
Chapter 3

Compact stars on

pseudo-spheroidal spacetime

compatible with observational

data

In this chapter, we have studied two models of anisotropic fluid distributions on the

background of a pseudo-spheroidal spacetime by assuming two different pressure

distributions. The physical acceptability of the models are investigated and found

that they are compatible with a number of pulsars of known mass and size.

3.1 Introduction

The study of compact objects in agreement with observational data has received

wide attention among researchers. A number of superdense star models compati-

ble with observational data, have appeared in literature in the recent past (Murad
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[2013a], Murad [2013b], Murad and Fatema [2013, 2015a], Pandya et al. [2015], Gan-

gopadhyay et al. [2013], Hansraj and Maharaj [2006], Tikekar and Jotania [2009],

Banerjee et al. [2013], Maurya et al. [2017b], Sharma and Ratanpal [2013]). If space-

time admitting compact star models possess a definite three-space geometry, then

it is a mathematically interesting problem also. The spheroidal spacetimes studied

by Vaidya and Tikekar [1982], Tikekar [1990], Tikekar and Thomas [1998], Thomas

et al. [2005], Thomas and Ratanpal [2007], Tikekar and Jotania [2005], and Chat-

topadhyay and Paul [2010] and the paraboloidal spacetime studied by Finch and

Skea [1989], Tikekar and Jotania [2007], Sharma and Ratanpal [2013] and Pandya

et al. [2015] are examples of spacetimes with definite 3-space geometry. The super-

dense star models developed by Tikekar and Thomas [1998] has pseudo-spheroidal

geometry. A number of researchers used this spacetime for developing physically

viable models of compact stars under different assumptions on the physical content.

Theoretical investigations of Ruderman [1972] and Canuto [1974] suggest that mat-

ter may not isotropic in ultra high density regime. After the publication of the work

of Bowers and Liang [1974], there has been a large number of models devoted to the

study of anisotropic distribution of matter. Maharaj and Maartens [1989] developed

an anisotropic model with uniform density and Gokhroo and Mehra [1994] gave a

more realistic anisotropic model with non-uniform density. Tikekar and Thomas

[1999, 2005], Thomas et al. [2005] developed superdense anisotropic distributions on

pseudo-spheroidal spacetimes. Thomas and Ratanpal [2007] studied non-adiabatic

gravitational collapse of anisotropic distribution of matter accompanied by radial

heat flux. Dev and Gleiser [2002, 2003, 2004] have studied the impact of anisotropy

on the stability of stellar configuration. Anisotropic distributions of matter incor-

porating linear equation of state have been studied by Sharma and Maharaj [2007],

& Thirukkanesh and Maharaj [2008]. Komathiraj and Maharaj [2007a] have stud-
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ied charged distribution using linear equation of state. Sunzu et al. [2014] studied

charged anisotropic quark stars using linear equation of state. Anisotropic distribu-

tions of matter incorporating quadratic equation of state have been given by Feroze

and Siddiqui [2011] & Maharaj and Takisa [2012]. Varela et al. [2010] used linear

and non-linear equations of state for describing charged anisotropic distributions of

matter. Paul et al. [2011] have shown, in the MIT bag model of quark stars, that

anisotropy can affect the bag constant. Polytropic equations of state has been used

by Thirukkanesh and Ragel [2012] & Maharaj and Takisa [2013]. Malaver [2013a,b,

2014] and Thirukkanesh and Ragel [2014] have used modified Van der Waals equa-

tion of state for describing anisotropic charged compact stars.

In 2015, Pandya et al. [2015] have developed anisotropic models of compact stars

compatible with observational data by generalizing Finch and Skea [1989] ansatz.

The anisotropic stellar model given by Sharma and Ratanpal [2013] is a subclass of

the model of Pandya et al. [2015].

This model accommodates the observational data of a variety of compact objects re-

cently studied by researchers. In the present chapter, we have obtained a new class of

anisotropic stellar model of compact objects on the background of pseudo-spheroidal

spacetime. The physical parameter p0 and geometric parameter K appearing in the

model are restricted as a result of various physical acceptability conditions imposed

on the model. Another geometric parameter R of the model plays the role of the ra-

dius of the spherical distribution of matter. It is found that our model yields values

of different physical quantities that are in good agreement with the most recently

available observational data of compact objects (Gangopadhyay et al. [2013]) like

4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, SMC X-4 and
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Cen X-3.

