
Chapter 5

Anisotropic Compacts Stars on

Paraboloidal Spacetime with

Linear Equation of State

New exact solutions of Einstein’s field equations (EFEs) by assuming linear equation

of state, pr = α(ρ− ρa) where pr is the radial pressure and ρa is the surface density,

are obtained on the background of a paraboloidal spacetime. By assuming estimated

mass and radius of strange star candidate 4U 1820-30, various physical and energy

conditions are used for estimating the range of parameter α. The suitability of

the model for describing pulsars like PSR J1903+327, Vela X-1, Her X-1 and SAX

J1808.4-3658 has been explored and respective ranges of α, for which all physical

and energy conditions are satisfied throughout the distribution are obtained.

5.1 Introduction

Mathematical models of compact superdense stars such as pulsars and quark stars

compatible with observational data has received wide attention in the recent past. A
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CHAPTER 5. . . . 5.1. INTRODUCTION

large number of research articles have emerged making different assumptions in the

physical content as well as spacetime metrics. [Murad and Fatema, 2015b, Murad,

2013a,b, Murad and Fatema, 2013, Fatema and Murad, 2013, Murad and Fatema,

2015a, Maurya and Gupta, 2011a,b,c, Maurya et al., 2017b, 2016b,a,c, Dayanandan

et al., 2016, Sharma and Ratanpal, 2013, Pandya et al., 2015, Thomas and Pandya,

2015c,b, Ratanpal et al., 2015b,a].

Theoretical study of relativistic stars by Ruderman [1972] and Canuto [1974] have

shown that when the matter distributions have density in the nuclear regime, the

pressure distribution in the star may not be isotropic. Diverse reasons for the ap-

pearance of anisotropy have been extensively discussed by Bowers and Liang [1974].

Since then a number of research articles have been appeared in literature incorpo-

rating anisotropy in pressure. [Maharaj and Maartens, 1989, Gokhroo and Mehra,

1994, Patel and Mehta, 1995, Tikekar and Thomas, 1998, 1999, 2005, Thomas et al.,

2005, Thomas and Ratanpal, 2007, Dev and Gleiser, 2002, 2003, 2004].

For constructing realistic relativistic models, the Einstein’s field equations are to

be solved by supplementing an equation of state (EOS) for the matter content.

In many works recently appeared in literature, researchers used general barotropic

equation of state in which the density and pressure related in linear, quadratic or

polytropic form. In the construction of relativistic models compatible with observa-

tional data Sharma and Maharaj [2007] used linear equation of state. Ngubelanga

et al. [2015] also used linear equation of state in isotropic coordinates for physically

viable relativistic models of compact stars. Feroze and Siddiqui [2011] and Maharaj

and Takisa [2012] have used quadratic EOS for obtaining solution of anisotropic

distributions.Thirukkanesh and Ragel [2012], Maharaj and Takisa [2013] have used

polytropic EOS for generating solutions for relativistic stars.

When the star consists of matter distribution beyond nuclear regime, the corre-

sponding solution to EFEs is to be examined carefully. The general condition such
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as regularity, energy and causality conditions satisfied by the solution in the rela-

tivistic set up have been stipulated by Knutsen [1988a], Murad and Fatema [2015b].

Once an EOS has been specified, TOV equation can be integrated from centre to

boundary, where the pressure drops to zero, to determine the mass and radius of the

star. For superdense stars like pulsars in the category of strange stars, linear equa-

tion of state is the most appropriate EOS for its matter distribution Sharma and

Maharaj [2007]. They have studied relativistic stars with linear equation of state by

taking the coefficient of dr2 in the spacetime metric a specific form eµ = 1+ar2

1+(a−b)r2 .

Different solutions have been generated in this set up for different choices of arbitrary

constants a and b. Recently Ngubelanga et al. [2015] obtained solutions for charged

anisotropic distributions in isotropic coordinates with linear equation of state and

compared their model with a number of known pulsars.

