela et al. [2010] have

analyzed charged anisotropic configurations admitting a linear as well as non-linear

equations of state. For a star composed of quark matter in the MIT bag model, Paul

et al. [2011] have shown how anisotropy could affect the value of the Bag constant.
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For a specific polytropic index, exact solutions to Einstein’s field equations for an

anisotropic sphere admitting a polytropic EOS have been obtained by Thirukkanesh

and Ragel [2012]. Maharaj and Takisa [2013] have used the same type of EOS to

develop an analytical model describing a charged anisotropic sphere. Polytropes

have also been studied by Nilsson and Uggla [2001], Heinzle et al. [2003] and Ki-

nasiewicz and Mach [2007]. Thirukkanesh and Ragel [2014] have used modified

Van der Waals EOS to represent anisotropic charged compact spheres. For spe-

cific forms of the gravitational potential and electric field intensity, Malaver [2014]

has prescribed solutions for a stellar configuration whose matter content admits a

quadratic EOS. Malaver [2013a] and Malaver [2013b] has also found exact solutions

to the Einstein-Maxwell system using the Van der Waals modified EOS.

Recently, Sharma and Ratanpal [2013], making use of the Finch and Skea [1989]

ansatz, have generated a class of solutions describing the interior of a static spher-

ically symmetric anisotropic star. In this chapter, we have generalized the Sharma

and Ratanpal [2013] model by incorporating a dimensionless parameter n(> 0) in

the Finch and Skea [1989] ansatz and assumed the system to be anisotropic, in gen-

eral. We have shown that such assumptions can provide physically viable solutions

which can be used to model realistic stars. Implications of the modified ansatz (by

including an adjustable parameter n) on the size and physical properties of resul-

tant stellar configurations have been analyzed. Based on physical requirement, we

have put constraints on the model parameters and subsequently shown that a wide

variety of observed pulsars can be accommodated within the prescribed bound of

the model parameters. In particular, we have shown that the predicted masses and

radii of pulsars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-

2230, SAX J1808.4-3658 and Her X-1 considered from the exhaustive study carried

out by Gangopadhyay et al. [2013] and found that, they all can be well achieved

by systematically fixing the parameter n. Most importantly, for a given mass, it is
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possible to constrain the radius so as to get the desired compactness by fixing the

compactness parameter u in this model.

2.2 Modified Finch and Skea model

We write the interior space-time of a static spherically symmetric distribution of

anisotropic matter in the form

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2θdφ2), (2.1)

where,

eλ =

(
1 +

r2

R2

)n
. (2.2)

In (2.2), n > 0 is a dimensionless parameter and R is the curvature parameter

having dimension of a length. Note that the ansatz (2.2) is a generalization of the

Finch and Skea [1989] model which can be regained by setting n = 1.

We follow the treatment of Maharaj and Maartens [1989] and write the energy-

momentum tensor of the anisotropic matter filling the interior of the star in the

form

Tij = (ρ+ p)uiuj − pgij + πij, (2.3)

where, ρ and p denote the energy-density and isotropic pressure of the fluid, respec-

tively and ui is the 4-velocity of the fluid. The anisotropic stress-tensor πij has the

form

πij =
√

3S

[
CiCj −

1

3
(uiuj − gij)

]
, (2.4)

where, Ci = (0,−e−λ/2, 0, 0). For a spherically symmetric anisotropic distribution,

S(r) denotes the magnitude of the anisotropic stress. The non-vanishing components
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of the energy-momentum tensor are the following:

T 0
0 = ρ, T 1

1 = −
(
p+

2S√
3

)
, T 2

2 = T 3
3 = −

(
p− S√

3

)
. (2.5)

Consequently, radial and tangential pressures of the fluid can be obtained as

pr = −T 1
1 =

(
p+

2S√
3

)
, (2.6)

p⊥ = −T 2
2 =

(
p− S√

3

)
, (2.7)

so that

S =
pr − p⊥√

3
. (2.8)

The potentials of the space-time metric (2.1) and physical variables of the distribu-

tion are related through the Einstein’s field equations

8πρ =
1− e−λ

r2
+
e−λλ′

r
, (2.9)