3.2 Spacetime metric

We take the interior metric describing the anisotropic matter distribution in the

form

ds2 = eν(r)dt2 −
1 +K r2

R2

1 + r2

R2

dr2 − r2dθ2 − r2sin2θdφ2, (3.1)

where, K, R are geometric parameters and K > 1. This spacetime, generally known

as pseudo-spheroidal spacetime, has been studied by many researchers (Tikekar and

Thomas [1998, 1999, 2005], Thomas et al. [2005], Thomas and Ratanpal [2007], Paul

et al. [2011], Chattopadhyay and Paul [2010], Chattopadhyay et al. [2012]).

Following Maharaj and Maartens [1989], we write the energy-momentum tensor for

anisotropic matter distribution in the form

Tij = (ρ+ p)uiuj − pgij + πij, (3.2)

where, ρ, p and ui denote the proper density, fluid pressure and unit four-velocity of

the fluid, respectively.

The anisotropic stress-tensor πij is given by

πij =
√

3S

[
CiCj −

1

3
(uiuj − gij)

]
, (3.3)

where, Ci = (0,−e−λ/2, 0, 0) is a radial vector and S = S(r) denotes the magnitude

of the anisotropic stress.

The non-vanishing components of the energy-momentum tensor are given by

T 0
0 = ρ, T 1

1 = −
(
p+

2S√
3

)
, T 2

2 = T 3
3 = −

(
p− S√

3

)
. (3.4)
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Hence the radial and transverse pressures are given by

pr = −T 1
1 =

(
p+

2S√
3

)
, (3.5)

p⊥ = −T 2
2 =

(
p− S√

3

)
. (3.6)

Then the magnitude of the anisotropic stress has the form

S =
pr − p⊥√

3
. (3.7)

The physical and geometric variables, related through Einstein’s field equations

Rij −
1

2
Rgij = 8πTij, (3.8)

are to be determined from the following set of three equations:

8πρ =
1− e−λ

r2
+
e−λλ′

r
, (3.9)

8πpr =
e−λ − 1

r2
− e−λν ′

r
, (3.10)

8πp⊥ = e−λ
[
ν ′′

2
+
ν ′2

4
− ν ′λ′

4
+
ν ′ − λ′

2r

]
, (3.11)

where a prime denotes a differentiation with respect to r. The equations (3.9) –

(3.11) can be couched in the form

e−λ = 1− 2m

r
, (3.12)(

1− 2m

r

)
ν ′ = 8πprr +

2m

r2
, (3.13)

−4

r
(8π
√

3S) = (8πρ+ 8πpr)ν
′ + 2(8πp′r), (3.14)
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where

m(r) = 4π

r∫
0

u2ρ(u)du. (3.15)

The energy-density ρ and the mass m within the radius r have expressions

8πρ =
K − 1

R2

(
3 +K r2

R2

)
(
1 +K r2

R2

)2 , (3.16)

m(r) =
R

2

(K − 1) r
2

R2

1 + Kr2

R2

. (3.17)

It can be easily obtained from equation (3.12) that

8πρ′ = −2K(K − 1)r

R4

(
5 +K r2

R2

)
(
1 +K r2

R2

)3 < 0, (3.18)

indicating that the density decreases radially outward.

3.3 Anisotropic Model 1

In order to obtain the metric potential ν, we assume an expression for pr in equation

(3.13), in the form

8πpr =
p0

R2

(
1− r2

R2

)(
1 + r2

R2

)
(
1 +K r2

R2

)2 . (3.19)

The radial pressure in the present form vanishes at r = R and takes the value p0
R2

at the centre r = 0. It is non-negative for all values of r in the range 0 ≤ r ≤ R.

Further, on differentiating equation (3.19) with respect to r, we get

8πp′r = −
4p0r

(
K + r2

R2

)
R4
(
1 +K r2

R2

)3 < 0, (3.20)
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indicating that the pressure pr decreases radially outward. Since pr(r = R) = 0, the

geometric parameter R takes the role of the boundary radius of the distribution.

With this choice of pr, equation (3.13) can be integrated to obtain ν in the form

eν = A

(
1 +K

r2

R2

) p0(K+1)

2K2
(

1 +
r2

R2

)K−1
2

exp

{
−p0

2K2

(
1 +K

r2

R2

)}
(3.21)

where A is a constant of integration.