5.2 The Spacetime Metric

We shall take the interior spacetime metric for the anisotropic fluid distribution as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2sin2θdφ2, (5.1)

where

eλ(r) = 1 +
r2

R2
. (5.2)

This metric known as paraboloidal spacetime metric, has been extensively studied by

Jotania and Tikekar [2006]. The constant 1
R2 can be identified with the constant C

of Finch and Skea spacetime metric [Finch and Skea, 1989]. We can also obtain

the right hand side of equation (5.2) by taking a = b = 1
R2 in the expression

eµ = 1+ar2

1+(a−b)r2 of the stellar model given by Sharma and Maharaj [2007]. It is to be

noted that the metric function is well-behaved for a = b, whereas the coefficient of
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dt2, viz., eγ, obtained as a solution of Einstein’s field equations is singular for a = b.

So the solution given by Sharma and Maharaj [2007] excludes the possibility a = b

in their solution.

Following Maharaj and Maartens [1989], we write the energy-momentum tensor for

anisotropic fluid distribution as

Tij = (ρ+ p)uiuj − pgij +
√

3S

[
CiCj −

1

3
(uiuj − gij)

]
, (5.3)

where ρ, p and ui, respectively, denote the energy density, isotropic pressure and

4−velocity of the fluid. S(r) denotes the magnitude of anisotropic stress and Ci =

(0, e−
λ
2 , 0, 0).

The surviving components of energy-momentum tensor are:

T 0
0 = ρ, T 1

1 = −
(
p+

2S√
3

)
, T 2

2 = T 3
3 = −

(
p− S√

3

)
. (5.4)

The radial and tangential pressures are now given by

pr = −T 1
1 =

(
p+

2S√
3

)
, (5.5)

p⊥ = −T 2
2 =

(
p− S√

3

)
. (5.6)

so that

S =
pr − p⊥√

3
. (5.7)

The Einstein’s field equations constitute the following set of three non-linear differ-
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ential equations in terms of potentials λ and ν.

8πρ =
1− e−λ

r2
+
e−λλ′

r
, (5.8)

8πpr =
e−λ − 1

r2
+
e−λν ′

r
, (5.9)

8πp⊥ = e−λ
[
ν ′′

2
+
ν ′2

4
− ν ′λ′

4
+
ν ′ − λ′

2r

]
, (5.10)

If we define

m(r) = 4π

r∫
0

x2ρ(x)dx, (5.11)

then the system of equations (5.8)–(5.10) can be equivalently written as

e−λ = 1− 2m

r
, (5.12)(

1− 2m

r

)
ν ′ = 8πprr +

2m

r2
, (5.13)

−4

r
(8π
√

3S) = (8πρ+ 8πpr)ν
′ + 2(8πp′r). (5.14)

Using (5.2) in (5.8), we get

8πρ =
1

R2

(
3 + r2

R2

)
(
1 + r2

R2

)2 , (5.15)

as the matter density and from equation (5.11), we get

m(r) =
1

2R2

r3

1 + r2

R2

, (5.16)

as the mass of the distribution inside the radius r.

The metric potential ν can be obtained from equation (5.13) once we know the

expression for pr. For this, we define an equation of state pr = pr(ρ). If we consider

models of pulsar to be strange stars the most appropriate equation of state is linear
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CHAPTER 5. . . . 5.3. LINEAR EQUATION OF STATE

equation of state considered by Dey et al. [1998], Gondek-Rosińska et al. [2000] and

Zdunik [2000].

5.3 Linear Equation of State

We shall take

pr = αρ+ β (5.17)

where α and β are constants. The radius a of the star with this pressure distribution

is obtained by using the condition pr(r = a) = 0. This gives β = −αρa, where

ρa = ρ(r = a).

