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STUDY OF THERMAL RADIATION AND CHEMICAL REACTION 

EFFECTS ON MHD FLOW IN POROUS MEDIUM 

Influence of thermal radiation effect plays significant role in controlling heat transfer process in 

polymer processing industry. In several new manufacturing areas, progresses occur at high 

temperatures so understanding of radiation heat transfer besides the convective heat transfer play 

essential role and cannot be ignored. The Rosseland approximation is used to describe the radiative 

heat flux in the energy equation. The chemical reaction can be classified as either a heterogeneous 

or a homogeneous process. This depends on whether it occurs at an interface or as a single-phase 

volume reaction. A few representative fields of interest where combined heat and mass transfer with 

a chemical reaction and thermal radiation plays an important role are design of chemical processing 

equipment, cooling towers, etc.  

This chapter contains two sections, in first section, effects of thermal radiation, chemical reaction 

and magnetic field on Casson fluid past an oscillating plate embedded in porous medium is 

considered with ramped wall temperature. Second section of this chapter deals with mathematical 

analysis of MHD flow of radiative and chemically reactive Casson fluid past over an exponentially 

accelerated plated embedded in porous medium with ramped boundary conditions.  

 

4.1 SECTION I: RADIATION AND CHEMICAL REACTION EFFECTS ON MHD 

CASSON FLUID FLOW PAST AN OSCILLATING VERTICAL PLATE EMBEDDED IN 

POROUS MEDIUM 

This section deals with mathematical modelling of thermal radiation and chemical reaction effects 

on Casson fluid flow with magnetic field past an oscillating vertical plate embedded in porous 

medium. Suppose that the bounding plate of this problem are ramped as well as isothermal 

temperature. For both thermal plates, governing dimensionless equations are solved analytically 

using Laplace transform method. To analyze effects of thermal radiation and chemical reaction on 

momentum, numerical values from analytical results are obtained and presented in graphs. 

Expression for shear stress, temperature gradient and concentration gradient are derived and 

presented in tabular form.  
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4.1.1 Introduction of the Problem 

The study of MHD flow of non-Newtonian fluid in a porous medium has attracted many researchers 

due to its applications in optimization of solidification processes of metals, alloys, the geothermal 

sources investigation and nuclear fuel debris treatment. Recently, Nadeem et al. [88] studied MHD 

flow of a Casson fluid over a linearly shrinking sheet, whereas Nadeem et al. [50] discussed three-

dimensional boundary layer flow of Casson nanofluid with magnetic field past a linearly stretching 

sheet. Thermal radiation parameter effects may play a significant role in controlling heat transfer in 

polymer processing industry. Makanda et al. [94] studied effects of radiation on MHD flow of 

Casson fluid from a horizontal circular cylinder in non-Darcy porous medium. Sheikholeslami [99-

100] considered thermal radiation effects on MHD nanofluid flow. Rashidi et al. [103] and Ahmed 

et al. [104] deliberated MHD flow in the presence of the radiation in porous medium. Applications 

of heat and mass transfer flow with chemical reaction can be found in catalytic chemical reactors, 

food processing, polymer production, manufacture of ceramics and glassware etc. Animasaun [107] 

and Makanda et al. [108] studied chemical reaction on unsteady flow of Casson fluid. Research 

work on combined effects of thermal radiation and chemical reaction on MHD flow which is done 

by Reddy [111] and Nayak et al. [112]. Soundalgekar [159], first obtained analytical solutions of 

free convective flow past an oscillating vertical plate and the same problem with mass transfer effect 

was considered by Soundalgekar and Akolkar [160]. The oscillatory motion is usual in industries 

when the oscillating surfaces are embedded in a porous medium. Recently, Khalid et al. [89] 

deliberated effects of magnetic field on Casson fluid flow past an oscillating plate in porous 

medium, whereas Kataria and Mittal [96-97] considered MHD nano fluid flow past an oscillating 

vertical plate.  

 

4.1.2 Novelty of the Problem 

In present investigation, combined effects of thermal radiation and chemical on unsteady free 

convective MHD flow of Casson fluid past over an oscillating vertical plate embedded in porous 

medium with ramped and isothermal wall temperature is considered. Analytic expressions for 

velocity, temperature and concentration profiles are obtained with the help of Laplace transform 

technique. As it is discussed analytical results, unlike numerical work of different authors, 

convergence of solution is not an issue. 
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4.1.3. Mathematical formulation of the problem 

 

 

𝑇′ = {
𝑇′

∞ + (𝑇′
𝑤 − 𝑇′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑇′
𝑤                            𝑖𝑓     𝑡′ ≥ 𝑡0

 & 𝐶′ = 𝐶′
∞ + (𝐶′

𝑤 − 𝐶′
∞) 𝑡′

𝑡0
⁄ ; 𝑡′ ≥ 0 𝑎𝑛𝑑  𝑦′ = 0   

Figure 4.1.1: Physical sketch of the problem 

 

In Figure 4.1.1, the flow is being confined to 𝑦′ > 0, where 𝑦′ is the coordinate measured in the 

normal direction to the plate and 𝑥′ − axis  is taken along the wall in the upward direction. Initially, 

at time 𝑡′ = 0 , both the fluid and the plate are at uniform temperature 𝑇′
∞ and the concentration 

near the plate is assumed to be 𝐶′
∞  at all the points respectively. At time 𝑡′ > 0, the plate is given 

an oscillatory motion in the vertical direction against gravitational field with velocity 

𝑈0 sin(𝜔1
′𝑡′) 𝑜𝑟 𝑈0 cos (𝜔1

′𝑡′). At time 𝑡′ > 0, the temperature of the plate is raised or lowered 

to 𝑇′
∞ + (𝑇′

𝑤 + 𝑇′
∞) 𝑡′

𝑡0
⁄  when 𝑡′ < 𝑡0 and 𝑇′

𝑤 when 𝑡′ > 𝑡0  respectively which is there after 

maintained constant 𝑇′
𝑤 and surface concentration near the plate is raised linearly to 𝐶′

∞ + (𝐶′
𝑤 +

𝐶′
∞) 𝑡′

𝑡0
⁄  which is there after maintained constant 𝐶′

𝑤. A uniformly distributed transverse 
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magnetic field of strength 𝐵0 is applied in the 𝑦′ − axis direction. Under these condition, the 

following partial differential equation with initial and boundary condition are given below. 

𝜌
𝜕𝑢′

𝜕𝑡′
= 𝜇𝛽 (1 +

1

𝛾
)

𝜕2𝑢′

𝜕𝑦2
− 𝜎𝐵0

2𝑢′ −
𝜇𝜙

𝑘′
𝑢′ + 𝜌𝑔𝛽′

𝑇
(𝑇′ − 𝑇′

∞) + 𝜌𝑔𝛽′
𝐶

(𝐶′ − 𝐶′
∞) (4.1.1) 

𝜕𝑇′

𝜕𝑡′
=

𝑘4

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 −
1

𝜌𝑐𝑝

𝜕𝑞𝑟
′

𝜕𝑦′
                                 (4.1.2) 

𝜕𝐶′

𝜕𝑡′
= 𝐷𝑀

𝜕2𝐶′

𝜕𝑦′2 − 𝑘2
′  (𝐶′ − 𝐶′

∞)        (4.1.3) 

𝑢′ = 0,     𝑇′ = 𝑇′
∞,   𝐶′ =  𝐶′

∞;  𝑎𝑠   𝑦′ ≥ 0 𝑎𝑛𝑑   𝑡′ ≤ 0    

𝑢′ = 𝑈0 𝑠𝑖𝑛(𝜔1
′𝑡′) 𝑜𝑟 𝑈0 𝑐𝑜𝑠 (𝜔1

′𝑡′) , 𝑇′ = {
𝑇′

∞ + (𝑇′
𝑤 − 𝑇′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑇′
𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

 ,     

 𝐶′ = 𝐶′
∞ + (𝐶′

𝑤 − 𝐶′
∞) 𝑡′

𝑡0
⁄ ; 𝑡′ ≥ 0 𝑎𝑛𝑑  𝑦′ = 0   

𝑢′ → 0, 𝑇′ → 𝑇′
∞,   𝐶′ → 𝐶′

∞;  𝑎𝑠  𝑦′ → ∞ 𝑎𝑛𝑑 𝑡′ ≥ 0      (4.1.4) 

The local radiant for the case of an optically thin gray gas is expressed by Rosseland approximation 

[91]  

𝜕𝑞𝑟
′

𝜕𝑦′ = −4𝑎∗𝜎∗(𝑇′
∞
4

− 𝑇′4
)          (4.1.5) 

where σ∗ and a∗ are Stefan Boltzmann constant and absorption coefficient respectively. 