Therefore, the spacetime metric takes the explicit form

ds2 = A

(
1 +K

r2

R2

) p0(K+1)

2K2
(

1 +
r2

R2

)K−1
2

×exp
{
−p0

2K2

(
1 +K

r2

R2

)}
dt2 −

1 +K r2

R2

1 + r2

R2

dr2 − r2dθ2 − r2sin2θdφ2. (3.22)

The constant of integration A can be obtained by matching the interior spacetime

metric (3.1) with the Schwarzschild exterior metric

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2dθ2 − r2sin2θdφ2 (3.23)

across the boundary r = R. This gives

R =
2M(K + 1)

(K − 1)
, (3.24)

and

A =
2

K + 1

(
e

K + 1

) (K+1)p0
2K2

2−(K−1
2 ). (3.25)

66



CHAPTER 3. . . . 3.3. ANISOTROPIC MODEL 1

The expression for anisotropy is now readily available by substituting for pr, p
′
r and

ν ′ in the equation (3.14).

8π
√

3S =
r2

R2

2p0

(
K + r2

R2

)
R2
(
1 + Kr2

R2

)3 −
B(r)C(r)

R2
(
1 +K r2

R2

)
 , (3.26)

where

B(r) =

 p0

(
1− r2

R2

)
4
(
1 + Kr2

R2

)4 +
K − 1

4
(
1 + r2

R2

)
 , (3.27)

C(r) =

[
(K − 1)

(
3 +K

r2

R2

)
+ p0

(
1− r4

R4

)]
. (3.28)

It is easy to see that S vanishes at origin r = 0, which is a desired requirement for

anisotropic distributions (Murad [2013a], Murad [2013b], Murad and Fatema [2013,

2015a] & Bowers and Liang [1974]).

The expression for transverse pressure

8πp⊥ = 8πpr − 8π
√

3S (3.29)

can be obtained using equations (3.19) and (3.26).

Moreover, the condition p⊥ ≥ 0 will lead to the following inequality at r = R

p0 ≤
1

16
(K − 1)2(K + 3), (3.30)

whereas at r = 0, the condition is evidently satisfied.

The expressions for dpr
dρ

and dp⊥
dρ

are given by

dpr
dρ

=
2p0

K(K − 1)

(
K + r2

R2

)
(
5 +K r2

R2

) , (3.31)
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dp⊥
dρ

=
dpr
dρ
−
√

3
dS

dρ
. (3.32)

The conditions 0 ≤ dpr
dρ
≤ 1 and 0 ≤ dp⊥

dρ
≤ 1 at r = 0, respectively, give the

inequalities

0 ≤ p0 ≤
5

2
(K − 1), (3.33)

and

0 ≤ p0 ≤
K(K − 1)(K + 5)

2(K + 1)
. (3.34)

Similarly the above conditions at r = R, respectively, give

2(3K + 1)−
√

33K2 + 30K + 1 ≤ p0 ≤ 2(3K + 1)−
√

13K2 + 50K + 1, (3.35)

and

0 < p0 ≤
−K4 + 12K3 + 78K2 − 92K + 3

8K2 − 24K + 80
. (3.36)

The adiabatic index

Γ =
ρ+ pr
pr

dpr
dρ

(3.37)

has the explicit expression

Γ =
2
(
K + r2

R2

)
C(r)

K(K − 1)
(
5 +K r2

R2

) (
1− r4

R4

) . (3.38)

The necessary condition for the model to represent a relativistic star is that Γ > 4
3

throughout the star. Γ > 4
3

at r = 0 impose a condition on p0, viz.,

p0 >
K − 1

3
. (3.39)
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The strong energy condition ρ− pr− 2p⊥ ≥ 0 at r = 0 and r = R, respectively, give

the following two inequalities

p0 ≤ K − 1 (3.40)

and

p0 ≥
(K + 3)(K − 1)(K − 5)

16
. (3.41)

In order to obtain a valid range for the parameters p0 and K, we have to consider

the inequalities (3.33) – (3.36) and (3.38) – (3.41) simultaneously.

3.4 Bounds for Model Parameters

The pseudo-spheroidal space-time model developed for anisotropic matter distri-

bution contains a physical parameter p0 related to the central pressure and two

geometric parameters, viz., R and K. Since pr(r = R) = 0, the free parameter R

represents the radius of the distribution. The bounds for the other two parameters

p0 and K are to be determined by the following requirements a physically acceptable

model is expected to satisfy in its region of validity 0 ≤ r ≤ R.
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Table 3.1: Bounds for p0.