Therefore, equation (5.17) takes the form

pr = α(ρ− ρa). (5.18)

Using (5.18) in equation (5.13), we get

ν ′ =

{
α

[
3 + r2

R2

1 + r2

R2

−
3 + a2

R2(
1 + a2

R2

)2

(
1 +

r2

R2

)]
+ 1

}
r

R2
(5.19)

and consequently

eν = A

(
1 +

r2

R2

)α
exp

[
(α + 1)

2

r2

R2
− α

2

(
3 +

a2

R2

)
×(

1 +
a2

R2

)−2(
1 +

1

2

r2

R2

)
r2

R2

]
, (5.20)

where A is a constant of integration. This is a new exact solution which can not be

obtained as a special case by putting a = b = 1
R2 in the solution given by Sharma

and Maharaj [2007], because in their case when a = b, the coefficient of dt2 given

by eγ becomes zero.
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The gradient of radial pressure is given by

8π
dpr
dr

= α(8π
dρ

dr
) = −α

5 + r2

R2

R2
(
1 + r2

R2

)3

2r

R2
< 0. (5.21)

Hence the density ρ and pressure pr are decreasing functions of r. The anisotropy

S has the expression

8π
√

3S = − r
2

R2

{
α

R2

5 + r2

R2(
1 + r2

R2

)3 +

[
1 + α

R2

3 + r2

R2(
1 + r2

R2

)2 −
α

R2

3 + a2

R2(
1 + a2

R2

)2

]

×

[
α

4

3 + r2

R2(
1 + r2

R2

) − α

4

3 + a2

R2(
1 + a2

R2

)2

(
1 +

r2

R2

)
+

1

4

]}
(5.22)

It can be noticed from equation (5.22) that the anisotropy vanishes at the centre.

The tangential pressure p⊥ can be obtained using

8πp⊥ = 8πpr − 8π
√

3S (5.23)

The expressions for dpr
dρ

and dp⊥
dρ

take the following form:

dpr
dρ

= α, (5.24)

dp⊥
dρ

=
1

4

1

R14
(
1 + r2

R2

) (
5 + r2

R2

) (
1 + a2

R2

)4 −R
14

(
1 +

r2

R2

)(
3− r2

R2

)(
1 +

a2

R2

)4

+

α2R10a2

(
1− r2

a2

)(
r2a2

R4
+

3 (r2 + a2)

R2
+ 5

)[
2r6a2

R6
− 6r6 + 5r4a2 + 3r2a4

R4

−15r4 + 10r2a2 − 3a4

R2
+ 5a2

(
3r2

a2
− 1

)]
+ 2αR4

(
1 +

a2

R2

)2{
−2R6a4

(
r4

R4
− r2

R2
+ 7

)
−R8a2

(
r8

R8
+

4r6

R6
+

11r4

R4
+

2r2

R2
+ 30

)
+R10

(
3r8

R8
+

12r6

R6
+

23r4

R4
+

16r2

R2
+ 20

)}
(5.25)
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CHAPTER 5. . . . 5.4. MATCHING CONDITION

The unknown parameters in our model with linear equation of state are A,α and R.

5.4 Matching Condition

The matching of first fundamental form across the boundary r = a guarantees the

continuity of the metric coefficients across r = a. On matching the interior spacetime

metric (5.1) with the Schwarzschild exterior metric given by (2.22) we get

1− 2M

a
=

(
1 +

a2

R2

)−1

(5.26)

and

1− 2M

a
= A

(
1 +

a2

R2

)α
e

1
2
a2

R2 (α+1)−
3+ a2

R2

(1+ a2

R2 )
2
α
2
a2

R2

(
1+ 1

2
a2

R2

)
. (5.27)

Equations (5.26) and (5.27) determine the geometric parameter R and the constant

of integration A as

R =

√
a3

2M

(
1− 2M

a

)
, (5.28)

A =
1(

1 + a2

R2

)α+1 × exp

{
−1

2

a2

R2
(α + 1) +

3 + a2

R2(
1 + a2

R2

)2

α

2

a2

R2

(
1 +

1

2

a2

R2

)}
. (5.29)

The second condition imposed on the boundary is that ∂gtt
∂r

of the interior spacetime

metric (5.1) should match continuously with that of exterior spacetime metric (2.22)

across r = a. [Misner and Sharp, 1964, Maurya et al., 2017a]. This guarantees the

continuity of radial pressure across the boundary r = a. It is found that ∂gtt
∂r

at r = a

takes the value a

R2
(

1+ a2

R2

) for both metrics (5.1) and (2.22) indicating the continuity

of the derivative of metric coefficients and in turn the continuity of radial pressure.