Using the Taylor’s series, expand 𝑇′4
 about 𝑇′

∞  and neglecting higher order terms,  

𝑇′4
≅ 4𝑇′

∞
3

𝑇′ − 3𝑇′
∞
4

          (4.1.6) 

Substituting values from (4.1.6) and (4.1.5) in (4.1.2)  

𝜕𝑇′

𝜕𝑡′ =
𝑘4

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 +
1

𝜌𝑐𝑝
16𝑎∗𝜎∗𝑇′

∞
3

(𝑇′ − 𝑇′
∞)       (4.1.7) 

Introducing the following dimensionless quantities:  

𝑦 =
𝑈 

𝜈 𝑡0
𝑦, 𝑡 =

𝑈2 𝑡

𝜈 𝑡0
, 𝑢 =

√𝑡0

𝑈
𝑢, 𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝐶 =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
, 𝑤 =

𝑤 𝜈

𝑈2 , 𝑃𝑟 =
𝜌𝑐𝑝

𝑘4
, 𝜏 =

𝜏

𝜌𝑢2  

𝑀2 =  
𝜎𝐵0

2

𝜌𝑈0
2 𝑡0,

1

𝑘
=

𝜈𝜙2

𝑘′𝑈0
2 , 𝐺𝑟 =

𝜈𝑔𝛽(𝑇𝑤−𝑇∞)

𝑈0
3  , 𝛾 =

𝜇𝐵√2𝜋𝑐

𝑃𝑦
, 𝑆𝑐 =

𝜈

𝐷𝑀
, 𝐺𝑚 =

𝑔𝛽𝑐𝜈(𝐶𝑤−𝐶∞)

𝑈0
3      
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𝑁𝑟 = −
16 𝑎∗ 𝜎∗𝑣2𝑇′

∞
3

𝑘4 𝑈0
2  ,𝐾𝑟 =

𝜈 𝑘2
′

𝑈0
2 ,  

In the equations (4.1.1) to (4.1.4) dropping out the " ′ " notation (for simplicity), 

𝜕𝑢

𝜕𝑡
= (1 +

1

𝛾
)

𝜕2𝑢

𝜕𝑦2 − (𝑀2 +
1

𝑘
) 𝑢 + 𝐺𝑟𝜃 + 𝐺𝑚𝐶       (4.1.8) 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 −
𝑁𝑟

𝑃𝑟
𝜃                               (4.1.9) 

𝜕𝐶

𝜕𝑡
=

1

𝑠𝑐

𝜕2𝐶

𝜕𝑦2 − 𝐾𝑟 𝐶           (4.1.10) 

with initial and boundary condition 

𝑢 = 𝜃 =  𝐶 = 0 ,            𝑦 > 0, 𝑡 < 0  

𝑢 = sin(𝜔1𝑡) 𝑜𝑟𝐻(𝑡) cos(𝜔1𝑡) ,    

𝜃 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    = 𝑡𝐻(𝑡) − (𝑡 − 1)𝐻(𝑡 − 1), 𝐶 = 𝑡 𝑎𝑡  𝑦 = 0, 𝑡 ≥ 0  

𝑢 → 0, 𝜃 → 0, 𝐶 → 0    𝑎𝑡  𝑦 → ∞          (4.1.11) 

4.1.4. Solution of the Problem 

Taking Laplace transform of equations (4.1.8) to (4.1.10) with initial and boundary conditions 

(4.1.11)  

�̅�(𝑦, 𝑠) = 𝐹9(𝑦, 𝑠)(1 − 𝑒−𝑠)          (4.1.12) 

𝐶̅ = 𝐹11(𝑦, 𝑠)            (4.1.13) 

�̅�𝑠𝑖𝑛(𝑦, 𝑠) =
𝑖

2
𝐹1(𝑦, 𝑠) −

𝑖

2
𝐹2(𝑦, 𝑠) + (1 − 𝑒−𝑠)𝐺1(𝑦, 𝑠) + 𝑎10𝐹4(𝑦, 𝑠) + 𝑎11𝐹5(𝑦, 𝑠) +

                       𝑎12𝐹6(𝑦, 𝑠) − (1 − 𝑒−𝑠)𝐺2(𝑦, 𝑠) − 𝑎10𝐹10(𝑦, 𝑠) − 𝑎12𝐹11(𝑦, 𝑠) − 𝑎12𝐹12(𝑦, 𝑠)  

            (4.1.14) 

�̅�𝑐𝑜𝑠(𝑦, 𝑠) =
1

2
𝐹1(𝑦, 𝑠) +

1

2
𝐹2(𝑦, 𝑠) + (1 − 𝑒−𝑠)𝐺1(𝑦, 𝑠) + 𝑎10𝐹4(𝑦, 𝑠) + 𝑎11𝐹5(𝑦, 𝑠) +

                        𝑎12𝐹6(𝑦, 𝑠) − (1 − 𝑒−𝑠)𝐺9(𝑦, 𝑠) − 𝑎10𝐹12(𝑦, 𝑠) − 𝑎11𝐹11(𝑦, 𝑠) − 𝑎12𝐹12(𝑦, 𝑠)  

            (4.1.15) 

𝐹1(𝑦, 𝑠) =
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠+𝑖𝜔1
            (4.1.16) 
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𝐹2(𝑦, 𝑠) =  
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠−𝑖𝜔1
           (4.1.17) 

𝐺1(𝑦, 𝑠) = 𝑎7𝐹3(𝑦, 𝑠) + 𝑎8𝐹4(𝑦, 𝑠) + 𝑎9𝐹5(𝑦, 𝑠)       (4.1.18) 

𝐹3(𝑦, 𝑠) =
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠+𝑎3
          (4.1.19) 

𝐹4(𝑦, 𝑠) =
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠
           (4.1.20) 

𝐹5(𝑦, 𝑠) =
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠2            (4.1.21) 

𝐹6(𝑦, 𝑠) =
𝑒

−𝑦√𝑠+𝑏
𝑎

𝑠+𝑎6
           (4.1.22) 

𝐺2(𝑦, 𝑠) = 𝑎7𝐹7(𝑦, 𝑠) + 𝑎8𝐹8(𝑦, 𝑠) + 𝑎9𝐹9(𝑦, 𝑠)       (4.1.23) 

𝐹7(𝑦, 𝑠) =
𝑒−𝑦√𝑁𝑟+𝑃𝑟 𝑆

𝑠+𝑎3
                      (4.1.24) 

𝐹8(𝑦, 𝑠) =
𝑒−𝑦√𝑁𝑟+𝑃𝑟 𝑆

𝑠
                      (4.1.25) 

𝐹9(𝑦, 𝑠) =
𝑒−𝑦√𝑁𝑟+𝑃𝑟𝑆

𝑠2            (4.1.26) 

𝐹10(𝑦, 𝑠) =
1

𝑠
𝑒−𝑦√𝑠𝑐 (𝐾𝑟+𝑠)          (4.1.27) 

𝐹11(𝑦, 𝑠) =
1

𝑠2 𝑒−𝑦√𝑠𝑐 (𝐾𝑟+𝑠)          (4.1.28) 

𝐹12(𝑦, 𝑠) =
1

(𝑠+𝑎6)
𝑒−𝑦√𝑠𝑐 (𝐾𝑟+𝑠)         (4.1.29) 

Taking inverse Laplace transform of equations (4.1.12) to (4.1.29), 

4.1.4.1 Solutions for Plate with ramped wall temperature 

𝜃(𝑦, 𝑡) = 𝑓9(𝑦, 𝑡) − 𝑓9(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)        (4.1.30) 

𝐶(𝑦, 𝑡) = 𝑓11(𝑦, 𝑡)           (4.1.31) 
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𝑢𝑠𝑖𝑛(𝑦, 𝑡) =
𝑖

2
𝑓1(𝑦, 𝑡) −

𝑖

2
𝑓2(𝑦, 𝑡) + 𝑔1(𝑦, 𝑡) − 𝑔1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) + 𝑎10𝑓4(𝑦, 𝑡) +

                      𝑎11𝑓5(𝑦, 𝑡) + 𝑎12𝑓6(𝑦, 𝑡) − 𝑔2(𝑦, 𝑡) + 𝑔2(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) − 𝑎10𝑓10(𝑦, 𝑡) −

                      𝑎11𝑓11(𝑦, 𝑡) − 𝑎12𝑓12(𝑦, 𝑡)        (4.1.32) 

𝑢𝑐𝑜𝑠(𝑦, 𝑡) =
1

2
𝑓1(𝑦, 𝑡) +

1

2
𝑓2(𝑦, 𝑡) + 𝑔1(𝑦, 𝑡) − 𝑔1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) + 𝑎10𝑓4(𝑦, 𝑡) +

                       𝑎11𝑓5(𝑦, 𝑡) + 𝑎12𝑓6(𝑦, 𝑡) − 𝑔2(𝑦, 𝑡) + 𝑔2(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) − 𝑎10𝑓10(𝑦, 𝑡) −

                       𝑎11𝑓11(𝑦, 𝑡) − 𝑎12𝑓12(𝑦, 𝑡)        (4.1.33) 

 

4.1.4.2 Solutions for Plate with isothermal temperature 

In this case, the initial and boundary conditions are the same excluding Eq. (4.1.11) that 

becomes 𝜃 = 1 𝑎𝑡 𝑦 = 0, 𝑡 ≥ 0 . So, expression of velocity, temperature and concentration profiles 

are obtained for isothermal temperature which is given below.  

