
Chapter 6

Models of compact stars on

paraboloidal spacetime satisfying

Karmarkar condition

Exact solutions of Einstein’s field equations on the background of paraboloidal space-

time using Karmarkar condition is obtained. The physical acceptability conditions of

the model are investigated and found that the model is compatible with a number of

compact star candidates like Her X-1, LMC X-4, EXO 1785-248, PSR J1903+327,

Vela X-1 and PSR J1614-2230. A noteworthy feature of the model is that it is

geometrically significant and simple in form.

6.1 Introduction

Ever since Schwarzschild obtained exact solution of EFEs, a wide variety of ex-

act solutions with physical significance and devoid of any physical significance were

given by a number of researchers. The analysis of solutions for physical signifi-

cance revealed that out of 127 exact solutions, only 16 could withstand the elemen-
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tary test for physical acceptability of the solutions (Delgaty and Lake [1998]). By

the discovery of superdense stars like neutron stars and pulsars a new interest has

emerged among researchers for developing mathematical models of such distribu-

tions. It has been suggested, theoretically, by Ruderman [1972] and Canuto [1974]

that, stars, whose density in the range greater than 1015gm/cm3 may develop pres-

sure anisotropy within it.

Bowers and Liang [1974] has discussed diverse reasons for the occurrence of anisotropy

inside the star. They have shown that anisotropy can affect the maximum equi-

librium mass and surface redshift of the distribution. Since then, a number of

anisotropic models of superdense stars have been developed and investigated (Ma-

haraj and Maartens [1989], Gokhroo and Mehra [1994], Patel and Mehta [1995],

Tikekar and Thomas [1998, 1999, 2005], Thomas et al. [2005], Thomas and Ratan-

pal [2007]). Impacts of anisotropy on the stability of a stellar configuration have

been studied by Dev and Gleiser [2002, 2003, 2004]. Sharma and Maharaj [2007]

and Thirukkanesh and Maharaj [2008] have obtained analytic solutions of compact

anisotropic stars by assuming a linear equation of state(EOS). To solve the Einstein-

Maxwell system, Komathiraj and Maharaj [2007a] have used a linear equation of

state. By assuming a linear EOS, Sunzu et al. [2014] have reported solutions for a

charged anisotropic quark star. Feroze and Siddiqui [2011] and Maharaj and Tak-

isa [2012] have used a quadratic-type EOS for obtaining solutions of anisotropic

distributions. Varela et al. [2010] have analyzed charged anisotropic configurations

admitting a linear as well as non-linear equations of state. For a star composed of

quark matter in the MIT bag model, Paul et al. [2011] have shown how anisotropy

could effect the value of the Bag constant. For a specific polytropic index, exact so-

lutions to Einstein’s field equations for an anisotropic sphere admitting a polytropic

EOS have been obtained by Thirukkanesh and Ragel [2012]. Maharaj and Takisa

[2013] have used the same type of EOS to develop an analytical model describing a
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charged anisotropic sphere.

Bhar [2015a,b] and Singh and Pant [2015] have shown that pressure anisotropy leads

to arbitrarily large red-shifts. There has been a renewed interest among researchers

to develop spacetime metrics of stellar objects of embedding class one type space-

times (Karmarkar [1948]). Solutions representing superdense stars of embedding

class one which are compatible with observational data of pulsars have been given

by Bhar et al. [2016], Singh and Pant [2016], Singh et al. [2017a,b,c].

6.2 Solution of Field Equations Using Karmarkar

Condition

We shall consider the spacetime metric

ds2 = eν(r)dt2 − eλdr2 − r2dθ2 − r2sin2θ dφ2 (6.1)

with

eλ =

(
1 +

r2

R2

)
(6.2)

for describing the interior of anisotropic fluid distribution. A detailed study of the

metric (6.1) with (6.2) has been done by Jotania and Tikekar [2006].

The energy-momentum tensor for anisotropic matter distribution is taken as

T ji = (ρ+ pr)u
jui − p⊥δji + (pr − p⊥)ηjηi (6.3)

where ui denotes the four-velocity and ηi is a space like vector orthogonal to ui

satisfying the conditions

ujui = 1, ηjηi = −1 and ujηi = 0. (6.4)
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ρ, pr, p⊥ denotes the proper density, the radial pressure and the transverse pressure,

respectively.