Physical requirements at r = 0 at r = R

ρ− pr − 2p⊥ ≥ 0 p0 ≤ K − 1 p0 ≥ (K+3)(K−1)(K−5)
16

0 ≤ dpr
dρ
≤ 1 0 ≤ p0 ≤ 5

2
(K − 1) 2(3K + 1)−

√
(33K2 + 30K + 1) ≤ p0

≤ 2(3K + 1)−
√

(13K2 + 50K + 1)

0 ≤ dp⊥
dρ
≤ 1 0 ≤ p0 ≤ K(K−1)(K+5)

2(K+1)
0 ≤ p0 ≤ −K4+12K3+78K2−92K+3

8K2−24K+80

Γ(r) ≥ 4
3

p0 >
K−1

3
Automatically satisfied

(1) ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0,

(2) ρ(r)− pr(r)− 2p⊥(r) ≥ 0,

(3) dρ(r)
dr

< 0, dpr(r)
dr

< 0,

(4) 0 ≤ dpr
dρ
≤ 1, 0 ≤ dp⊥

dρ
≤ 1,

(5) The adiabatic index Γ(r) > 4
3
.

The conditions ρ(r) ≥ 0, pr(r) ≥ 0, dρ(r)
dr

< 0, dpr(r)
dr

< 0 are automatically satisfied

by equations (3.16), (3.19), (3.18), (3.20).

We have displayed in Table 3.1 the bounds on p0 in terms of the parameter K at

the centre and on the boundary.

We have displayed the numerical values of the lower and upper bounds of p0 for

different values of K > 1 in Table 3.2. We have considered the maximum of all lower

limits of p0 and minimum of all its upper limits. The admissible values of K are those

for which minimum of upper limit minus maximum of lower limit is positive. This

condition restricts the values of K in the range (2.05, 5.69). It is further observed

that for 2.05 < K ≤ 3.47, 3.47 ≤ K ≤ 5.24, and 5.24 ≤ K < 5.69, p0 satisfies,

respectively, the inequalities K−1
3

< p0 ≤ (K+3)(K−1)2

16
, K−1

3
≤ p0 ≤ K − 1 and
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Table 3.2: Permissible values of K and p0.

LP1 = K−1
3
,

LP2 =
(K+3)(K−1)(K−5)

6
,

LP3 = 2(3K + 1)−
√

(33K2 + 30K + 1),

UP1 =
(K+3)(K−1)2

16
,

UP2 = K − 1,

UP3 =
5(K−1)

2
,

UP4 =
K(K−1)(K+5)

2(K+1)
,

UP5 = 2(3K + 1)−
√

(13K2 + 50K + 1),

UP6 = −K4+12K3+78K2−92K+3
8K2−24K+80

.

K Lower Limit for p0 Max Upper Limit for p0 Min Min - Max

LP1 LP2 LP3 UP1 UP2 UP3 UP4 UP5 UP6

2 0.33 -2.50 0.11 0.33 0.31 1 2.5 2.33 1.63 3.30 0.31 -0.02
2.05 0.35 -2.61 0.12 0.35 0.35 1.05 2.625 2.49 1.72 3.54 0.35 0.00
2.1 0.37 -2.71 0.12 0.37 0.39 1.1 2.75 2.65 1.82 3.78 0.39 0.02
2.4 0.47 -3.28 0.18 0.47 0.66 1.4 3.5 3.66 2.40 5.32 0.66 0.19
2.8 0.60 -3.83 0.26 0.60 1.17 1.8 4.5 5.17 3.21 7.40 1.17 0.57
3 0.67 -4.00 0.30 0.67 1.50 2 5 6.00 3.63 8.40 1.50 0.83

3.1 0.70 -4.06 0.32 0.70 1.68 2.1 5.25 6.43 3.84 8.88 1.68 0.98
3.2 0.73 -4.09 0.35 0.73 1.88 2.2 5.5 6.87 4.05 9.35 1.88 1.14
3.4 0.80 -4.10 0.39 0.80 2.30 2.4 6 7.79 4.48 10.23 2.30 1.50
3.47 0.82 -4.08 0.40 0.82 2.47 2.47 6.175 8.12 4.63 10.53 2.47 1.64
3.8 0.93 -3.81 0.48 0.93 3.33 2.8 7 9.75 5.34 11.79 2.80 1.87
4 1.00 -3.50 0.52 1.00 3.94 3 7.5 10.80 5.78 12.46 3.00 2.00