In order to validate our model for known star, we consider 4U1820− 30 whose mass

and radius are respectively 1.58M� and 9.1km Gangopadhyay et al. [2013]. Using
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these values, we obtain the geometric parameter R = 8.88 and consequently the

integration constant A from equations (5.28) and (5.29), respectively. The range

for the parameter α can be determined using the physical acceptability conditions

described in next section.

5.5 Physical Acceptability Conditions

Out of the 127 solutions examined by Delgaty and Lake [1998] only 16 solutions

passed the elementary test for physical relevance out of which only 9 qualified the

decreasing sound speed from centre to boundary. Hence it is pertinent to examine

the following physical acceptability conditions [Kuchowicz, 1972, Buchdahl, 1979,

Murad and Fatema, 2015b, Knutsen, 1988a] to validate the model.

a. Regularity Conditions:

(i) The metric potentials eλ > 0, eν > 0 for 0 ≤ r ≤ a.

From equations (5.2) and (5.20) it is clear that these conditions are indeed

satisfied in the present model.

(ii) ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0 for 0 ≤ r ≤ a.

Equations (5.15) and (5.18), respectively, indicate that ρ ≥ 0, pr ≥ 0

for 0 ≤ r ≤ a.

From equations (5.22) and (5.23) it can be shown that the conditions

p⊥(r = 0) ≥ 0 and p⊥(r = a) ≥ 0 impose a bound on α, viz., 0 ≤ α ≤

0.34311.

(iii) pr(r = a) = 0.

Equation (5.18), for radial pressure pr clearly shows pr(r = a) = α(ρa −

ρa) = 0, where a is the boundary radius of the star.
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b. Causality Conditions:

(i) 0 ≤ dpr
dρ
≤ 1, 0 ≤ dp⊥

dρ
≤ 1 for 0 ≤ r ≤ a.

From equation (5.18), dpr
dρ

= α and consequently 0 ≤ dpr
dρ
≤ 1 implies

0 ≤ α ≤ 1.

c. Energy Conditions:

(i) ρ − pr − 2p⊥ ≥ 0 (strong energy condition), ρ ≥ pr and ρ ≥ p⊥ (weak

energy condition) for 0 ≤ r ≤ a.

ρ − pr − 2p⊥ ≥ 0 at r = 0 and r = a impose conditions on α, viz.,

α ≤ 0.491062 and −0.310332 ≤ α.

d. Monotone Decrease of Physical Parameters

(i) dρ
dr
≤ 0, dpr

dr
≤ 0, for 0 ≤ r ≤ a.

By equation (5.21), the gradients of density and radial pressure are given

by 8π dpr
dr

= α(8π dρ
dr

) = −α 5+ r2

R2

R2
(

1+ r2

R2

)3 2r
R2 ≤ 0 for 0 ≤ r ≤ a,

indicating that the density and radial pressure are decreasing radially

outward.

(ii) d
dr

(
dpr
dρ

)
≤ 0, for 0 ≤ r ≤ a.

From equation (5.24), it is evident that

d

dr

(
dpr
dρ

)
= 0

indicating that the stipulated condition indeed holds.

(iii) d
dr

(
pr
ρ

)
≤ 0 for 0 ≤ r ≤ a.

From equation(5.18), we have

d

dr

(
pr
ρ

)
=

d

dr
α

(
1− ρa

ρ

)
= α

ρa
ρ2

dρ

dr
.
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Since dρ
dr
< 0, we have d

dr

(
pr
ρ

)
< 0, indicating that pr

ρ
is a decreasing

function of r.

e. Pressure Anisotropy

(i) S(r = 0) = 0.

It can be observed from equation (5.22) that the pressure anisotropy S

vanishes at the centre r = 0.

f. Mass-Radius Relation:

(i) According to Buchdahl [1979], the allowable mass radius ratio must sat-

isfy the inequality M
a
≤ 4

9
. For the present model M

a
= 0.256 < 4

9
.

g. Redshift

(i) z = e−
ν
2 − 1 must be decreasing and finite for 0 ≤ r ≤ a.