𝜃(𝑦, 𝑡) = 𝑓8(𝑦, 𝑡)          (4.1.34) 

𝐶(𝑦, 𝑡) = 𝑓11(𝑦, 𝑡)           (4.1.35) 

𝑢𝑠𝑖𝑛(𝑦, 𝑡) =
𝑖

2
𝑓1(𝑦, 𝑡) −

𝑖

2
𝑓2(𝑦, 𝑡) + (𝑎9 + 𝑎10)𝑓4(𝑦, 𝑡) − 𝑎9𝑓3(𝑦, 𝑡) + 𝑎11𝑓5(𝑦, 𝑡) +

𝑎12𝑓6(𝑦, 𝑡) − 𝑎9𝑓8(𝑦, 𝑡)+𝑎9𝑓7(𝑦, 𝑡) − 𝑎10𝑓10(𝑦, 𝑡) − 𝑎11𝑓11(𝑦, 𝑡) − 𝑎12𝑓12(𝑦, 𝑡)   (4.1.36) 

𝑢𝑐𝑜𝑠(𝑦, 𝑡) =
1

2
𝑓1(𝑦, 𝑡) +

1

2
𝑓2(𝑦, 𝑡) + (𝑎9 + 𝑎10)𝑓4(𝑦, 𝑡) − 𝑎9𝑓3(𝑦, 𝑡) + 𝑎11𝑓5(𝑦, 𝑡) +

𝑎12𝑓6(𝑦, 𝑡) − 𝑎9𝑓8(𝑦, 𝑡)+𝑎9𝑓7(𝑦, 𝑡) − 𝑎10𝑓10(𝑦, 𝑡) − 𝑎11𝑓11(𝑦, 𝑡) − 𝑎12𝑓12(𝑦, 𝑡)   (4.1.37) 

Where 

𝑓1(𝑦, 𝑡) =
𝑒−𝑖𝜔1𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏−𝑖𝜔1)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √(𝑏 − 𝑖𝜔1)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏−𝑖𝜔1)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+

                   √(𝑏 − 𝑖𝜔1)𝑡)]         (4.1.38) 

𝑓2(𝑦, 𝑡) =
𝑒𝑖𝜔1𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏+𝑖𝜔1)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √(𝑏 + 𝑖𝜔1)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏+𝑖𝜔1)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+

                   √(𝑏 + 𝑖𝜔1)𝑡)]         (4.1.39) 

𝑔1(𝑦, 𝑡) = 𝑎7𝑓3(𝑦, 𝑡) + 𝑎8𝑓4(𝑦, 𝑡) + 𝑎9𝑓5(𝑦, 𝑡)       (4.1.40) 
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𝑓3(𝑦, 𝑡) =
𝑒−𝑎3𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏−𝑎3)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √(𝑏 − 𝑎3)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏−𝑎3)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+

                    √(𝑏 − 𝑎3)𝑡)]          (4.1.41) 

𝑓4(𝑦, 𝑡) =
1

2
[𝑒

−𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √𝑏𝑡) + 𝑒

𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+ √𝑏𝑡)]    (4.1.42) 

𝑓5(𝑦, 𝑡) =
1

2
[(𝑡 −

𝑦

2√𝑎𝑏
) 𝑒

−𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √𝑏𝑡) + (𝑡 +

𝑦

2√𝑎𝑏
) 𝑒

𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+ √𝑏𝑡)]  

            (4.1.43) 

𝑓6(𝑦, 𝑡) =
𝑒−𝑎6𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏−𝑎6)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √(𝑏 − 𝑎6)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏−𝑎6)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+

                   √(𝑏 − 𝑎6)𝑡)]          (4.1.44) 

𝑔2(𝑦, 𝑡) = 𝑎7𝑓7(𝑦, 𝑡) + 𝑎8𝑓8(𝑦, 𝑡) + 𝑎9𝑓9(𝑦, 𝑡)       (4.1.45) 

𝑓7(𝑦, 𝑡) =
𝑒−𝑎3𝑡

2
[𝑒−𝑦√𝑁𝑟−𝑃𝑟𝑎3  𝑒𝑟𝑓𝑐 (

𝑦 √𝑃𝑟

2√𝑡
− √(

𝑁𝑟

𝑃𝑟
− 𝑎3) 𝑡) + 𝑒𝑦√𝑁𝑟−𝑃𝑟𝑎3  𝑒𝑟𝑓𝑐 (

𝑦 √𝑃𝑟

2√𝑡
+

                    √(
𝑁𝑟

𝑃𝑟
− 𝑎3) 𝑡)]           (4.1.46) 

𝑓8(𝑦, 𝑡) =
1

2
[𝑒−𝑦√𝑁𝑟 𝑒𝑟𝑓𝑐 (

𝑦√𝑃𝑟

2√𝑡
− √

𝑁𝑟

𝑃𝑟
𝑡) + 𝑒𝑦√𝑁𝑟 𝑒𝑟𝑓𝑐 (

𝑦√𝑃𝑟

2√𝑡
+ √

𝑁𝑟

𝑃𝑟
𝑡)]   (4.1.47) 

𝑓9(𝑦, 𝑡) =
1

2
[(𝑡 −

𝑦 𝑃𝑟

2√𝑁𝑟
) 𝑒−𝑦√𝑁𝑟 𝑒𝑟𝑓𝑐 (

𝑦 √𝑃𝑟

2√𝑡
− √

𝑁𝑟

𝑃𝑟
𝑡) + (𝑡 +

𝑦 𝑃𝑟

2√𝑁𝑟
) 𝑒𝑦√𝑁𝑟 𝑒𝑟𝑓𝑐 (

𝑦 √𝑃𝑟

2√𝑡
+

                   √
𝑁𝑟

𝑃𝑟
𝑡)]            (4.1.48) 

𝑓10(𝑦, 𝑡) =
1

2
[𝑒−𝑦√𝐾𝑟 𝑆𝑐 𝑒𝑟𝑓𝑐 (

𝑦√𝑆𝑐

2√𝑡
− √𝐾𝑟 𝑡) + 𝑒𝑦√𝐾𝑟 𝑆𝑐 𝑒𝑟𝑓𝑐 (

𝑦√𝑆𝑐

2√𝑡
+ √𝐾𝑟 𝑡)]   (4.1.49) 

𝑓11(𝑦, 𝑡) =
1

2
[(𝑡 −

𝑦 √𝑆𝑐

2√𝐾𝑟
) 𝑒−𝑦√𝑆𝑐 𝐾𝑟 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
− √𝐾𝑟 𝑡) + (𝑡 +

𝑦 √𝑆𝑐

2√𝐾𝑟
) 𝑒𝑦√𝑆𝑐 𝐾𝑟 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
+

                     √𝐾𝑟 𝑡)]              (4.1.50) 
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𝑓12(𝑦, 𝑡) =
𝑒−𝑎6𝑡

2
[𝑒−𝑦√𝑆𝑐(𝐾𝑟−𝑎6) 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
− √(𝐾𝑟 − 𝑎6)𝑡) + 𝑒𝑦√𝑆𝑐(𝐾𝑟−𝑎6) 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
+

                     √(𝐾𝑟 − 𝑎6)𝑡)]          (4.1.51) 

 

4.1.4.3 Nusselt number 

 The Nusselt number Nu can be written as 

 𝑁𝑢 = −
𝜈

𝑈0(𝑇−𝑇∞)
(

𝜕𝑇

𝜕𝑦
)

𝑦=0
         (4.1.52) 

It is obtained the Nusselt number from the equations (4.1.30) for ramped wall temperature is 

𝑁𝑢 = −[ℎ11(𝑡) − ℎ11(𝑡 − 1)𝐻(𝑡 − 1)]        (4.1.53) 

From the equation (4.1.34), it is obtained the Nusselt number for isothermal temperature is 

𝑁𝑢 = −[ℎ10(𝑡)]           (4.1.54) 

 

4.1.4.4 Sherwood number: 

Sherwood number is defined and denoted by the formula  

𝑠ℎ = − (
𝜕𝐶

𝜕𝑦
)

𝑦=0
           (4.1.55) 

Using the equations (4.1.31) and (4.1.35), The Sherwood number for Ramped wall temperature and 

isothermal temperature can be written as, 

𝑠ℎ = −[ℎ13(𝑡)]           (4.1.56) 

