
Chapter 7

On Higher Order Resonant

Periodic Orbits in the

Photo–Gravitational Restricted

Three–Body Problem

7.1 Introduction

A number of problems in space dynamics and astronomical systems can be solved

using the techniques of restricted three–body problem (RTBP). Therefore, RTBP

has received special significance in astrodynamics and astrophysics. The orbits of

artificial satellite and spacecrafts are to be studied based on the theory of N–body

problem. However, in many physical problems it can be approximated to three–

body problem. For example, in the case of space missions from Earth to Moon or

between two planets the technique of RTBP can be used. In such missions analytic

and numerical techniques are used to solve the equations of motion developed in the

framework of circular or elliptical RTBP.

The Kirkwood gap and the depletion of asteroid around Jupiter can be studied

using RTBP and the theory of resonance. The stability of motion in the proximity

of Lagrangian points bifurcates to two important cases: In the first case astroid
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population is expected around the triangular points as they are stable equilibrium

points. In the second case we have the three unstable collinear equilibrium points,

which are considered as repellent regions for the asteroid population. However, these

points are suitable for transfer of spacecraft to a periodic orbit with the expense

of the minimum energy. [Beutler (2004)], [Valtonen and Karttunen (2006)] have

studied the stability of asteroid population using RTBP. Designing of quasi–periodic

and periodic orbits around Lagrangian points have been carried out by [Markellos

et. al. (1993)], [Dutt and Sharma (2011a)] [Abouelmagd (2012)], [Abouelmagd et.

al. (2015)] and [Sosnitskii (2017)].

One of the most important contribution of RTBP is the Jacobi integral which can

be used to construct the zero velocity curves, which enable us to determine the per-

mitted regions of secondary body in space [Lukyanov (2009)] and [Abouelmagd and

Mostafa (2015)]. Poincaré surface section (PSS) technique given by [Poincare (1892)]

is a widely used technique for analyzing periodic and quasi–periodic orbits in a qual-

itative way. [Dutt and Sharma (2010)], [Dutt and Sharma (2011a)] have analyzed

periodic orbits for Earth–Moon and Sun– Mars systems using PSS. [Pathak et. al.

(2016a)], [Pathak and Thomas(2016b)] have used PSS technique to analyze periodic

and quasi–periodic orbits for Sun–Saturn system with actual oblateness of Saturn

and solar radiation pressure as perturbation. [Pathak and Thomas(2016b)] have

studied stability analysis and separatrix analysis for different solar radiation pres-

sure using PSS technique. [Pathak and Thomas (2016c)] and [Pathak and Thomas

(2016d)] have analyzed periodic orbits around both primaries for Sun–Earth and

Sun–Mars systems with oblateness and solar radiation pressure as the perturbation

and have studied stability analysis using PSS. The PSS can be used to identify the

periodic, quasi–periodic and chaotic regions in the phase space. Further, using Ja-

cobi integral and PSS technique we can identify the order of resonance with the help

of number of islands in the PSS.

7.1.1 Overview on resonance

The study of resonance has wide ranging applications in the solar system dynamics

and theories related to satellite formation. It also plays an important role in the

study of formation of rings around planets. A numerical relationship between fre-

quencies or periods give rise to resonance. The resonance can be due to spin–orbit
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coupling or orbit–orbit coupling of two or more bodies. The reason for the moon

always keeping its face towards the Earth is due to the spin–orbit resonance between

them [Murray and Dermot (1999)]. It has been discussed by [Burns et. al. (1984)],

that the thin ring around Jupiter is due to resonance in the magnetic field of the

Jupiter with the motion of dust particles in its gravitational field.

Like the Earth–Moon system, majority of natural satellites of planets in the so-

lar system are in synchronous spin–orbit resonance. The orbit–orbit resonance oc-

curs among three of the major four satellites of Jupiter, known as Galilean satel-

lites. More references in this regard are found in the works of [Henrard (1988)] and

[Yoshikawa (1989)]. [Greenberg (1977)] and [Peale (1986)] have given useful reviews

about orbital evolution through resonance. A large number of Trans–Neptunian ob-

jects (TNOs) having exterior order of resonance 2 : 3 have received wide attention

[Jewitt (1999)]. There are several objects having resonance close to the 1 : 2, 1 : 3

and 1 : 4. In the Trans-Neptunian belt, stable regions close to resonant motion

of TNOs is detected by [Morbidelli (1998), Yu and Tremaine (1999), Nesvorny and

Roig (2001), Nesvorny and Roig (2000)].