It is observed that dz
dr
|(r=0) = 0 and dz

dr
|(r=a) = −0.082619.

h. Stability Conditions: A model for which −1 ≤ v2
⊥ − v2

r ≤ 0, where vr and

v⊥ denote radial and transverse sound speed, is potentially stable. This is

equivalent to showing that 0 ≤ dpr
dρ
− dp⊥

dρ
≤ 1. [Abreu et al., 2007, Maurya

et al., 2017a]. Hence,

(i) 0 ≤
(
dpr
dρ

)
−
(
dp⊥
dρ

)
≤ 1 at r = 0 and r = a, respectively, give the bounds

for α, viz., −1.04907 ≤ α ≤ 0.280618 and −2.19921 ≤ α ≤ 0.192717.

To verify the above condition throughout the star we use graphical tech-

niques, which we postpone to next section.

(ii) The relativistic adiabatic index Γ = ρ+pr
pr

dpr
dρ

> 4
3
. for 0 ≤ r ≤ a.

Γ > 4
3

at r = 0 imposes a restriction on α given by α > −0.139852. and

at the boundary it is automatically satisfied.
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Considering all the bounds on α obtained from the physical acceptability conditions

(a) - (h), the valid range of α is obtained as 0.157156 ≤ α ≤ 0.192717 in which all

the conditions are satisfied without fail.

5.6 Discussion

In order to examine the nature of various physical quantities throughout the distri-

bution we shall adopt graphical method in the allowable range of α viz., 0.157156 ≤

α ≤ 0.192717. Figures 5.1, 5.2 and 5.3 clearly show that the density ρ, radial pres-

sure pr and transverse pressure p⊥ are decreasing functions of radius r. In many

models found in literature the transverse pressure is not decreasing function of r.

Figure 5.4 indicates that the anisotropy is zero at the centre and decreasing through-

out the distribution.

In Figure 5.5, we have shown the radial sound speed for α in the range 0.157156 ≤

α ≤ 0.192717, which is constant for any given α. Similarly, figure 5.6 represents how

transverse sound speed varies with respect to radial variable r for 0.157156 ≤ α ≤

0.19271. Figure 5.7 shows the decreasing behavior of the ratio pr
ρ

with the radial co-

ordinate r and specified constant α in the same given range. Figure 5.8 depicts that

the strong energy condition is satisfied throughout the distribution. In order that the

relativistic model to represent a stable model, we must have 0 ≤ dpr
dρ
− dp⊥

dρ
≤ 1 and

the relativistic adiabatic index Γ > 4
3
. Figures 5.9 and 5.10 clearly show that these

conditions are satisfied throughout the distribution for 0.157156 ≤ α ≤ 0.192717.

For the relativistic star, the redshift must be decreasing radially outward and finite

throughout the distribution. Figure 5.11 shows that this is indeed the case through-

out the star for the valid range of α.

We have used the physical parameters of a known star 4U 1820-30 [Gangopad-

hyay et al., 2013] to validate the model. The redshift at the centre of the star
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4U 1820-30 is given by z0 = −1 + 1.86172
√
e0.47136α and boundary redshift is

given by za = 0.431839. It can be noticed that the central redshift is an in-

creasing function of α. For 0.157156 ≤ α ≤ 0.192717, the central redshift varies

in the range [0.931968, 0.948228]. We have calculated the central and boundary

redshifts for PSR J1903+327, Vela X-1, Her X-1 and SAX J1808.4-3658 and dis-

played it in Table 5.1. In particular, for the star Her X-1, the central redshift is

z0 = −1 + 1.34622
√
e0.143476α and surface redshift za = 0.203473. For Her X-1, the

range of α is: 0.113357 ≤ α ≤ 0.219847. Hence the central redshift z0 is in the

range [0.357209, 0.367617] which is in good agreement with Maurya et al. [2015].

For realistic anisotropic star models the surface redshift cannot exceed the values

3.842 or 5.211 when the tangential pressure satisfies the strong or dominant energy

condition, respectively as suggested by Ivanov [2002]; evidently the present model

justifies this requirement.