 

4.1.4.5 Skin friction: 

Expressions for skin-friction for both cases are calculated from Equations (4.1.32), (4.1.33), (4.1.36) 

and (4.1.37) using the relations 

𝜏∗(𝑦, 𝑡) = − 𝜇𝛽 (1 +
1

𝛾
) 𝜏          (4.1.57) 

Where   𝜏 =
𝜕𝑢

𝜕𝑦
|

𝑦=0
            (4.1.58) 

For ramped wall temperature 
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𝜏𝑠𝑖𝑛(𝑦, 𝑡) =
𝑖

2
ℎ1(𝑡) −

𝑖

2
ℎ2(𝑡) + ℎ3(𝑡) − ℎ3(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) + 𝑎10ℎ5(𝑡) + 𝑎11ℎ6(𝑡) +

                      𝑎12ℎ7(𝑡) − ℎ8(𝑡) + ℎ8(𝑡 − 1)𝐻(𝑡 − 1) − 𝑎10ℎ12(𝑡) − 𝑎11ℎ13(𝑡) − 𝑎12ℎ14(𝑡)  

            (4.1.59) 

𝜏𝑐𝑜𝑠(𝑦, 𝑡) =
1

2
ℎ1(𝑡) +

1

2
ℎ2(𝑡) + ℎ3(𝑡) − ℎ3(𝑦, 𝑡 − 1)𝐻(𝑡 − 1) + 𝑎10ℎ5(𝑡) + 𝑎11ℎ6(𝑡) +

                       𝑎12ℎ7(𝑡) − ℎ8(𝑡) + ℎ8(𝑡 − 1)𝐻(𝑡 − 1) − 𝑎10ℎ12(𝑡) − 𝑎11ℎ13(𝑡) − 𝑎12ℎ14(𝑡)   

            (4.1.60) 

For isothermal temperature 

𝜏𝑠𝑖𝑛(𝑦, 𝑡) =
𝑖

2
ℎ1(𝑡) −

𝑖

2
ℎ2(𝑡) + (𝑎9 + 𝑎10) ℎ5(𝑡) − 𝑎9ℎ4(𝑡) + 𝑎11ℎ6(𝑡) + 𝑎12ℎ7(𝑡) −

                       𝑎9ℎ10(𝑡) + 𝑎9ℎ9(𝑡) − 𝑎10ℎ12(𝑡) − 𝑎11ℎ13(𝑡) − 𝑎12ℎ14(𝑡)    (4.1.61) 

𝜏𝑐𝑜𝑠(𝑦, 𝑡) =
1

2
ℎ1(𝑡) +

1

2
ℎ2(𝑡) + (𝑎9 + 𝑎10) ℎ5(𝑡) − 𝑎9ℎ4(𝑡) + 𝑎11ℎ6(𝑡) + 𝑎12ℎ7(𝑡) −

                       𝑎9ℎ10(𝑡) + 𝑎9ℎ9(𝑡) − 𝑎10ℎ12(𝑡) − 𝑎11ℎ13(𝑡) − 𝑎12ℎ14(𝑡)   (4.1.62) 

Where  

ℎ1(𝑡) = 𝑒−𝑖𝜔1𝑡√
𝑏−𝑖𝜔1

𝑎
 erf(√(𝑏 − 𝑖𝜔1)𝑡) +

𝑒−𝑏𝑡

√𝜋𝑎𝑡
        (4.1.63) 

ℎ2(𝑡) = 𝑒𝑖𝜔1𝑡√
𝑏+𝑖𝜔1

𝑎
 erf(√(𝑏 + 𝑖𝜔1)𝑡) +

𝑒−𝑏𝑡

√𝜋𝑎𝑡
       (4.1.64) 

 ℎ3(𝑡) = 𝑎7ℎ4(𝑡) + 𝑎8ℎ5(𝑡) + 𝑎9ℎ6(𝑡)        (4.1.65) 

ℎ4(𝑡) = −𝑒−𝑎3𝑡√
𝑏−𝑎3

𝑎
 erf(√(𝑏 − 𝑎3)𝑡) +

𝑒−𝑏𝑡

√𝜋𝑎𝑡
        (4.1.66) 

ℎ5(𝑡) = −√
𝑏

𝑎
 erf(√𝑏𝑡) +

𝑒−𝑏𝑡

√𝜋𝑎𝑡
          (4.1.67) 

ℎ6(𝑡) = −
1

√4𝑎𝑏
 erf(√𝑏𝑡) − 𝑡√

𝑏

𝑎
erf(√𝑏𝑡) +

𝑡 𝑒−𝑏𝑡

√𝜋𝑎𝑡
        (4.1.68) 

ℎ7(𝑡) = −𝑒−𝑎6𝑡√
𝑏−𝑎6

𝑎
 erf(√(𝑏 − 𝑎6)𝑡) +

𝑒−𝑏𝑡

√𝜋𝑎𝑡
        (4.1.69) 

ℎ8(𝑡) = 𝑎7ℎ9(𝑡) + 𝑎8ℎ10(𝑡) + 𝑎9ℎ11(𝑡)        (4.1.70) 
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ℎ9(𝑡) = −𝑒−𝑎3𝑡√𝑁𝑟 − 𝑃𝑟 𝑎3  erf (√(
𝑁𝑟

𝑃𝑟
− 𝑎3) 𝑡) + √

𝑃𝑟

𝜋𝑡
𝑒−

𝑁𝑟

𝑃𝑟
𝑡
      (4.1.71) 

ℎ10(𝑡) = −√𝑁𝑟 erf (√
𝑁𝑟

𝑃𝑟
𝑡) + √

𝑃𝑟

𝜋𝑡
𝑒−

𝑁𝑟

𝑃𝑟
𝑡
         (4.1.72) 

ℎ11(𝑡) = −
𝑃𝑟

2√𝑁𝑟
 erf (√

𝑁𝑟

𝑃𝑟
𝑡) − √𝑁𝑟 𝑡 erf (√

𝑁𝑟

𝑃𝑟
𝑡) + √

𝑡 𝑃𝑟

𝜋
𝑒−

𝑁𝑟

𝑃𝑟
𝑡
      (4.1.73) 

ℎ12(𝑡) = −√𝐾𝑟 𝑆𝑐  erf(√𝐾𝑟 𝑡) + √
𝑆𝑐

𝜋𝑡
𝑒−𝐾𝑟 𝑡        (4.1.74) 

ℎ13(𝑡) = −√
𝑆𝑐

4 𝐾𝑟
 erf(√𝐾𝑟 𝑡) − 𝑡√𝑆𝑐 𝐾𝑟 erf(√𝐾𝑟 𝑡) + √

𝑡 𝑆𝑐

𝜋
𝑒−𝐾𝑟 𝑡     (4.1.75) 

ℎ14(𝑡) = −𝑒−𝑎6𝑡√𝑆𝑐(𝐾𝑟 − 𝑎6) erf(√(𝐾𝑟 − 𝑎6)𝑡) + √
𝑆𝑐

𝜋𝑡
 𝑒−𝐾𝑟 𝑡      (4.1.76) 

 

4.1.5 Results and Discussion 

In order to get a clear insight of the physics of the problem, a parametric study is performed and the 

obtained numerical results are explained with the help of graphical illustrations. The non-

dimensional fluid velocity, fluid temperature and concentration profiles are analysed for several 

values of different physical parameters in Figures (4.1.2) to (4.1.12). The influence of Casson fluid 

parameter 𝛾 on velocity profiles is shown in Figure 4.1.2. It is found that velocity increase with 

increasing value of 𝛾. It is important to note that an increase in Casson parameter makes the velocity 

boundary layer thickness shorter. It is further observed from this graph, when the Casson parameter 

𝛾 is large enough, the non-Newtonian behaviours disappear and the fluid purely behaves like a 

Newtonian fluid. In Figure 4.1.3, velocity profiles have been plotted for various values of 

permeability parameter 𝑘 by keeping other parameters fixed. It is observed that for large values of 

𝑘, velocity and boundary layer thickness increase which explains the physical situation that as 𝑘 

increases, the resistance of the porous medium is dropped which increases the motion of the flow 

regime, ultimately enhancing the velocity field. Figure 4.1.4 displays the velocity and boundary 

layer thickness decreases when 𝑀 is increased. Physically, it may also be predictable due to the fact 

that the application of resistive type force (called Lorentz force) similar to the drag force. Figure 

4.1.5 and Figure 4.1.6 shows effect of thermal radiation parameter 𝑁𝑟 on velocity and temperature 
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profiles for different values of y for both thermal plates. It is seen that, thermal radiation parameter 

tends to reduced velocity and temperature profiles. 