The Einstein’s field equations for the metric (6.1) along with the ansatz (6.2) with

energy-momentum tensor (6.3) are equivalent to the following set of three equations

8πρ =
e−λλ′

r
+

1− e−λ

r2
, (6.5)

8πpr =
e−λν ′

r
+
e−λ − 1

r2
, (6.6)

8πp⊥ = e−λ
(
ν ′′

2
+
ν ′2

4
− ν ′λ′

4
+
ν ′ − λ′

2r

)
. (6.7)

Equations (6.5) – (6.7) consist of a system of three equations in five unknowns

(λ, ν, ρ, pr, p⊥). One of the variables λ is known from (6.2). Once we know the value

of ν, the values of ρ, pr, p⊥ can be obtained from equations (6.5), (6.6) and (6.7).

The spacetime metric (6.1) is of class one type if it satisfies the Karmarkar condition

[Karmarkar, 1948] given by

R1414R2323 = R1212R3434 +R1224R1334 (6.8)

with R2323 6= 0 where components of Riemann curvature tensor are given by

R2323 = r2sin2θ
[
1− e−λ

]
,

R1212 =
1

2
λ′r,

R1334 = R1224 sin
2θ = 0,

R1414 = −eν
[
ν ′′

2
+
ν ′2

4
− 1

4
λ′ν ′

]
,

R2424 = −1

4
ν ′reν−λ,

R3434 = sin2θR2424.
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The Karmarkar condition (6.8) leads to the differential equation

2ν ′′

ν ′
+ ν ′ =

λ′eλ

eλ − 1
(6.9)

Using the expression of eλ given in (6.2), equation (6.9) becomes

2ν ′′

ν ′
+ ν ′ =

2

r
(6.10)

which gives a closed form solution

eν =

(
A+B

r2

R2

)2

. (6.11)

The explicit form of the spacetime metric is

ds2 =

(
A+B

r2

R2

)2

dt2 −
(

1 +
r2

R2

)
dr2 − r2dθ2

−r2sin2θ dφ2, (6.12)

where A and B are constants of integration which are to be determined using ap-

propriate boundary conditions.

6.3 Solution of Field Equations

The field equations (6.5) – (6.7) can now be solved by using the values of λ and

ν given by equations (6.2) and (6.11). The expressions for ρ, pr and p⊥ and the
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anisotropy factor ∆(= pr − p⊥) are given, respectively, by

8πρ =
3 + r2

R2

R2
(
1 + r2

R2

)2 , (6.13)

8πpr =
B
(

4− r2

R2

)
− A

R2
(
A+B r2

R2

) (
1 + r2

R2

) , (6.14)

8πp⊥ =
B
(

4 + r2

R2

)
− A

R2
(
A+B r2

R2

) (
1 + r2

R2

)2 , (6.15)

and

8π∆ =

r2

R2

[
B
(

2− r2

R2

)
− A

]
R2
(
A+B r2

R2

) (
1 + r2

R2

)2 . (6.16)

The anisotropy ∆ vanishes at r = 0, which is a required condition.

6.4 Boundary Conditions

The interior spacetime metric (6.1) (with 6.2) should match continuously with the

Schwarzschild exterior metric given by (2.22) across the boundary r = a. This gives

1− 2M

a
=

1

1 + a2

R2

(6.17)

determining the values of the geometric parameter R in terms of a and M by the

relation

R = a

√
a

2M
− 1. (6.18)

The total mass enclosed within the radius a is given by

M =
a3

R2

2
(
1 + a2

R2

) . (6.19)
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Equating the coefficients of dt2, we get

1− 2M

a
=

(
A+B

r2

R2

)2

=
1

1 + a2

R2

(6.20)

which gives

A+B
a2

R2
=

1√
1 + a2

R2

. (6.21)

The second boundary condition is given by pr(r = a) = 0. This leads to

− A+B

(
4− a2

R2

)
= 0. (6.22)

Equations (6.21) and (6.22) determine the values of A and B in the form

A =
4− a2

R2

4
√

1 + a2

R2

, (6.23)

B =
1

4
√

1 + a2

R2

. (6.24)

Using (6.23) and (6.24) we rewrite equations (6.14) – (6.16) as

8πpr =
a2

R2 − r2

R2

R2
(
4 + r2

R2 − a2

R2

) (
1 + r2

R2

) , (6.25)

8πp⊥ =
a2

R2 + r2

R2

R2
(
4 + r2

R2 − a2

R2

) (
1 + r2

R2

)2 , (6.26)

8π∆ =

r2

R2

(
a2

R2 − r2

R2 − 2
)

R2
(
4 + r2

R2 − a2

R2

) (
1 + r2

R2

)2 . (6.27)

6.5 Physical Acceptability Conditions

A physically acceptable anisotropic stellar model must satisfy the following con-

ditions (Kuchowicz [1972], Buchdahl [1979], Murad and Fatema [2015b], Knutsen
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[1988a]):

(a). Regularity conditions

(i). The metric potentials eλ > 0, eν > 0, for 0 ≤ r ≤ a.