In Figure 5.12, we have analyzed the mass-radius (M-R) relationship obtained from

the model. The red dot in the figure represents the maximum radius of star and the

star marker represents the maximum mass permitted by the model. From the figure

it can be noticed that the maximum radius is 9.571 kms and the corresponding star

mass is 2.433 M�, while the maximum permitted mass is 3.059 M� and the corre-

sponding radius is 9.023 kms.

The present model is in good agreement with the mass and size of the star 4U

1820-30 and satisfy all the physical acceptability conditions with α in the range

0.157156 ≤ α ≤ 0.192717.
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Figure 5.1: Variation of a density ρ in MeV Fm−3 with respect to a radial coordinate
r for a star 4U 1820-30 within a range [0,9.1] kms and a constant α in the range
[0.157156, 0.192717].
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Figure 5.2: Variation of a radial pressure pr in MeV Fm−3 with respect to a radial
coordinate r for a star 4U 1820-30 within a range [0,9.1] kms and a constant α in
the range [0.157156, 0.192717].
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Figure 5.3: Variation of a transverse pressure p⊥ in MeV Fm−3 with respect to a
radial coordinate r for a star 4U 1820-30 within a range [0,9.1] kms and a constant
α in the range [0.157156, 0.192717].
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Figure 5.4: Variation of an anisotropy S in MeV Fm−3 with respect to a radial
coordinate r for a star 4U 1820-30 within a range [0,9.1] kms and a constant α in
the range [0.157156, 0.192717].
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Figure 5.5: Variation of a radial sound speed dpr
dρ

with respect to a radial coordinate

r for a star 4U 1820-30 within a range [0,9.1] kms and a constant α in the range
[0.157156, 0.192717].
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Figure 5.6: Variation of a transverse sound speed dp⊥
dρ

with respect to a radial coor-

dinate r for a star 4U 1820-30 within a range [0,9.1] kms and a constant α in the
range [0.157156, 0.192717].

144



CHAPTER 5. . . . 5.6. DISCUSSION

Figure 5.7: Variation of a ratio pr
ρ

with respect to a radial coordinate r for a star 4U

1820-30 within a range [0,9.1] kms and a constant α in the range [0.157156, 0.192717].
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Figure 5.8: Variation of a strong energy expression ρ− pr − 2p⊥ in MeV Fm−3 with
respect to a radial coordinate r for a star 4U 1820-30 within a range [0,9.1] kms and
a constant α in the range [0.157156, 0.192717].
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Figure 5.9: Variation of a stability expression
(
dpr
dρ
− dp⊥

dρ

)
with respect to a radial

coordinate r for a star 4U 1820-30 within a range [0,9.1] kms and a constant α in
the range [0.157156, 0.192717].
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Figure 5.10: Variation of an adiabatic index Γ with respect to a radial coordinate
r for a star 4U 1820-30 within a range [0,9.1] kms and a constant α in the range
[0.157156, 0.192717].
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Figure 5.11: Variation of a redshift z with respect to a radial coordinate r for
a star 4U 1820-30 within a range [0,9.1] kms and a constant α in the range
[0.157156, 0.192717].
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Figure 5.12: Variation of a mass M within a range [0, 3.059]M� with respect to a
radius a of a star 4U 1820-30 within a range [0,9.571] kms.

5.7 Application of the Model to Other Stars

We have examined our model with stars like PSR J1903+327, Vela X-1, Her X-1,

SAX J1808.4-3658 and found that the model is in good agreement with the mass

and radius of these stars given by Gangopadhyay et al. [2013]. The valid ranges

of the parameter α for which all the physical, regularity and energy conditions are

satisfied, are displayed in Table 5.1.

Thus we have physically acceptable models of superdense stars with linear equation

of state and a definite 3-space geometry, viz., the paraboloidal spacetime geometry.

The present model is mathematically interesting as it has got a definite geometry

and physically interesting because the spacetime with linear equation of state may

be good candidate for representing strange stars.
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