On the PSS resonances can be detected with the help of number of islands. An

extensive study on resonances has been done by [Morbidelli (1998)]. [Belbruno and

Marsden (1997), Koon et. al.(2000)] have observed that in the motion of asteroids

and comets, chaotic trajectories can be trapped around a resonance for a long time.

[Tsiganis et. al. (2000)] have studied asteroids with autocorrelation time series

function. [Ferraz–Mello et. al.(2003)] have analyzed existence of asymmetric libra-

tion and their importance for the stability of the 1 : 2 and 1 : 3 resonant motion

in satellite and extra solar planetary systems. [Voyatzis and Kotoulas (2005)] have

studied number of resonances associated with the dynamical features of Kuiper belt

and located between 30 and 48 AU. This study was based on the computation of

resonant periodic orbits and their stability. [Migliorini et al. (1998)] have studied

the consequences higher order resonances 7 : 2 and 10 : 3 with Jupiter and reso-

nances 4 : 7, 5 : 9, 7 : 2 with Mars. [Morbidelli et. al. (1995)] have shown that

some asteroid families are at higher order mean resonances 7:3 and 9:4. Outer as-

teroid belt also shows higher resonances of order 8 : 5, 7 : 4, and 9 : 5, [Holman

and Murray (1996)]. [Chiang et. al. (2004), Emel’yanenko and Kiseleva (2008)]

have also shown that many of the Trans–Neptune objects (TNO) show higher order

resonances 5 : 2, 7 : 3, 7 : 4, and 9 : 5. It was pointed out by [Thommes (2005)], that
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higher order resonances 5 : 2, 7 : 4, 9 : 5 have some role in the formation of planetary

systems. [Balint et. al.(2012)] have studied the stability of higher order resonances

in the restricted three body problem in which the primaries are the Sun–Jupiter

and the Sun–Neptune systems. Asteroid belt and Saturn’s ring are the results of

interior resonance. The Saturnian system has widest variety of resonance phenom-

ena [Murray and Dermot (1999)]. The Jupiter has a thin ring, which is thought to

have been created by resonances. This resonance is due to numerical relationship

between frequencies of motion of dust particle in Jupiter’s gravitational field with

rotation of the magnetic field of the planet [Burns et. al. (1984)]. [Contopoulos G.

(1978)] have studied higher order resonance and they explained method of obtaining

higher order resonant orbits by giving examples. Therefore it is pertinent to study

the dynamics of higher order resonances. We have analyzed higher order interior

resonant periodic orbits. We have obtained periodic orbits using PSS technique for

the Sun–Earth and Sun–Mars systems incorporating solar radiation pressure and

oblateness of second primary body as perturbing forces. The seventh, ninth and

eleventh order interior resonant periodic orbits are analyzed for both Sun–Earth

and Sun–Mars systems. The location, eccentricity and period of resonant orbits are

investigated in the perturbed case for a given value of Jacobi constant C.

For the given order of resonance, period of the orbit is increased by exactly 6 or 7

units as number of loops is increased by 1, because the period of second primary

body’s orbit is 6.2827 units. It is observed that for the interior resonance as the

number of loops increase, location of the periodic orbit moves away from the Sun.

For the periodic orbit of the given number of loops, as the order of the resonance

increases, location of periodic orbit moves towards Sun, whereas eccentricity and

period decreases as order of resonance increases.

7.2 Model description

The equations of motion of the secondary body in the dimensionless synodic coordi-

nates are given by equations (1.4.12) to (1.4.16). The expression for Jacobi constant

C is given by equation (1.4.21). Mean motion n, oblateness coefficient A2 and solar

radiation pressure q are given by equations (1.4.17), (1.4.18) and (1.4.19), respec-

tively. With the help of Eqs. (1.5.48) through (1.5.51) we can calculate the velocity
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V , the angular momentum h , the semi–major axis a and the eccentricity e of the

orbit of the secondary body.

For Sun-Planet system the period of planet in circular orbit is given by, TP = 2π/n,

where n is mean motion of the planet, which is given by Eq. (1.4.17). Indeed we will

tabulate the relevant quantities such as: Jacobi constant C, obalteness coefficient

A2 , solar radiation pressure q, period of Earth TE and its semi–major axis aE ,

period of Mars TM and its semi–major axes aM in Table7.1.