4.2 1.07 -3.07 0.57 1.07 4.61 3.2 8 11.89 6.22 13.05 3.20 2.13
4.4 1.13 -2.52 0.62 1.13 5.35 3.4 8.5 13.02 6.66 13.58 3.40 2.27
4.8 1.27 -0.99 0.71 1.27 7.04 3.8 9.5 15.41 7.55 14.45 3.80 2.53
5 1.33 0.00 0.76 1.33 8.00 4 10 16.67 8.00 14.80 4.00 2.67

5.2 1.40 1.15 0.81 1.40 9.04 4.2 10.5 17.97 8.45 15.10 4.20 2.80
5.24 1.41 1.40 0.82 1.41 9.26 4.24 10.6 18.23 8.54 15.15 4.24 2.83
5.4 1.47 2.46 0.85 2.46 10.16 4.4 11 19.31 8.90 15.35 4.40 1.94
5.67 1.56 4.52 0.92 4.52 11.82 4.67 11.675 21.18 9.52 15.63 4.67 0.15
5.69 1.56 4.69 0.92 4.69 11.95 4.69 11.725 21.32 9.56 15.64 4.69 0.00
5.71 1.57 4.85 0.93 4.85 12.08 4.71 11.775 21.46 9.61 15.66 4.71 -0.14

1
6
(K + 3)(K − 1)(K − 5) ≤ p0 < K − 1. The shaded region in Figure 3.1 gives the

permissible values of K and p0. Any values of K and p0 outside this region may

violate one or other of the physical requirements of the model.
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Figure 3.1: Permissible values of p0 and K.

3.5 Compact Star Models

In order to validate the model, we examine our model with observational data. We

have considered the pulsar 4U 1820-30 whose estimated mass and radius are 1.58M�

and 9.1 km (Gangopadhyay et al. [2013]). If we set these values for mass and radius

then from equation (3.24) we obtain the value of K = 3.1 which is well inside the

valid range for K. Similarly assuming masses of some well studied compact stars

like PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, SMC X-4 and Cen

X-3, we have obtained the same radius calculated by Gangopadhyay et al. [2013] for

values of K in the valid range. The values of mass, radius, K and other relevant

quantities like central density ρc, density at the boundary ρR, the compactification

parameter u and dpr
dρ

at the centre for p0 = 1.08, are shown in Table 3.3.
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Table 3.3: Estimation of physical values based on observational data for p0 = 1.08.

STAR K M R ρc ρR u(= M
R

)
(
dpr
dρ

)
r=0

(M�) (Km) (MeV fm−3) (MeV fm−3)

4U 1820-30 3.100 1.58 9.1 2290.97 277.12 0.256 0.206
PSR J1903+327 3.176 1.667 9.438 2129.82 257.62 0.261 0.199
4U 1608-52 3.458 1.74 9.31 2188.78 267.75 0.276 0.176
Vela X-1 3.407 1.77 9.56 2075.80 251.08 0.273 0.179
PSR J1614-2230 3.997 1.97 9.69 2020.48 244.39 0.300 0.144
SMC X-4 2.514 1.29 8.831 2432.67 294.25 0.215 0.285
Cen X-3 2.838 1.49 9.178 2252.20 272.42 0.239 0.235

In order to examine the nature of various physical quantities throughout the distribu-

tion, we have considered a particular star 4U 1820-30 for which mass M = 1.58M�,

radius R = 9.1km, the physical parameter p0 = 1.08 and the geometric parameter

K = 3.1. We have shown the variation of density and pressures in Figure 3.2 and

Figure 3.3, respectively. It is observed that the transverse pressure p⊥ is less than

the radial pressure for r in the range 0 < r < 2.78903. Subsequently p⊥ dominates pr

in the region 2.78903 < r ≤ 9.1. The radial pressure pr vanishes at r = 9.1. In Fig-

ure 3.4, we have shown the variation of anisotropy throughout the distribution. The

variations of sound speed in the radial and transverse directions are shown in Figure

3.5. From Figure 3.6, it is evident that the strong energy condition, ρ−pr−2p⊥ ≥ 0

is satisfied throughout the distribution. Though we have not assumed any explicit

expression for the EOS in our model, we have shown the nature of variation of pres-

sures pr and p⊥ against density in Figure 3.7. For a relativistic model to be stable

in its region of validity, we must have the adiabatic index Γ > 4
3
. The variation