(ii). ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0 for 0 ≤ r ≤ a.

(iii). pr(r = a) = 0.

(b). Causality conditions

(i). 0 ≤ dpr
dρ
≤ 1, for 0 ≤ r ≤ a.

(ii). 0 ≤ dp⊥
dρ
≤ 1, for 0 ≤ r ≤ a.

(c). Energy conditions

(i). ρ− pr − 2p⊥ ≥ 0 (strong energy condition),

(ii). ρ ≥ pr, ρ ≥ p⊥ (weak energy conditions).

(d). Monotone decrease of physical parameters

(i). dρ
dr
≤ 0, dpr

dρ
≤ 0 for o ≤ r ≤ a,

(ii). d
dr

(
dpr
dρ

)
≤ 0, for 0 ≤ r ≤ a,

(iii). d
dr

(
pr
ρ

)
≤ 0 for 0 ≤ r ≤ a.

(e). Pressure anisotropy

∆(r = 0) = 0.

(f). Mass-radius relation

According to Buchdahl [1979], the allowable mass radius relation must satisfy

the inequality M
R
≤ 4

9
.
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(g). Redshift

The redshift z = e−
ν
2 − 1 must be a decreasing function of r and finite for

0 ≤ r ≤ a.

(h). Stability condition

The relativistic adiabatic index Γ = ρ+pr
pr

dpr
dρ
≥ 4

3
for 0 ≤ r ≤ R.

6.6 Variation of Physical Parameters

The variation of density ρ with respect to the radial variable r is given by

8π
dρ

dr
= − 2

R2
· r
R2

(
5 + r2

R2

)
(
1 + r2

R2

)3 (6.28)

Since dρ
dr
< 0, for 0 < r ≤ a, the density distribution decreases radially outward.

The gradient of radial pressure, transverse pressure and the anisotropy variable have

the following expressions

8π
dpr
dr

= − 2r

R4

4
(

1 + r2

R2

)
+
(
a2

R2 − r2

R2

)(
4 + r2

R2 − a2

R2

)
(
4 + r2

R2 − a2

R2

)2 (
1 + r2

R2

)2 , (6.29)

8π
dp⊥
dr

=
2r

R4

[
4
(

1− r2

R2

)
− 2 a2

R2

(
5 + r2

R2

)
+ 2

(
a4

R4 − r4

R4

)]
(
4 + r2

R2 − a2

R2

)2 (
1 + r2

R2

)3 , (6.30)

8π
d∆

dr
=

2r

R4
× 1(

4 + r2

R2 − a2

R2

)2 (
1 + r2

R2

)3 ×{(
4 +

r2

R2
− a2

R2

)(
a2

R2
− 2r2

R2
− r4

R4
− 2

)
− r

2

R2

(
1 +

r2

R2

)(
a2

R2
− r2

R2
− 2

)}
, (6.31)
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It can be seen from equation (6.29) that 8π dpr
dr

< 0 for a2

R2 < 4. This indicates

that radial pressure is a decreasing function of r. However due to the complexity

of expressions in the right hand side of equations (6.30) and (6.31), it is difficult to

obtain the sign of the terms in their right hand side. However it can be seen from

equations (6.26) and (6.27) that p⊥ and ∆ are also decreasing functions of r.

The expressions for radial and transverse speed of sound, υ2
r and υ2

⊥, and d∆
dρ

are

given by

υ2
r =

dpr
dρ

=

(
1 + r2

R2

)
(
4 + r2

R2 − a2

R2

)2 (
5 + r2

R2

) [4(1 +
r2

R2

)
+

(
a2

R2
− r2

R2

)(
4 +

r2

R2
− a2

R2

)]
,(6.32)

υ2
⊥ = −

4
(

1− r2

R2

)
− 2 a2

R2

(
5 + r2

R2

)
+ 2

(
a4

R4 − r4

R4

)
(
4 + r2

R2 − a2

R2

)2 (
5 + r2

R2

) , (6.33)

d∆

dρ
= − 1(

4 + r2

R2 − a2

R2

)2 (
5 + r2

R2

) [(4 +
r2

R2
− a2

R2

)(
a2

R2
− 2

r2

R2
− r4

R4
− 2

)
− r2

R2
×(

1 +
r2

R2

)(
a2

R2
− r2

R2
− 2

)]
. (6.34)