8πpr =
e−λ − 1

r2
− e−λν ′

r
, (2.10)

8πp⊥ = e−λ
[
ν ′′

2
+
ν ′2

4
− ν ′λ′

4
+
ν ′ − λ′

2r

]
. (2.11)

By defining the mass m(r) within a radius r as

m(r) = 4π

r∫
0

u2ρ(u)du, (2.12)
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we get an equivalent description of the system as

e−λ = 1− 2m

r
, (2.13)

r(r − 2m)ν ′ = 8πprr
3 + 2m, (2.14)

−4

r
(8π
√

3S) = (8πρ+ 8πpr)ν
′ + 2(8πp′r). (2.15)

Using (2.2) in (2.9) and (2.13), we obtain the energy-density and mass m(r) in the

form

8πρ =

1
r2

(
1 + r2

R2

) [(
1 + r2

R2

)n
− 1
]

+ 2n
R2(

1 + r2

R2

)n+1 , (2.16)

m(r) =

r
2

[(
1 + r2

R2

)n
− 1
]

(
1 + r2

R2

)n . (2.17)

To integrate Eq. (2.14), following Sharma and Ratanpal [2013], we write the radial

pressure in the form

8πpr =
p0

(
1− r2

R2

)
R2
(
1 + r2

R2

)n+1 , (2.18)

which is a reasonable assumption since the radial pressure vanishes at r = R. Con-

sequently, the curvature parameter R in our model turns out to be the boundary of

the star. Substituting (2.18) in (2.14) and integrating, we get

eν = C

(
1 +

r2

R2

)p0
exp

−p0r
2

2R2
+

r∫
0

[(
1 +

u2

R2

)n
− 1

]
1

u
du

, (2.19)

where, C is a constant of integration.

Finally, using Eqs. (2.15), (2.16) and (2.18), the anisotropy is obtained as

8π
√

3S = A1(r)− {A2(r)(A3(r) + A4(r))} , (2.20)
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where,

A1(r) =
p0

r2

R2

[
(n+ 2)− nr2

R2

]
R2
(
1 + r2

R2

)n+2 ,

A2(r) =
1

4

[(
1 +

r2

R2

)n−1
]
− p0

4

r2

R2
+
p0

2

r2

R2(
1 + r2

R2

) ,
A3(r) =

(
1 + r2

R2

) [(
1 + r2

R2

)n
− 1
]

1
r2

+ 2n
R2(

1 + r2

R2

)n+1 ,

A4(r) =
p0

(
1− r2

R2

)
R2
(
1 + r2

R2

)n+1 .

Note that the anisotropy vanishes at the center r = 0, as expected. Subsequently,

the tangential pressure can be obtained from the relation

8πp⊥ = 8πpr − 8π
√

3S. (2.21)

Using the above relations, we also obtain

dpr
dρ

=
p0

r4

R4 [(n+ 2)− n r2

R2 ]

(1 + r2

R2 )n+2 −
[
1 +

{
(n+ 2) + (1− n− 2n2) r

2

R2

}
r2

R2

] ,
dp⊥
dρ

=
1

c2

dpr
dρ
−
p0

r4

R4 [I(r) +D(r)] +R6B(r)

4R6
(
1 + r2

R2

)n+3
E(r)

,

where,

B(r) = F (r) +G(r) +H(r),

F (r) =

[{
1 +

r2

R2

(
1− n− 2n2

)}(
1 +

r2

R2

)
r2

R2

]
,

G(r) =

[
1− (n− 1)

r2

R2

](
1 +

r2

R2

)2n+2

,

H(r) = −2

(
1 +

r2

R2

)n+1 [
1 + 2

r2

R2
− (n− 1)

r4

R4

]
,
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I(r) = 2

[
R6

{(
1− 3r2

R2

)
−
(

7− r2

R2

)
nr2

R2

+2

(
1 +

r2

R2

)n+1
}
− n2r2

(
1− r2

R2

)]
,

D(r) = −p0R
6

(
1− r2

R2

)
[
1−

{
(n+ 4)

r2

R2
+ (n− 1)

r4

R4

}]
,

E(r) =
1 + (n+ 2) r

2

R2 − (2n2 + n− 1) r
4

R4(
1 + r2

R2

)n+2 − 1.