 

 

Figure 4.1.2: Velocity profile 𝑢 for different values of 𝑦 and 𝛾  at 𝑀 =  0.5, 𝑆𝑐 = 0.6, 𝐺𝑚 = 5, 

                            𝐺𝑟 = 10, 𝑃𝑟 = 7, 𝑘 =  1, 𝑡 =  0.6, 𝑁𝑟 =  0.5 and 𝐾𝑟 = 2. 

 

Figure 4.1.3: Velocity profile 𝑢 for different values of 𝑦 and 𝑘 at 𝑀 =  0.5, 𝑆𝑐 = 0.6, 𝐺𝑚 = 5,   

                            𝐺𝑟 = 10, 𝑃𝑟 = 25, 𝛾 = 0.6 , 𝑡 =  0.6, 𝑁𝑟 =  0.5 and 𝐾𝑟 = 2 
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Figure 4.1.4: Velocity profile 𝑢 for different values of 𝑦 and 𝑀 at 𝑘 =  1, 𝑆𝑐 = 0.6, 𝐺𝑚 = 5, 

                            𝐺𝑟 = 10, 𝑃𝑟 = 25, 𝛾 = 0.6 , 𝑡 =  0.6, 𝑁𝑟 =  0.5 and 𝐾𝑟 = 2. 

 

Figure 4.1.5: Velocity profile 𝑢 for different values of 𝑦 and 𝑁𝑟 at 𝑘 =  1, 𝑆𝑐 = 0.6, 𝐺𝑚 = 5, 

                            𝐺𝑟 = 10, 𝑃𝑟 = 7, 𝛾 = 0.6 , 𝑡 =  0.6, 𝑀 =  0.5 and 𝐾𝑟 = 2. 
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Figure 4.1.6: Temperature profile 𝜃 for different values of 𝑦 and 𝑁𝑟 at 𝑡 =  0.6 and 𝑃𝑟 = 25 

 

 

Figure 4.1.7: Velocity profile 𝑢 for different values of 𝑦 and 𝐾𝑟 at 𝑘 =  1, 𝑆𝑐 = 0.6, 𝐺𝑚 = 5, 

                            𝐺𝑟 = 10, 𝑃𝑟 = 25, 𝛾 = 0.6 , 𝑡 =  0.6, 𝑀 =  0.5 and 𝑁𝑟 = 0.5. 
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Figure 4.1.8: Concentration profile 𝐶 for different values of 𝑦 and 𝐾𝑟 at 𝑆𝑐 = 0.6 and 𝑡 = 0.6 

 

Figure 4.1.9: Temperature profile 𝜃 for different values of 𝑦 and 𝑃𝑟 at 𝑡 =  0.6 and 𝑁𝑟 = 0.5 
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Figure 4.1.10: Concentration profile 𝐶 for different values of 𝑦 and 𝑆𝑐 at 𝐾𝑟 = 2  and 𝑡 = 0.6 

 

Figure 4.1.11: Skin friction for different values of 𝑡 and 𝑃𝑟 at 𝑘 = 1, 𝑆𝑐 =  0.6, 𝐺𝑚 =  5,  

                               𝐺𝑟 =  2, 𝑁𝑟 =  0.5, 𝐾𝑟 = 1, 𝛾 = 0.1 𝑎𝑛𝑑 𝑀 =  0.5 
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Figure 4.1.12: Nusselt number for different values of 𝑡 and 𝑃𝑟 at 𝑘 =  1, 𝑆𝑐 =  0.6, 𝐺𝑚 =  5,  

                              𝐺𝑟 =  2, 𝐾𝑟 = 1, 𝛾 = 0.1, 𝑁𝑟 =  0.5 and 𝑀 =  0.5. 

If dimensionless quantity 𝑁𝑟 =
16 𝑎∗ 𝜎∗𝑣2𝑇′

∞
3

𝑘4 𝑈0
2   instead of 𝑁𝑟 = −

16 𝑎∗ 𝜎∗𝑣2𝑇′
∞

3

𝑘4 𝑈0
2  is considered in 

energy equation 4.1.9 then motion of the fluid and heat transfer process increase with increase in 

𝑁𝑟. Physically, Due to increasing thermal radiation parameter 𝑁𝑟, heat is generated in fluid flow, 

which leads to improvement in heat transfer as well as momentum throughout the fluid flow region. 

Figure 4.1.7 and Figure 4.1.8 depict that velocity and concentration profiles for different values of 

chemical reaction parameter 𝐾𝑟 by keeping other parameters fixed. It is evident that, velocity and 

concentration profiles decreases with increase in 𝐾𝑟. This graphical behaviour of velocity and 

concentration is in good agreement with physical point of view of the fluid flow phenomena. It is 

depicted from Figure 4.1.9 that, the temperature decreases as the Prandtl number 𝑃𝑟 increases. It is 

justified due to the fact that thermal conductivity of the fluid decreases with increasing Prandtl 

number 𝑃𝑟 and hence decreases the thermal boundary layer thickness. It is depicted from Figure 

4.1.10 that, concentration decreases with increasing values of 𝑆𝑐. Figure 4.1.11 exhibits the Skin 

friction for different values of 𝑃𝑟. It is seen that, Skin friction increases with increase in 𝑃𝑟. Skin 

friction is more for ramped wall temperature compared to isothermal temperature. Figure 4.1.12 

shows effect of 𝑃𝑟 on Nusselt number. It is seen that Nusselt number decrease tendency with 𝑃𝑟. 
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Table 4.1.1: Skin friction variation for air (𝑃𝑟 =  0.71 and 𝑠𝑖𝑛 𝜔1𝑡 = 0 ) 

𝑡 𝛾 𝑆𝑐 𝐺𝑟 𝐺𝑚 𝑁𝑟 𝐾𝑟 𝑀 𝑘 Skin friction 𝜏 for 

Ramped  temperature 

Skin friction 𝜏 for 

isothermal temperature 

0.4 0.1 0.6 2 5 0.5 1 0.5 1 2.7934 0.3121 

0.4 0.2 0.6 2 5 0.5 1 0.5 1 2.8531 0.2179 

0.4 0.3 0.6 2 5 0.5 1 0.5 1 3.0731 0.0556 

0.4 0.1 0.7 2 5 0.5 1 0.5 1 2.7197 0.2383 

0.4 0.1 0.8 2 5 0.5 1 0.5 1 2.6561 0.1747 

0.4 0.1 0.6 3 5 0.5 1 0.5 1 3.4741 -0.2479 

0.4 0.1 0.6 5 5 0.5 1 0.5 1 4.8355 -1.3679 

0.4 0.1 0.6 2 7 0.5 1 0.5 1 3.3663 0.8849 

0.4 0.1 0.6 2 9 0.5 1 0.5 1 3.9391 1.4577 

0.4 0.1 0.6 2 5 0.7 1 0.5 1 2.0626 0.3399 

0.4 0.1 0.6 2 5 0.8 1 0.5 1 1.8636 0.3533 

0.4 0.1 0.6 2 5 0.5 0.9 0.5 1 2.4719 -0.0095 

0.4 0.1 0.6 2 5 0.5 0.8 0.5 1 1.7080 -0.7733 

0.4 0.1 0.6 2 5 0.5 1 0.7 1 2.9362 0.2960 

0.4 0.1 0.6 2 5 0.5 1 0.9 1 3.0545 0.1787 

0.4 0.1 0.6 2 5 0.5 1 0.5 1.1 2.7289 0.3044 

0.4 0.1 0.6 2 5 0.5 1 0.5 1.2 2.6711 0.2928 

0.5 0.1 0.6 2 5 0.5 1 0.5 0.5 2.5466 -0.0261 

0.6 0.1 0.6 2 5 0.5 1 0.5 0.5 2.1748 -0.4287 

 

Table 4.1.2: Skin friction variation for water (𝑃𝑟 =  7 and 𝑠𝑖𝑛 𝜔1𝑡 = 0) 

𝑡 𝛾 𝑆𝑐 𝐺𝑟 𝐺𝑚 𝑁𝑟 𝐾𝑟 𝑀 𝑘 Skin friction 𝜏 for 

Ramped temperature 

Skin friction 𝜏 for 

isothermal temperature 

0.4 0.1 0.6 2 5 0.5 1 0.5 1 10.1279 0.9596 

0.4 0.2 0.6 2 5 0.5 1 0.5 1 12.4865 0.7843 

0.4 0.3 0.6 2 5 0.5 1 0.5 1 16.2812 0.5758 

0.4 0.1 0.7 2 5 0.5 1 0.5 1 10.0541 0.8858 

0.4 0.1 0.8 2 5 0.5 1 0.5 1 9.9906 0.8223 

0.4 0.1 0.6 3 5 0.5 1 0.5 1 14.4758 0.7234 
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0.4 0.1 0.6 5 5 0.5 1 0.5 1 23.1716 0.2509 