Γ against radius is shown in Figure 3.8. It is clear from Figure 3.8 that Γ > 4
3

throughout the star. The variation of gravitational red shift, z(r) =
√
e−ν(r) − 1 in

the radial direction is shown in Figure 3.9. It is easy to note that the red shift is

monotonically decreasing function from the centre to boundary. Further, the red

shift at the centre zc and on the boundary zR are both positive and finite.
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Figure 3.2: Density Vs Radius

3.6 Discussion

Spherical distribution of matter on pseudo-spheroidal spacetimes have been studied

by a number of researchers in the recent past Tikekar and Thomas [1998, 1999, 2005],

Thomas et al. [2005], Thomas and Ratanpal [2007], Paul et al. [2011], Chattopad-

hyay and Paul [2010], Chattopadhyay et al. [2012]. In this chapter, we have obtained

a new class of solutions to Einstein’s field equations for a spherically symmetric

anisotropic distribution of matter and have shown that our model can fit to the ob-

servational data of a number of well studied pulsars (Gangopadhyay et al. [2013]).

On assuming a particular form of radial pressure and on the basis of elementary

criteria for physical acceptability of a compact spherically symmetric distribution of

matter, we have obtained the bounds for the physical as well as geometric parame-

ters of the model. It is found that our model can accommodate a number of pulsars

74



CHAPTER 3. . . . 3.6. DISCUSSION

Figure 3.3: Radial and Transverse Pressures Vs Radius

Figure 3.4: Anisotropy Vs Radius
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Figure 3.5: (SoundSpeed)2 Vs Radius

Figure 3.6: Strong Energy Condition Vs Radius
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Figure 3.7: Equation of State

Figure 3.8: Adiabatic Index Vs Radius
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Figure 3.9: Gravitational Red Shift

like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, SMC X-4

and Cen X-3. We also have studied, in detail, a particular pulsar 4U 1820-30, and

have shown graphically the profile of different physical quantities throughout the dis-

tribution. In short, study of compact stars on the background of pseudo-spheroidal

spacetime is highly interesting in the sense that it generates models compatible with

observational data and at the same time having a definite 3-space geometry, namely,

pseudo-spheroidal geometry which many other spacetimes may not possess.
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3.7 Anisotropic Model 2

In this model, in order to obtain the metric potential ν from equation (3.13), we

shall take the expression for radial pressure pr as

8πpr =
K − 1

R2

1− r2

R2(
1 +K r2

R2

)2 . (3.42)

It can be noticed from equation (3.42) that the central pressure is pr(0) = K−1
R2 ,

which is directly related to the geometric parameters K and R. This choice of pr

facilitate the integration of equation (3.13) and obtain eν in the form

eν = CR
K2−2K+1

K

(
1 +K

r2

R2

)K+1
2K
(

1 +
r2

R2

)K−3
2

, (3.43)

where C is a constant of integration.

Differentiating equation (3.42) with respect to r, we get

8π
dpr
dr

= −2r(K − 1)

R4

1 +K
(

2− r2

R2

)
(
1 +K r2

R2

)3 . (3.44)

It can be noticed from equation (3.44) that

8π
dpr
dr

(r = 0) = 0, (3.45)

8π
dpr
dr

(r = R) = − 2(K − 1)

R2(1 +K)2
< 0. (3.46)

Further 8π dpr
dr

< 0 for all values of r in the range 0 ≤ r ≤ R. Hence the radial

pressure is decreasing radially outward and becomes zero at r = R, which is taken

as the radius of the anisotropic fluid distribution.
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The spacetime metric (3.1) now takes the explicit form

ds2 = CR
K2−2K+1

K

(
1 +K

r2

R2

)K+1
2K
(

1 +
r2

R2

)K−3
2

dt2 −

(
1 +K r2

R2

1 + r2

R2

)
dr2

−r2
(
dθ2 + sin2 θdφ2

)
. (3.47)

For a physically acceptable relativistic distribution of matter, the interior spacetime

metric (3.47) should continuously match with Schwarzschild exterior metric

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (3.48)

across the boundary r = R. This gives the constants M and C as

M =
R

2

(K − 1)