Thus, our model has four unknown parameters namely, C, p0, R and n which can

be fixed by the appropriate boundary conditions as will be discussed the following

sections.

2.3 Boundary Conditions

At the boundary of the star r = R, we match the interior metric (2.1) and (2.2)

with the Schwarzschild exterior metric

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dθ2 − r2sin2θ dφ2, (2.22)

which yields

R =
2n+1M

2n − 1
, (2.23)

C = 2−(n+p0) (2.24)

exp

p0

2
−

R∫
0

[(
1 +

r2

R2

)n
− 1

]
1

r
dr

 ,

49



CHAPTER 2. . . . 2.4. BOUNDS ON THE MODEL PARAMETERS

where M = m(R) denotes the total mass enclosed within a radius R. Eq. (2.23)

clearly shows that the compactness of the stellar configuration M/R will depend

on the parameter n which was not the case in the model previously developed by

Sharma and Ratanpal [2013].

2.4 Bounds on the model parameters

For a physically acceptable stellar model, the following conditions should be satisfied:

(1). ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0;

(2). ρ(r)− pr(r)− 2p⊥(r) ≥ 0;

(3). dρ(r)
dr

< 0, dpr(r)
dr

< 0, dp⊥(r)
dr

< 0;

(4). 0 ≤ dpr
dρ
≤ 1, 0 ≤ dp⊥

dρ
≤ 1.

Due to mathematical complexity, it is difficult to show analytically that our model

complies with all the above mentioned conditions. However, by adopting numerical

procedures, we have shown that for a specified bound all the above requirements

can be fulfilled in this model.

Now, to get an estimate on the bounds of the model parameters, we note that

pr, p⊥ ≥ 0 at r = R if we have

p0 ≤
(2n − 1)(2n − 1 + n)

2
. (2.25)

The strong energy condition ρ− pr − 2p⊥ ≥ 0 at r = R puts a further constraint on

the parameter p0 given by

p0 ≥
3(1− n)

2
+ (n− 4 + 2n)2n−1. (2.26)
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The condition dp⊥
dr
|r=R< 0 imposes the following constraint on p0

p0 >

(
n2 − 2 (2n − 1)2 + 2nn (2n − 1)

)
(2− 3n+ 2n+1)

. (2.27)

The requirement dp⊥
dρ
|r=R< 1 puts the following bound

p0 < 2n+1 + n2 − 2. (2.28)

Similarly, the conditions dp⊥
dρ
|r=0< 1 and dp⊥

dρ
|r=R< 1, respectively put the following

constraints on p0:

p0 < 8 + 2n−
√

64 + 22n− 9n2, (2.29)

p0 <
4(2n+1 + n2 − 2)− 2(2n − 1)2 + 2n(2n − 1) + n2

2n+1 − 3n+ 2
. (2.30)

All the above constraints when put together provide an effective bound

n2 − 2 (2n − 1)2 + 2nn (2n − 1)

2− 3n+ 2n+1
< p0 ≤

(2n − 1)(2n − 1 + n)

2
(2.31)

on p0 and n.

2.4.1 Stability

Though we have obtained an effective bound on p0 and n based on requirements (i)-

(iv), a more stringent bound on these parameters may be obtained by analyzing the

stability of the system. To check stability, we have followed the method of Herrera

et al. [1992] which states that for a potential stable configuration we should have

(υ2
⊥ − υ2

r) |r=0< 0. In our case, the difference between the radial speed of sound

υ2
r(=

dpr
dρ

) and tangential speed of sound υ2
⊥(= dp⊥

dρ
) evaluated at the centre r = 0 is
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obtained as

(υ2
⊥ − υ2

r) |r=0= −3n2 + (p0 − 8) p0

10n(n+ 1)
. (2.32)