0.4 0.1 0.6 2 7 0.5 1 0.5 1 10.7007 1.5324 

0.4 0.1 0.6 2 9 0.5 1 0.5 1 11.2735 2.1053 

0.4 0.1 0.6 2 5 0.7 1 0.5 1 7.0476 0.9612 

0.4 0.1 0.6 2 5 0.8 1 0.5 1 6.1810 0.9620 

0.4 0.1 0.6 2 5 0.5 0.9 0.5 1 9.8063 0.6381 

0.4 0.1 0.6 2 5 0.5 0.8 0.5 1 9.0425 -0.1258 

0.4 0.1 0.6 2 5 0.5 1 0.7 1 10.6974 0.9367 

0.4 0.1 0.6 2 5 0.5 1 0.9 1 11.4713 0.8105 

0.4 0.1 0.6 2 5 0.5 1 0.5 1.1 9.9141 0.9546 

0.4 0.1 0.6 2 5 0.5 1 0.5 1.2 9.7365 0.9452 

0.5 0.1 0.6 2 5 0.5 1 0.5 1 10.8952 0.6697 

0.6 0.1 0.6 2 5 0.5 1 0.5 1 11.4679 0.3041 

 

Table 4.1.3: Skin friction variation for (𝑃𝑟 =  25 and 𝑠𝑖𝑛 𝜔1𝑡 = 0) 

𝑡 𝛾 𝑆𝑐 𝐺𝑟 𝐺𝑚 𝑁𝑟 𝐾𝑟 𝑀 𝑘 Skin friction 𝜏 for 

Ramped  temperature 

Skin friction 𝜏 for 

isothermal temperature 

0.4 0.1 0.6 2 5 0.5 1 0.5 1 19.0090 1.1659 

0.4 0.2 0.6 2 5 0.5 1 0.5 1 24.2296 0.9779 

0.4 0.3 0.6 2 5 0.5 1 0.5 1 32.4505 0.7616 

0.4 0.1 0.7 2 5 0.5 1 0.5 1 18.9352 1.0922 

0.4 0.1 0.8 2 5 0.5 1 0.5 1 18.8716 1.0286 

0.4 0.1 0.6 3 5 0.5 1 0.5 1 27.7974 1.0329 

0.4 0.1 0.6 5 5 0.5 1 0.5 1 45.3743 0.7667 

0.4 0.1 0.6 2 7 0.5 1 0.5 1 19.5818 1.7388 

0.4 0.1 0.6 2 9 0.5 1 0.5 1 20.1546 2.3116 

0.4 0.1 0.6 2 5 0.7 1 0.5 1 12.9509 1.1662 

0.4 0.1 0.6 2 5 0.8 1 0.5 1 11.2459 1.1663 

0.4 0.1 0.6 2 5 0.5 0.9 0.5 1 18.6874   0.8444 

0.4 0.1 0.6 2 5 0.5 0.8 0.5 1 17.9236 0.0805 

0.4 0.1 0.6 2 5 0.5 1 0.7 1 20.1065 1.1420 

0.4 0.1 0.6 2 5 0.5 1 0.9 1 21.6913 1.0147 
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0.4 0.1 0.6 2 5 0.5 1 0.5 1.1 18.6104 1.1613 

0.4 0.1 0.6 2 5 0.5 1 0.5 1.2 18.2847 1.1522 

0.5 0.1 0.6 2 5 0.5 1 0.5 1 20.8744 0.8981 

0.6 0.1 0.6 2 5 0.5 1 0.5 1 22.4534 0.5518 

 

Table 4.1.4: Nusselt number variation for air (𝑃𝑟 =  0.71) 

𝑡 𝑁𝑟 Nusselt number 𝑁𝑢 for 

Ramped Temperature 

Nusselt number 𝑁𝑢 for 

isothermal Temperature 

0.4 0.5 0.2026 -0.1803 

0.4 0.7 0.2721 0.0166 

0.4 0.8 0.3047 0.1092 

0.5 0.5 0.2758 -0.0495 

0.6 0.5 0.3534 0.0518 

 

Table 4.1.5: Nusselt number variation for water (𝑃𝑟 =  7) 

𝑡 𝑁𝑟 Nusselt number 𝑁𝑢 for 

Ramped Temperature 

Nusselt number 𝑁𝑢 for 

isothermal Temperature 

0.4 0.5 0.0711 -2.1601 

0.4 0.7 0.0991 -2.0813 

0.4 0.8 0.1130 -2.0422 

0.5 0.5 0.0991 -1.8879 

0.6 0.5 0.1299 -1.6834 

 

Table 4.1.6: Nusselt number variation for (𝑃𝑟 =  25) 

𝑡 𝑁𝑟 Nusselt number 𝑁𝑢 for 

Ramped Temperature 

Nusselt number 𝑁𝑢 for 

isothermal Temperature 

0.4 0.5 0.0379 -4.3536 

0.4 0.7 0.0530 -4.3111 

0.4 0.8 0.0606 -4.2899 

0.5 0.5 0.0530 -3.8702 

0.6 0.5 0.0696 -3.5113 
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Table 4.1.7: Sherwood number variation 

𝑡 𝐾𝑟 𝑆𝑐 Sherwood number 𝑆ℎ 

0.4 1 0.6 0.2532 

0.4 1.1 0.6 0.2745 

0.4 1.2 0.6   0.2952 

0.4 1 0.7 0.2734 

0.4 1 0.8 0.2923 

0.5 1 0.6 0.3414 

0.6 1 0.6 0.4334 

 

 

The variation of the Nusselt number, Skin friction and Sherwood number for air (𝑃𝑟 =  0.71), water 

(𝑃𝑟 =  7) and (𝑃𝑟 =  25) are shown in Tables (4.1.1) to (4.1.7) for various values of the governing 

parameters. Skin friction increases in ramped wall temperature while decrease in isothermal 

temperature with increase in  𝛾 , 𝐺𝑟 and 𝑀. Skin friction decreases in case of ramped wall 

temperature while increase in isothermal temperature with increase in 𝑁𝑟. For both thermal cases, 

Skin friction decreases with increase in 𝑆𝑐 and 𝑘 while Skin friction increases with increase in 𝐺𝑚 

and 𝐾𝑟. Nusselt number increases with increase in 𝑁𝑟 and 𝑡. Sherwood number increases with 

increase in 𝐾𝑟, 𝑆𝑐 and 𝑡. Effect of all parameters 𝛾, 𝐺𝑟, 𝑀, 𝑁𝑟, 𝑆𝑐, 𝑘, 𝐺𝑚 and 𝐾𝑟 on Skin friction and 

Nusselt number are similar in air and water. For air, Skin friction decreases with increase in 𝑡. For 

water, Skin friction increases in a Ramped wall temperature while decreases in isothermal 

temperature with increase in 𝑡. From Table 4.1.1 to Table 4.1.6, it is observed that Magnitude of 

Skin friction and Nusselt number increases with increase in 𝑃𝑟. It is seen that magnitude of Skin 

friction and Nusselt number is more for Casson fluid compared with water and air.  

 

4.1.6 Conclusion 

Concluding remarks can be summarized as follows: 

 The fluid velocity decreases with increase in magnetic parameter 𝑀 and chemical reaction 

parameter 𝐾𝑟.  

 Permeability of porous medium k, Casson fluid parameter 𝛾 and positive values of thermal 

radiation 𝑁𝑟 tends to improved motion of the fluid flow throughout the flow field.  
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 Temperature decreases as the Prandtl number 𝑃𝑟  

 Schmidt number 𝑆𝑐 and chemical reaction parameter 𝐾𝑟 tends retard effects in mass transfer 

process. 

 Skin friction increases while Nusselt number decreases with increase in 𝑃𝑟. 

 Sherwood number increases with increase in 𝐾𝑟, 𝑆𝑐 and 𝑡. 
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4.2 SECTION II: EFFECTS OF THERMAL RADIATION AND CHEMICAL REACTION 

ON MHD CASSON FLUID FLOW PAST OVER AN EXPONENTIALLY ACCELARATED 

VERTICAL PLATE EMBEDDED IN POROUS MEDIUM 

In this Section, it is considered the effects of thermal radiation and chemical reaction on the unsteady 

MHD flow of Casson fluid past an exponentially moving vertical plate with ramped wall 

temperature and ramped surface concentration. The fluid is electrically conducting and passing 

through a porous medium. This phenomenon is modelled in the form of partial differential equations 

with initial and boundary conditions. The governing dimensionless equations are solved using the 

Laplace transform technique and analytical expressions for velocity, temperature and concentration 

profiles are obtained. In order to understand effects of ramped temperature with ramped surface 

concentration, obtained results are compared with that of isothermal temperature with ramped 

surface concentration. 