6.7 Physical analysis

In order to examine the compatibility of the model with observational data, we have

considered compact stars Her X-1, LMC X-4, EXO 1785-248, PSR J1903+327, Vela

X-1 and PSR J1614-2230 whose mass and size are known [Gangopadhyay et al.,

2013]. By taking the mass M and radius a, the value of the geometric parameter

R is found from the equation (6.18). In Fig. 6.1 we have shown the variations of

density against the radius. It can be seen that the density accommodated by a star

increases as the compactness increases. Her X-1 accommodates minimum density

whose compactness is minimum while PSR J1614-2230 has maximum density for

which compactness is maximum among all compact star candidates studied. The

variation of radial pressure pr and transverse pressure p⊥ are shown in Figs. 6.2
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Table 6.1: The compactness u = M
a

of different stars are shown in the following
table.

Star M a R u = M
a

(M�) (km) (km)

Her X-1 0.85 8.1 12.096 0.1548
LMC X-4 1.04 8.301 10.8412 0.1848

EXO 1785-248 1.3 10 10.1182 0.1917
PSR J1903+327 1.667 9.438 9.048 0.2605

Vela X-1 1.77 9.56 8.71 0.2731
PSR J1614-2230 1.97 9.69 7.91 0.2999

and 6.3 respectively. It can be seen that both pr and p⊥ decreases radially outward

and they increase with compactness. In Fig. 6.4, we have shown the variation of

anisotropy against radial directions. Its value is zero at the centre and |∆| increases

radially outward. The anisotropy is negative throughout the distribution. Further,

the numerical value of anisotropy is more for stars with more compactness. The

velocity of sound in the radial direction υ2
r and transverse direction υ2

⊥ are shown

in Figs. 6.5 and 6.6 respectively. From both figures it can be noticed that 0 <

dpr
dρ

< 1, and 0 < dp⊥
dρ

< 1. Further these velocities are more in magnitude in more

compact stars. Fig. 6.7 shows that the strong energy condition satisfies for all

stars throughout the distribution. The variation of adiabatic index is displayed in

Fig. 6.8. Its value is greater than 4
3

throughout and the star with less compactness

accommodate more Γ value. It can be noticed that as compactness increases, the

value of Γ decreases. This indicates that the star become less stable due to the

increase in compactness. In Fig. 6.9 we have shown the variation of redshift z in the

radial direction. Stars with more compactness shows more redshift. That is while

Her X-1 shows minimum redshift while PSR J1614-2230 shows max redshift among

all the compact star candidates.
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Figure 6.1: Density profile
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Figure 6.2: Radial pressure profile
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Figure 6.3: Transverse pressure profile
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Figure 6.4: Anisotropy profile
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Figure 6.5: Radial sound speed profile
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Figure 6.6: Transverse sound speed profile

165



CHAPTER 6. . . . 6.7. PHYSICAL ANALYSIS

Her X-1

LMC X-4

EXO 1785-248

PSR J1903+327

Vela X-1

PSR J1614-2230

2 4 6 8
r(km)

300

400

500

600

700

ρ-pr-2p⟂(MeV Fm
-3)

Figure 6.7: Strong energy condition profile
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Figure 6.8: Adiabatic index profile.
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Figure 6.9: Redshift profile.

6.8 Discussion

We have studied the compatibility of the model developed using Karmakar condi-

tion in the background of paraboloidal spacetime for compact stars like Her X-1,

LMC X-4, EXO 1785-248, PSR J1903+327, Vela X-1 and PSR J1614-2230. It is

found that our model satisfy the elementary physical requirements for representing

a superdense compact star through graphical method. It is found that the model

developed can accommodate the mass and radius of many of the compact star can-

didates given by Gangopadhyay et al. [2013].

It is found that stars whose compactness is more accommodate more density, pres-

sure and ∆. The redshift increase with compactness while the value of Γ decreases

with compactness showing that the stability decreases with increase in compactness.

A pertinent feature of the model is that the exact solution obtained is simple in na-

ture which is seldom found in many solutions. Though we have displayed here the
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physical analysis, only for few compact star models, it can be applied to a larger

class of known pulsars. The model possesses a definite background spacetime geom-

etry, namely paraboloidal geometry, and the expression involved in the solution are

simple in nature.
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