Then Herrera’s stability condition implies

p0 < 4−
√

16− 3n2. (2.33)

Similarly, (υ2
⊥ − υ2

r) |r=R< 0 yields

p0 < n2 − 2n(n− 4) + 4n(n− 2)− 2. (2.34)

Combining (2.31), (2.33) and (2.34), the most appropriate bound on the model

parameters is finally obtained in the form

n2 − 2 (2n − 1)2 + 2nn (2n − 1)

2− 3n+ 2n+1
< p0 < 4−

√
16− 3n2. (2.35)

It is to be noted that for a real valued upper bound on p0 we must have n ≤ 4√
3
. In

Fig. 2.1, we have shown the possible range of p0 and n (shaded region) for which a

physically acceptable stable stellar configuration is possible.

2.5 Physical analysis

Having derived a physically plausible model, let us now analyze the implications

of the modified Finch and Skea [1989] ansatz. Note that in our description, two

of the four unknown parameters can be determined from the boundary conditions

(2.23) and (2.25) provided the mass is known. Since the condition pr(R) = 0 is

automatically satisfied, it provides no additional information about the unknowns.

Therefore, n and p0 remain free parameters in our construction. For a chosen value
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Figure 2.1: Bounds on the model parameters p0 and n based on physical require-
ments and stability.

of n, the parameter p0 can be appropriately fixed from within the bound provided in

(2.35). Thus, all the physically interesting quantities of the model can be evaluated

if the mass M is supplied.

To examine the nature of physical quantities, we have considered the pulsar 4U1820−

30 whose estimated mass and radius are given by M = 1.58 M� and R = 9.1 km,

respectively [Güver et al., 2010a]). Assuming M = 1.58 M�, we note that if we set

the dimensionless parameter n = 0.6154 and p0 = 0.1211 Mev fm−3, we get exactly

the same radius as estimated by Güver et al. [2010a]. Moreover, the compactness

of the star can be made as high as ∼ 0.4543 for an upper limit of n ∼ 1.38. Simi-

larly, we have considered some other well studied pulsars like PSR J1903+327 [et al,

2011]), 4U 1608-52 and Vela X-1 [Rawls et al., 2011]), PSR J1614-2230 [Demorest

et al., 2010]), SAX J1808.4-3658 [Elebert et al., 2009]) and Her X-1 [Abubekerov

et al., 2008]) and shown that the estimated masses and radii of these stars can also
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Figure 2.2: Variation of density (ρ) against the radial parameter r.

be obtained by making necessary adjustments in the values of n. In Table 2.1, we

have given the appropriate values of the adjustable compactness parameter u for

which one can obtain the predicted masses and radii of the stars considered here.

Respective central density (ρ0), surface density (ρR), central pressure ( pr0 ) and

compactness (u = M
R

) have also been shown in the table. The difference in the

values of these parameters for different choices of n has also been shown.

For a particular mass M = 1.58 M�, we have also shown that all the physical

quantities are well behaved at all interior points of the star within the specified

bounds on n and p0. In Fig. 2.2, we have shown the variation of density which

shows that the density decreases from its maximum value at the centre towards the

boundary. Moreover, the central density increases if the value of n increases. In

Fig. 2.3, radial variation of the two pressures has been shown. As expected, the
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Figure 2.3: Variation of radial (pr) and transverse (p⊥) pressure against the radial
parameter r.

Figure 2.4: Variation of anisotropy (p⊥ − pr) against r.
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Figure 2.5: Variation of dpr
dρ

and dp⊥
dρ

against the radial parameter r.