Table 7.1: Some constants

C A2 q aE TE aM TM

2.93 0.0001 0.9845 1.0000011 6.2827 1.0003 6.2827

Equation (6.2.2) can be used to find the order of resonance, by finding the ratio

between the semi–major axis of the infinitesimal body and the second primary body.

Furthermore the number of islands in PSS also gives the order of resonance.

7.3 Interior seventh order resonance

We have analyzed seventh order resonance of periodic orbits in the perturbed Sun–

Earth and the Sun–Mars systems. Numerical estimates of relevant quantities for

seventh order interior resonance for the Sun–Earth and the Sun–Mars systems have

been shown in Table 7.2 and Table7.3, respectively. Here the letters NL, LO, NI,

RO, EC, TP and RP denote number of loops, location of the periodic orbit, number

of islands, order of the resonance, eccentricity, time period of the orbit and ratio of

the periods of the orbit, respectively.

The period of Earth’s orbit is 6.2827 units. It can be noticed that as the number

of loops increases successively from fifteen–loops to twenty two–loops, the period of

the orbit of secondary body increases in such a way that the successive difference

of periods differ either by 6 or 7 units as shown in Table 7.2. The period of fifteen–

loops orbit is 51, while that of sixteen–loops orbit is 57 with a difference of 6 units.

Also, period of Mar’s orbit is 6.2827units. Order of resonance 15 : 8 shown in Table
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7.3 indicates that (a1/a2)
(3/2) = 2.01 which is approximately

15

8
.

In a similar manner, it can be noticed that as the number of loops increases succes-

sively from fifteen–loops to twenty two–loops, the period of the orbit of secondary

body increases in such a way that the successive difference of periods differ either

by 6 or 7 units as shown in Table 7.3. Periodic orbit with fifteen–loops located

at x0 = 0.35317 is seventh order resonant orbit as its PSS gives seven islands as

shown in Fig. 7.1(a). Magnified version of one of the islands is shown in Fig. 7.1(b).

Number of loops varying from 15 to 20 and for 22–loops for Sun–Earth system are

shown in Figs.7.2(a) – (g).

Fig.7.2(a) depicts 15–loops orbit. The orbit is symmetric about the line joining

two primaries. The orbits with odd number of loops ranging from 15 to 19–loops

are depicted in Figs.7.2(a), (c) and (e). These orbits are symmetric about the line

joining the primaries (i.e. x–axis); but not about y–axis. While the orbits with even

number of loops ranging from 16 to 20–loops and that with 22–loops are shown in

Figs.7.2(b), (d), (f) and (g). These orbits are symmetric about both x and y–axes.

It can be noticed that all the orbits are around the first primary and not orbiting

the second primary. Further, it is observed that as the number of loops increase

from 15 to 22, the over all size of the orbits increase.

Table 7.2: Analysis of interior seventh order resonance for perturbed Sun–Earth
system

NL LO NI RO EC TP RP

15 0.35317

7

15:8 0.43754 51 2.09840
16 0.38844 16:9 0.40480 57 1.89674
17 0.41942 17:10 0.37783 63 1.80672
18 0.44597 18:11 0.35597 69 1.73540
19 0.47005 19:12 0.33711 76 1.67473
20 0.49084 20:13 0.32155 82 1.62506
22 0.52667 22:15 0.29626 94 1.54459
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(b) Enlarged PSS at x0 = 0.35317.

Figure 7.1: PSS of interior seventh order resonant fifteen–loops orbit when q =
0.9845, A2 = 0.0001 and C = 2.93 for Sun–Earth system.

Table 7.3: Analysis of interior seventh order resonance for perturbed Sun–Mars
system

NL LO NI RO EC TP RP

15 0.35315

7

15:8 0.43755 51 2.01083
16 0.38850 16:9 0.40474 57 1.89743
17 0.41928 17:10 0.37794 63 1.80794
18 0.44618 18:11 0.35579 69 1.73565
19 0.46995 19:12 0.33718 76 1.67574
20 0.49095 20:13 0.32146 82 1.62555
22 0.52650 22:15 0.29629 94 1.54568
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(g) Twenty two–loops orbit at x0 =

0.52667.

Figure 7.2: Interior seventh order resonant orbits when q = 0.9845, A2 = 0.0001
and C = 2.93 for Sun–Earth system.
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7.4 Interior ninth order resonance

Numerical estimates of location, eccentricity, time period, ratio of time periods

and other relevant quantities for ninth order interior resonance for Sun–Earth and

Sun–Mars systems have been shown in Table 7.4 and Table 7.5, respectively. PSS

of the twenty two–loops ninth order resonance of periodic orbit which is located

at x0 = 0.42270 is given in Fig.7.3(a). It shows nine islands which indicates this

periodic orbit is ninth order resonant periodic orbit. Magnified version of one of the

islands is shown in Fig.7.3(b).