(K + 1)
, (3.49)

and

C = R
−
(
K2−2K+1

K

)
(1 +K)−( 3K+1

2K ) 2( 5−K
2 ). (3.50)

The expression for anisotropy S can be obtained using (3.16), (3.42), (3.43) and

(3.44) in (3.14). We have

8π
√

3S =
(K − 1)r2

[
12 + (−6K2 + 16K − 2) r2

R2 + (−K3 + 3K2 − 7K + 1) r2

R2

]
4R4

(
1 +K r2

R2

)3 (
1 + r2

R2

) ,

(3.51)

which takes the value zero at r = 0. The expression for 8πp⊥ = 8πpr− 8π
√

3S, now

takes the form

8πp⊥ =
(K − 1)

[
4 + (4K − 12) r2

R2 + (6K2 − 16K − 2) r4

R4 + (K3 − 3K2 + 3K − 1) r6

R6

]
4R2

(
1 +K r2

R2

)3 (
1 + r2

R2

) ,

(3.52)
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3.8 Physical Analysis

The anisotropic matter distribution described on the background of pseudo-spheroidal

spacetime contains two geometric parameters R and K. Since pr(r = R) = 0, the

parameter R represents the radius of the distribution. The bounds on the other pa-

rameter K is to be determined using the physical plausibility conditions stipulated

below:

(i) ρ(r), pr(r), p⊥(r) ≥ 0 for 0 ≤ r ≤ R;

(ii) ρ− pr − 2p⊥ ≥ 0 for 0 ≤ r ≤ R;

(iii) dρ
dr
, dpr

dr
, dpt

dr
< 0 for 0 ≤ r ≤ R;

(iv) 0 ≤ dpr
dρ
≤ 1; 0 ≤ dp⊥

dρ
≤ 1, for 0 ≤ r ≤ R;

(v) The adiabatic index Γ(r) > 4
3
, for 0 ≤ r ≤ R.

The conditions ρ(r) ≥ 0, pr ≥ 0, dρ
dr
< 0 and dpr

dr
< 0 are evidently satisfied in the

light of equations (3.16), (3.42), (3.18), and (3.46), respectively.

The condition p⊥ > 0 imposes a restriction on the value of K, namely,

K ≥ 2.4641. (3.53)

In order to examine the strong energy condition, we evaluate the expression ρ−pr−

2p⊥ at r = 0 and at r = R. It is easy to see that

(ρ− pr − 2p⊥) (r = 0) = 0, (3.54)

and (ρ− pr − 2p⊥) (r = R) ≥ 0, imposes an upper bound for K, namely,

K ≤ 4.1231. (3.55)
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It has been suggested by Canuto [1974] that the velocity of sound should be mono-

tonically decreasing for matter distribution with ultra-high densities. This demands

that d
dr

(
dpr
dρ

)
< 0.

The expressions for dpr
dρ

and dp⊥
dρ

are, respectively, given by

dpr
dρ

=
1 + 2K −K r2

R2

K
(
5 +K r2

R2

) , (3.56)

dp⊥
dρ

=

(
1 +K r2

R2

)3 [
X1 +X2

r2

R2 +X3
r4

R4 +X4
r6

R6 +X5
r8

R8

]
2K(K − 1)

(
5 +K r2

R2

) [
2 + Y1

r2

R2 + Y2
r4

R4 + Y3
r6

R6 + Y4
r8

R8 + Y5
r10

R10 + 2K4 r12

R12

] ,
(3.57)

where, X1 = 8K2+8K−16, X2 = −4K3+28K2−20K−4, X3 = 3K4−4K3−30K2+

36K−5, X4 = 10K4−36K3 +16K2 +12K−2, X5 = K5−4K4 +6K3−4K2 +4 and

Y1 = 8K+4, Y2 = 12K2+16K+2, Y3 = 8K3+24K2+8K, Y4 = 2K4+16K3+12K2,

Y5 = 4K4 + 8K3.

It can be noticed from (3.56) that dpr
dρ
≤ 1 throughout the distribution.