 

4.2.1 Introduction of the problem 

To extend research work of previous section, it is proposed to study the effects of chemical reaction 

and thermal radiation effects on MHD Casson fluid flow past an exponentially accelerated plate 

with ramped wall temperature and ramped surface concentration through porous medium. Free 

convection effects on MHD flow past an exponentially accelerated plate was studied by Singh and 

Kumar [161]. Recently, Pramanik [31] studied thermal radiation effects on Casson fluid flow and 

heat transfer past an exponentially porous stretching surface. Nadeem et al. [46] considered MHD 

flow of a Casson fluid over an exponentially shrinking sheet. Muthucumaraswamy et al. [78] studied 

mass transfer effects on exponentially accelerated isothermal vertical plate. Raju et al. [119] 

discussed MHD flow over an exponentially moving plate with heat absorption.   

Prominence of porous medium in MHD flow is presented by Ali et al. [86]. Recently, Kataria and 

Patel [110] obtained analytical solution of MHD Casson fluid flow with radiation and reaction 

through embedded porous medium. However, all researchers considered ramped temperature with 

ramped surface concentration profiles, it is to be noted that interval for ramped profile varies from 

material to material depending upon the specific heat and mass transfer capacity of the material. 

Seth et al. [141] considered the problems of MHD flow with ramped wall temperature, whereas 

Seth [148] considered MHD flow with chemically reacting fluid past an accelerated moving vertical 

plate with ramped boundary conditions in porous medium.  
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4.2.2 Novelty of the Problem 

Aim of this investigation is to study of unsteady free convective MHD flow of radiating and 

chemically reacting Casson fluid past an exponentially accelerated plate through embedded porous 

medium when plate has a ramped temperature with ramped surface concentration. Further, the 

expressions for the temperature gradient, concentration gradient and skin friction have been derived. 

 

4.2.3 Mathematical Formulation of the Problem 

 

𝑇′ = {
𝑇′

∞ + (𝑇′
𝑤 − 𝑇′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝑇′
𝑤                            𝑖𝑓     𝑡′ ≥ 𝑡0

, 𝐶′ = {
𝐶′

∞ + (𝐶′
𝑤 − 𝐶′

∞) 𝑡′

𝑡0
⁄ 𝑖𝑓  0 < 𝑡′ < 𝑡0

𝐶′
𝑤                           𝑖𝑓     𝑡′ ≥ 𝑡0

;  𝑦′ = 0   

Figure 4.2.1: Physical sketch of the Problem 

As shown in Figure 4.2.1, 𝑥′ − axis  is along the wall and y′ − axis   is normal to it. A uniform 

magnetic field 𝐵0 is applied along y′- direction. Initially, at time t′ ≤ 0 , both the fluid and the plate 

are at rest with constant temperature T′
∞  and the concentration at the surface is C′

∞  respectively. 

At time 𝑡′ > 0, the plate is exponentially accelerated in the vertical direction against gravitational 

field with velocity U0𝑒𝑎′𝑡, the temperature of the plate is either raised or lowered to T′
∞ + (T′

w +

T′
∞)  t′

 t0
⁄  when t′ ≤   t0 , for  t′ > t0 , which is maintained at the constant temperature T′

w. The 
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level of mass transfer at the surface of the wall is either raised or lowered to C′
∞ + (C′

w +

C′
∞)  t′

 t0
⁄  when t′ ≤   t0 , for t′ > t0 , which is maintained constant surface concentration C′

w 

respectively. 

It is assumed that, the flow of fluid is confined in one dimensional incompressible, whereas induce 

magnetic field, electric field and viscous dissipation term in the energy equation is neglected. Under 

above assumptions and Boussinesq’s approximation, governing equations are given below: 

𝜌
𝜕𝑢′

𝜕𝑡′ = 𝜇𝛽 (1 +
1

𝛾
)

𝜕2𝑢′

𝜕𝑦2 − 𝜎𝐵0
2𝑢′ −

𝜇𝜙

𝑘′ 𝑢′ + 𝜌𝑔𝛽′
𝑇

(𝑇′ − 𝑇′
∞) + 𝜌𝑔𝛽′

𝐶
(𝐶′ − 𝐶′

∞)  (4.2.1) 

𝜕𝑇′

𝜕𝑡′ =
𝑘4

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 −
1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦′                                 (4.2.2) 

𝜕𝐶′

𝜕𝑡′ = 𝐷𝑀
𝜕2𝐶′

𝜕𝑦′2 − 𝑘2
′  (𝐶′ − 𝐶′

∞)        (4.2.3) 

with following initial and boundary conditions: 

𝑢′ = 0,     𝑇′ = 𝑇′
∞,   𝐶′ =  𝐶′

∞;  𝑎𝑠   𝑦′ ≥ 0 𝑎𝑛𝑑   𝑡′ ≤ 0    

u′ = U0ea′tas  t′ > 0 and y′ = 0  ,   T′ = {
T′

∞ + (T′
w − T′

∞) t′

t0
⁄ if  0 < t′ < t0

T′
w                           if     t′ ≥ t0

 ,     

 C′ = {
C′

∞ + (C′
w − C′

∞) t′

t0
⁄ if  0 < t′ < t0

C′
w                           if     t′ ≥ t0

;  y′ = 0   

u′ → 0, T′ → T′
∞,   C′ → C′

∞;  as  y′ → ∞ and t′ ≥ 0      (4.2.4) 

Using the Rosseland [91], the radiative heat flux term is given by.  

𝑞𝑟
′ = −

4𝜎∗

3𝑘∗

𝜕𝑇′4

𝜕𝑦′            (4.2.5) 

Where σ∗ and k∗ are Stefan Boltzmann constant and mean absorption coefficient respectively. 

Assuming that the temperature difference between the fluid within the boundary layer and free 

stream is small, so  𝑇′4
 can be expressed as a linear combination of the temperature, using Taylor’s 

series, expand 𝑇′4
 about 𝑇∞

′ and neglecting higher order terms. 

𝑇′4
≅ 4𝑇′

∞
3

𝑇′ − 3𝑇′
∞
4

          (4.2.6) 
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𝜕𝑞𝑟
′

𝜕𝑦′ = −
16𝜎∗𝑇′

∞
3

3𝑘∗

𝜕2𝑇′

𝜕𝑦′2           (4.2.7) 

Using equations (4.2.7) and (4.2.6) in equation (4.2.5),  

𝜕𝑇′

𝜕𝑡′ =
𝑘4

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2 +
1

𝜌𝑐𝑝

16𝜎∗𝑇′
∞
3

3𝑘∗

𝜕2𝑇′

𝜕𝑦′2         (4.2.8) 

Introducing the following dimensionless quantities:  

𝑦 =
𝑈0𝑦′

𝜈 
, 𝑢 =

𝑢′

𝑈0
, 𝑡 =

𝑡′𝑈0
2

𝜈
 ,   𝜃 =

(𝑇′−𝑇′
∞)

(𝑇′
𝑤−𝑇′

∞)
, 𝐶 =

(𝐶′−𝐶′
∞)

(𝐶′
𝑤−𝐶′

∞)
  

In the equations (4.2.1) to (4.2.4) dropping out the " ′ " notation (for simplicity), 

𝜕𝑢

𝜕𝑡
= (1 +

1

𝛾
)

𝜕2𝑢

𝜕𝑦2 − (𝑀2 +
1

𝑘
) 𝑢 + 𝐺𝑟𝜃 + 𝐺𝑚𝐶       (4.2.9) 

𝜕𝜃

𝜕𝑡
=

1+𝑁𝑟

𝑃𝑟

𝜕2𝜃

𝜕𝑦2                                (4.2.10) 

𝜕𝐶

𝜕𝑡
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑦2 − 𝐾𝑟 𝐶           (4.2.11) 

with initial and boundary condition 

𝑢 = 𝜃 =  𝐶 = 0 ,            𝑦 ≥ 0, 𝑡 = 0  

𝑢 = 𝑒𝑎′𝑡 , 𝜃 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    = 𝑡𝐻(𝑡) − (𝑡 − 1)𝐻(𝑡 − 1),    

𝐶 = {
𝑡,     0 < 𝑡 ≤ 1
1              𝑡 > 1

    = 𝑡𝐻(𝑡) − (𝑡 − 1)𝐻(𝑡 − 1), 𝑦 = 0,       𝑡 > 0  

𝑢 → 0, 𝜃 → 0, 𝐶 → 0    𝑎𝑠  𝑦 → ∞, 𝑡 > 0         (4.2.12) 

where, H (.) is Heaviside unit step function. 