Periodic orbits with number of loops 22, 23, 25 and 27 are shown in Figs.7.4(a)–(d).

As in the case of seventh order resonant orbits, orbits with even number of loops

are symmetric about both x and y–axes, while that with odd number of loops are

symmetric about x–axis but not with respect to y–axis. The overall size of the orbit

increases with number of loops.

Table 7.4: Analysis of interior ninth order resonance for perturbed Sun–Earth sys-
tem.

NL LO NI RO EC TP RP

22 0.42270
9

22:13 0.37506 82 1.79764
23 0.44301 23:14 0.35835 88 1.74311
25 0.47915 25:16 0.33022 101 1.65270
26 0.49515 26:17 0.31840 107 1.61505

Table 7.5: Analysis of interior ninth order resonance for perturbed Sun–Mars sys-
tem.

NL LO NI RO EC TP RP

22 0.42246
9

22:13 0.37526 82 1.79912
23 0.44334 23:14 0.35808 88 1.74305
25 0.47955 25:16 0.32991 101 1.65250
26 0.49530 26:17 0.31828 107 1.61545
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7.5 Interior eleventh order resonance

Table 7.6 and Table 7.7 display numerical estimates of location, eccentricity, time

period, ratio of time periods and other relevant quantities for eleventh order interior
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(b) Enlarged PSS at x0 = 0.42270.

Figure 7.3: PSS of interior ninth order resonant twenty two–loops orbits when q =
0.9845, A2 = 0.0001 and C = 2.93 for Sun–Earth system.
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(d) Twenty six–loops orbit at x0 = 0.49515.

Figure 7.4: Interior ninth order resonant orbits when q = 0.9845, A2 = 0.0001 and
C = 2.93 for Sun–Earth system.
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resonance for Sun–Earth and Sun–Mars systems, respectively. PSS of the twenty

three–loops orbit of the eleventh order resonance is given in Fig.7.5(a), which is

located at x0 = 0.33900. The PSS shows eleven islands which indicates that the

periodic orbit is eleventh order resonant periodic orbit. Magnified version of one of

the islands is shown in Fig.7.5(b).

Periodic orbits with number of loops varying from 23 to 28–loops are shown in

Fig.7.6(a)–(f). Orbits with odd number of loops as shown in Figs.7.6 (a), (c) and

(f) are symmetric about x– axis only, while orbits with even number of loops are

shown in Fig.7.6(b), (d) and (e) are symmetric about both x and y–axes. As in

the case of seventh and ninth order of resonant orbits, the overall size of the orbits

increase with increase in the number of loops. A noteworthy feature of all these high

order resonant orbit is that they are about the first primary and secondary body

never orbit the second primary. The distance between the second primary and the

secondary body decreases as the number of loops increases.

Table 7.6: Analysis of interior eleventh order resonance for perturbed Sun–Earth
system.

NL LO NI RO EC TP RP

23 0.339005

11

23:12 0.45133 76 2.05899
24 0.363215 24:13 0.42798 82 1.97635
25 0.385320 25:14 0.40760 88 1.90626
26 0.405935 26:15 0.38937 94 1.84494
27 0.424800 27:16 0.37330 101 1.79186
28 0.441035 28:17 0.35995 107 1.74829

Table 7.7: Analysis of interior ninth order resonance for perturbed Sun–Mars sys-
tem.

NL LO NI RO EC TP RP

23 0.33898

11

23:12 0.45135 76 2.06002
24 0.36329 24:13 0.42791 82 1.97701
25 0.38548 25:14 0.40745 88 1.90664
26 0.40582 26:15 0.38946 94 1.84612
27 0.42446 27:16 0.37358 101 1.79362
28 0.44150 28:17 0.35956 107 1.74787
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7.6 Effect of perturbing forces on physical and ge-

ometric parameters of higher order resonant

orbits

The variation in the location of seventh, ninth and eleventh order resonant orbits

for C = 2.93, q = 0.9845 and A2 = 0.0001 in the Sun–Earth system is shown in

Fig.7.7 against the number of loops of the periodic orbits. It can be noticed that the

location of the orbit shifts towards the second primary body as the number of loops

increases. It is observed from Fig.7.7 that both seventh and ninth order resonant

orbits possess 22–loops. Further, it can be noticed that for a given number of loops,

as the order of resonance increases, the location of the periodic orbits moves towards

the Sun.