The condition dp⊥
dρ
≤ 1 at r = 0 and r = R gives the following bounds on K, viz.,

K > 1.3333, (3.58)

and

1 ≤ K ≤ 14.7882. (3.59)

The expression for adiabatic index Γ is given by

Γ =

(
4− r2

R2 +K r2

R2

)(
1 + 2K −K r2

R2

)
K
(
1− r2

R2

) (
5 +K r2

R2

) . (3.60)

The necessary condition for the model to represent a relativistic star is that Γ > 4
3
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throughout the star. Γ > 4
3

at r = 0 imposes a condition on K, viz.,

K > −3. (3.61)

Considering all the relevant inequalities, we find that the admissible bound for K is

given by

2.4641 ≤ K ≤ 4.1231. (3.62)

3.9 Application to Compact Stars and Discussion

In order to examine the suitability of our model to fit into the observational data,

we have considered the masses and radii of some well known pulsars given by Gan-

gopadhyay et al. [2013]. We have considered PSR J1614-2230 whose estimated mass

and radius are 1.97M� and 9.69 km. If we set these values in equation (3.49) we get

K = 3.997 which is well inside the valid range of K. We have further verified that

our model is in good agreement with the estimated mass and radii of a number of

compact stars like Vela X-1, 4U1608-52, PSRJ1903+327, 4U1820-30 SMC X-4 and

Cen X-3. The value of K, mass, radius and other relevant quantities like ρc, ρR,

u = M
R

and dpr
dρ

(r = 0) are shown in Table 3.4.

Table 3.4: Estimated physical values based on the observational data

STAR K M R ρc ρR u(= M
R )

(
dpr
dρ

)
r=0

(M�) (Km) (MeV fm−3) (MeV fm−3)

4U 1820-30 3.100 1.58 9.1 2290.97 277.12 0.256 0.465
PSR J1903+327 3.176 1.667 9.438 2206.89 260.52 0.261 0.463
4U 1608-52 3.458 1.74 9.31 2561.92 277.50 0.276 0.458
Vela X-1 3.407 1.77 9.56 2379.27 261.63 0.273 0.459
PSR J1614-2230 3.997 1.97 9.69 2883.52 269.33 0.300 0.450
SMC X-4 2.514 1.29 8.831 1753.84 261.06 0.215 0.480
Cen X-3 2.838 1.49 9.178 1971.21 260.42 0.239 0.470
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In order to have detailed analysis of various physical conditions throughout the star

we have considered a particular star PSR J1614-2230 having mass M = 1.97M�

and radius R = 9.69 km along with the geometric parameter K = 3.997. The

variation of density and pressure from centre to the boundary of the star is shown

graphically in Figure 3.10 and Figure 3.11, respectively. It can be seen that density

and pressures are monotonically decreasing functions of the radial variable r. In

Figure 3.12, we have shown the variation of anisotropy S throughout the star. The

anisotropy increases initially and after reaching a maximum at r = 2.54, it starts

decreasing till the boundary of the star. The variation of square of sound speed and

strong energy condition are displayed in Figure 3.13 and Figure 3.14, respectively.

It can be noticed that the square of sound speed is less than 1 and the strong energy

condition is satisfied throughout the star.

In Figure 3.15, we have shown the equation of state for matter distribution in graph-

ical form. For a stable relativistic star, the adiabatic index Γ should be greater

than 4
3

throughout the configuration. We have plotted the graph of Γ against r in

Figure 3.16. The graph clearly indicates that Γ > 4
3

throughout the star. For a

physically acceptable model, the gravitational redshift, z =
√
e−ν(r) − 1, should be

a decreasing function of r. Further the central redshift zc and boundary redshift zR

should be positive and finite. From Figure 3.17, it can be seen that these conditions

are satisfied throughout the star.

We have studied spherically symmetric anisotropic distributions of matter on pseudo-

spheroidal spacetime. The model we have developed is in good agreement with the

observational data of pulsars recently studied by Gangopadhyay et al. [2013]. The

model parameters are carefully selected so that the models satisfy all the physi-

cal requirements throughout the distribution. We have studied a particular model

of PSR J1614-2230 and have shown that various physical requirements stipulated
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earlier are satisfied throughout the star.

Figure 3.10: Variation of density against radial variable r.
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Figure 3.11: Variation of pressures against radial variable r.

Figure 3.12: Variation of anisotropy against radial variable r.
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Figure 3.13: Variation of 1
c2
dpr
dρ
, 1
c2
dp⊥
dρ

against radial variable r.

Figure 3.14: Strong energy condition Vs radial variable r.
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Figure 3.15: Variation of pr and p⊥ against ρ.

Figure 3.16: Variation of Γ against radial variable r.
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Figure 3.17: Variation of gravitational redshift against radial variable r.
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