Figure 2.6: (ρ− pr − 2p⊥) plotted against the radial parameter r.
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Figure 2.7: Variation of radial pressure (pr) against density (ρ)
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Table 2.1: Estimation of physical values based on observational data.
STAR n pr0 M R ρc ρR u(= M

R
)

(
dpr
dρ

)
r=0

MeV fm−3 M� (Km) MeV fm−3 MeV fm−3

4U 1820-30 0.6154 0.1211 1.58 9.1 671.36 272.35 0.2561 0.1275
1 0.3638 6.32 2261.77 753.93 0.3688 0.2183

1.2 0.5667 5.59 3469.29 1047.59 0.4169 0.2748
1.38 0.8079 5.13 4737.27 1311.33 0.4543 0.3326

PSR J1903+327 0.6287 0.1269 1.667 9.438 637.65 256.89 0.2605 0.1303
1 0.3638 6.66 2036.74 678.91 0.3692 0.2183

1.2 0.5667 5.90 3114.30 940.39 0.4168 0.2748
1.38 0.8079 5.41 4259.59 1179.11 0.4545 0.3326

4U 1608-52 0.6752 0.1485 1.74 9.31 703.83 276.78 0.2757 0.1405
1 0.3638 6.96 1864.94 621.65 0.3688 0.2183

1.2 0.5667 6.16 2856.95 862.69 0.4166 0.2748
1.38 0.8079 5.65 3905.40 1081.06 0.4542 0.3326

Vela X-1 0.6672 0.1446 1.77 9.56 659.553 260.45 0.2731 0.1387
1 0.3638 7.08 1802.26 600.75 0.3688 0.2183

1.2 0.5667 6.27 2757.59 832.68 0.4164 0.2748
1.38 0.8079 5.75 3770.74 1043.79 0.4540 0.3326

PSR J1614-2230 0.7529 0.1892 1.97 9.69 724.42 273.692 0.2999 0.1578
1 0.3638 7.88 1454.89 484.96 0.3688 0.2183

1.2 0.5667 6.98 2225.12 671.90 0.4163 0.2748
1.38 0.8079 6.40 3043.71 842.54 0.4540 0.3326

SAX J1808.4-3658 0.3703 0.0411 0.9 7.951 529.18 244.30 0.1669 0.0768
1 0.3638 3.6 6970.73 2323.58 0.3688 0.2183

1.2 0.5667 3.19 10653.30 3216.86 0.4161 0.2748
1.38 0.8079 2.92 14621.70 4047.46 0.4546 0.3326

Her X-1 0.3399 0.0344 0.85 8.1 467.95 219.575 0.1548 0.1031
1 0.3638 3.40 7814.94 2604.98 0.3688 0.2183

1.2 0.5667 3.01 11965.50 3613.11 0.4165 0.2748
1.38 0.8079 2.76 16366.1 4530.33 0.4543 0.3326

radial pressure pr vanishes at the boundary; however the tangential pressure p⊥

remains finite at the boundary. As in the case of density, both pressures increase as

n increases. In Fig. 2.4, radial variation of anisotropy has been shown which shows

that anisotropy is zero at the centre and is maximum at the surface. In Fig. 2.5,

radial variations of sound speed in the radial and transverse directions have been

shown which confirms that the causality condition is not violated throughout the

configuration. In Fig. 2.6, we have plotted (ρ−pr−2p⊥) which was shown to remain

positive thereby implying that the strong energy condition is not violated in this

model. Though we have not assumed any explicit EOS in our model, Fig. 2.7 shows

how the radial pressure varies against the density for different values of n.
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2.6 Discussion

In this chapter, we have solved the Einstein’s field equations describing a spherically

symmetric anisotropic matter composition by assuming the form of one of the met-

ric potentials of the associated space-time and also by choosing a particular radial

pressure profile. The assumed form of the metric potential is a generalization of the

Finch and Skea [1989] ansatz, which has so far been utilized successfully by many

authors to generate solutions to the Einstein’s field equations in different astrophys-

ical contexts. We note that a modification of the Finch and Skea [1989] ansatz for

the metric potential grr allows us to fit the theoretically obtained compactness to

the observed compactness of a given star. We have shown that in the presence of

such an adjustable parameter, it is possible to accommodate a large class of observed

pulsars in our model. Another interesting feature of our approach is that though

no a priori knowledge of the EOS is required in our set up, we have been able to

show that the predicted masses and radii of the pulsars based on the exotic strange

matter EOS formulated by Dey et al. [1998] and examined by Gangopadhyay et al.

[2013] can also be fitted into our model.
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