Similarly ninth and eleventh order resonant orbit admits orbit with 23– loops.

Eleventh order resonant orbits admits 23–loops is nearer to Sun compared to ninth

order resonant orbit with 23–loops. Seventh and ninth order resonance contains

periodic orbit having 22–loops. From location of this orbit as shown in Fig.7.7, it

is clear that for the given number of loops, as order of resonance increases location

of periodic orbits moves towards the Sun. Similarly ninth and eleventh order res-

onance contains periodic orbit with 23–loops. Location of this orbit with eleventh

order resonance is nearer to Sun in comparison of ninth order resonance.

The variation in the eccentricity of seventh, ninth and eleventh order resonant orbits
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(b) Enlarged PSS at x0 = 0.33900.

Figure 7.5: PSS of interior eleventh order resonant twenty three–loops orbits when
q = 0.9845, A2 = 0.0001 and C = 2.93 for Sun–Earth system.
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for C = 2.93, q = 0.9845 and A2 = 0.0001 for Sun–Earth system is shown in

Fig.7.8 against the number of loops of the periodic orbits. It can be noticed that the

eccentricity of the orbit decreases as the number of loops increases. From eccentricity

of 22 and 23–loops orbits as shown in Fig.7.8, it is clear that for the given number

of loops, as order of resonance increases eccentricity increases. The variation in the

period of seventh, ninth and eleventh order resonant orbits for C = 2.93, q = 0.9845

and A2 = 0.0001 for Sun–Earth system is shown in Fig.7.9 against the number of
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Figure 7.6: Interior eleventh order resonant orbits when q = 0.9845, A2 = 0.0001
and C = 2.93 for Sun-Earth system.
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Figure 7.7: Variation in location of the interior seventh, interior ninth and interior
eleventh order resonant periodic orbits when q = 0.9845, A2 = 0.0001 and C = 2.93
for Sun–Earth system.
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Figure 7.8: Variation in eccentricity of the interior seventh, interior ninth and
interior eleventh order resonant periodic orbits when q = 0.9845, A2 = 0.0001 and
C = 2.93 for Sun–Earth system.

loops of the periodic orbits. From period of 22 and 23–loops orbits shown in Fig.7.9,

it is clear that for the given number of loops, as order of resonance increases, the

period decreases. Fig.7.10, Fig.7.11 and Fig.7.11 show similar results for the Sun–

Mars system.
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Figure 7.9: Variation in period of the interior seventh, interior ninth and interior
eleventh order resonant periodic orbits when q = 0.9845, A2 = 0.0001 and C = 2.93
for Sun–Earth system.
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Figure 7.10: Variation in location of the interior seventh, interior ninth and interior
eleventh order resonant periodic orbits when q = 0.9845, A2 = 0.0001 and C = 2.93
for Sun–Mars system.
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Figure 7.11: Variation in eccentricity of the interior seventh, interior ninth and
interior eleventh order resonant periodic orbits when q = 0.9845, A2 = 0.0001 and
C = 2.93 for Sun–Mars system.
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Figure 7.12: Variation in period of the interior seventh, interior ninth and interior
eleventh order resonant periodic orbits when q = 0.9845, A2 = 0.0001 and C = 2.93
for Sun–Mars system.
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7.7 Conclusion

We have studied interior seventh, ninth and eleventh order resonances in the RTBP

for Sun–Earth and Sun–Mars systems by considering the Sun as a radiating body

and both Earth and Mars as oblate spheroids. It is observed that for the given order

of resonance, period of the orbit is increased by exactly 6 or 7 units as number of

loops is increased by 1 because period of the orbit of secondary body is 6.2827 units.

It is concluded that for the interior resonance, as the number of loops increases,

location of the periodic orbit moves away from the Sun.

Eccentricity of the periodic orbit decreases as number of loops increases for inte-

rior resonance in perturbed case. For the given order of resonance as perturbation

increases eccentricity of the periodic orbit decreases. It is concluded that for the

given number of loops, as order of resonance increases location of periodic orbits

moves towards the Sun. Also, eccentricity of the orbit decreases as the number of

loops increases. It can be observed that for the given number of loops, as order of

resonance increases eccentricity increases. Period of the seventh, ninth and eleventh

order resonant orbit increases as the number of loops increases. Further for a given

number of loops, as order of resonance increases the period decreases.
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