𝐺𝑟 =
 𝑔𝜈𝛽′

𝑇(𝑇′
𝑤−𝑇′

∞)

𝑈0
3 , 𝑀2 =

𝜎𝐵0
2 𝜈

𝜌𝑈0
2  , 𝐺𝑚 =

𝜈 𝑔𝛽′
𝐶(𝐶′

𝑤−𝐶′
∞)

𝑈0
3 , 𝑃𝑟 =

𝜌𝜈𝐶𝑝 

𝑘4
, 𝑁𝑟 =

16𝜎∗𝑇′
∞
3

3𝑘4 𝑘∗ , 𝑆𝑐 =
𝜈

𝐷𝑀
,

1

𝑘
=

𝜈𝜙2

𝑘′ 𝑈0
2 , 𝐾𝑟 =  

𝑣 𝑘2
′

𝑈0
2 , 𝛾 =

𝜇𝛽√2𝜋𝑐

𝑃𝑦
, 𝜏 =

𝜏

𝜌𝑢2   

 

4.2.4 Solution of the problem 

Expression for velocity, temperature and concentration profiles are obtained for equations (4.2.9) to 

(4.2.11) with initial and boundary condition (4.2.12) using the Laplace transform technique. 
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4.2.4.1 Solution of the problem for ramped temperature and ramped surface concentration 

𝜃(𝑦, 𝑡) = 𝑓6(𝑦, 𝑡) − 𝑓6(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)        (4.2.13) 

𝐶(𝑦, 𝑡) = 𝑓9(𝑦, 𝑡) − 𝑓9(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)        (4.2.14) 

𝑢(𝑦, 𝑡) = 𝑔1(𝑦, 𝑡) + ℎ1(𝑦, 𝑡) − ℎ1(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)      (4.2.15) 

 

4.2.4.2 Solution of the problem for isothermal temperature and ramped surface concentration 

In this case, the initial and boundary conditions are the same excluding Eq. (4.2.12) that 

becomes 𝜃 = 1 𝑎𝑡 𝑦 = 0, 𝑡 ≥ 0 . 

𝜃(𝑦, 𝑡) = 𝑓5(𝑦, 𝑡)           (4.2.16) 

𝐶(𝑦, 𝑡) = 𝑓9(𝑦, 𝑡) − 𝑓9(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)       (4.2.17) 

𝑢(𝑦, 𝑡) = ℎ2(𝑦, 𝑡) + ℎ3(𝑦, 𝑡) − ℎ3(𝑦, 𝑡 − 1)𝐻(𝑡 − 1)     (4.2.18) 

Where 

ℎ1(𝑦, 𝑡) = 𝑔2(𝑦, 𝑡) − 𝑔3(𝑦, 𝑡) − 𝑔4(𝑦, 𝑡)        (4.2.19) 

ℎ2(𝑦, 𝑡) = 𝑔1(𝑦, 𝑡) + 𝑔5(𝑦, 𝑡) − 𝑔7(𝑦, 𝑡)        (4.2.20) 

ℎ3(𝑦, 𝑡) = 𝑔6(𝑦, 𝑡) − 𝑔4(𝑦, 𝑡)         (4.2.21) 

𝑔1(𝑦, 𝑡) =
𝑒𝑎′𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏+𝑎′)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎 𝑡
− √(𝑏 + 𝑎′)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏+𝑎′)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎 𝑡
+ √(𝑏 + 𝑎′)𝑡)]  

            (4.2.22) 

𝑔2(𝑦, 𝑡) = 𝑎14𝑓1(𝑦, 𝑡) + 𝑎15𝑓2(𝑦, 𝑡) + 𝑎9𝑓3(𝑦, 𝑡) + 𝑎12𝑓4(𝑦, 𝑡)     (4.2.23) 

𝑔3(𝑦, 𝑡) = 𝑎10𝑓5(𝑦, 𝑡) + 𝑎8𝑓6(𝑦, 𝑡) + 𝑎9𝑓7(𝑦, 𝑡)       (4.2.24) 

𝑔4(𝑦, 𝑡) = 𝑎13𝑓8(𝑦, 𝑡) + 𝑎11𝑓9(𝑦, 𝑡) + 𝑎12𝑓10(𝑦, 𝑡)       (4.2.25) 

𝑔5(𝑦, 𝑡) = 𝑎8𝑓1(𝑦, 𝑡) − 𝑎8𝑓3(𝑦, 𝑡)         (4.2.26) 

𝑔6(𝑦, 𝑡) = 𝑎13𝑓1(𝑦, 𝑡) + 𝑎11𝑓2(𝑦, 𝑡) + 𝑎12𝑓4(𝑦, 𝑡)       (4.2.27) 
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𝑔7(𝑦, 𝑠) = 𝑎8𝑓5(𝑦, 𝑡) − 𝑎8𝑓7(𝑦, 𝑡)         (4.2.28) 

𝑓1(𝑦, 𝑡) =
1

2
[𝑒

−𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √𝑏𝑡) + 𝑒

𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+ √𝑏𝑡)]   (4.2.29) 

𝑓2(𝑦, 𝑡) =
1

2
[(𝑡 −

𝑦

2√𝑎𝑏
) 𝑒

−𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
− √𝑏𝑡) + (𝑡 +

𝑦

2√𝑎𝑏
) 𝑒

𝑦√
𝑏

𝑎 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎𝑡
+ √𝑏𝑡)]  

            (4.2.30) 

𝑓3(𝑦, 𝑡) =
𝑒𝑎2𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏+𝑎2)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎 𝑡
− √(𝑏 + 𝑎2)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏+𝑎2)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎 𝑡
+

                   √(𝑏 + 𝑎2)𝑡)]         (4.2.31) 

𝑓4(𝑦, 𝑡) =
𝑒−𝑎6𝑡

2
[𝑒

−𝑦√
1

𝑎
(𝑏−𝑎6)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎 𝑡
− √(𝑏 − 𝑎6)𝑡) + 𝑒

𝑦√
1

𝑎
(𝑏−𝑎6)

 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑎 𝑡
+

                   √(𝑏 − 𝑎6)𝑡)]         (4.2.32) 

𝑓5(𝑦, 𝑡) = 𝑒𝑟𝑓𝑐 (
𝑦

2√𝑑 𝑡
)          (4.2.33) 

𝑓6(𝑦, 𝑡) = (
𝑦2

2𝑑 
+ 𝑡) 𝑒𝑟𝑓𝑐 (

𝑦

2√𝑑 𝑡
) −

𝑦√𝑡

2√𝑑𝜋
𝑒−

𝑦2

4 𝑑 𝑡       (4.2.34) 

𝑓7(𝑦, 𝑡) =
𝑒𝑎2 𝑡

2
[𝑒−𝑦√𝑎2/𝑑 𝑒𝑟𝑓𝑐 (

𝑦 

2√𝑑 𝑡
− √𝑎2𝑡) + 𝑒𝑦√𝑎2/𝑑 𝑒𝑟𝑓𝑐 (

𝑦 

2√𝑑 𝑡
+ √𝑎2𝑡)]    (4.2.35) 

𝑓8(𝑦, 𝑡) =
1

2
[𝑒−𝑦√𝐾𝑟 𝑆𝑐 𝑒𝑟𝑓𝑐 (

𝑦√𝑆𝑐

2√𝑡
− √𝐾𝑟 𝑡) + 𝑒𝑦√𝐾𝑟 𝑆𝑐 𝑒𝑟𝑓𝑐 (

𝑦√𝑆𝑐

2√𝑡
+ √𝐾𝑟 𝑡)]   (4.2.36) 

𝑓9(𝑦, 𝑡) =
1

2
[(𝑡 −

𝑦 √𝑆𝑐

2√𝐾𝑟
) 𝑒−𝑦√𝑆𝑐 𝐾𝑟 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
− √𝐾𝑟 𝑡) + (𝑡 +

𝑦 √𝑆𝑐

2√𝐾𝑟
) 𝑒𝑦√𝑆𝑐 𝐾𝑟 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
+

                    √𝐾𝑟 𝑡)]           (4.2.37) 

𝑓10(𝑦, 𝑡) =
𝑒−𝑎6𝑡

2
[𝑒−𝑦√𝑆𝑐(𝐾𝑟−𝑎6) 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
− √(𝐾𝑟 − 𝑎6)𝑡) + 𝑒𝑦√𝑆𝑐(𝐾𝑟−𝑎6) 𝑒𝑟𝑓𝑐 (

𝑦 √𝑆𝑐

2√𝑡
+

                     √(𝐾𝑟 − 𝑎6)𝑡)]            (4.2.38)    
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4.2.4.3 Nusselt number, Sherwood number and Skin friction 

Expressions of Nusselt number Nu for Ramped temperature and isothermal temperature are 

calculated from equations (4.2.13) and (4.2.16) using the relation 

 𝑁𝑢 = − (
𝜕𝜃

𝜕𝑦
)

𝑦=0
             (4.2.39) 

For ramped wall temperature and ramped surface concentration: 

𝑁𝑢 = −[𝐼6(𝑡) − 𝐼6(𝑡 − 1)𝐻(𝑡 − 1)]          (4.2.40) 

For isothermal temperature and ramped surface concentration: 

𝑁𝑢 = −[𝐼5(𝑡)]           (4.2.41) 

Expressions of Sherwood number Sh for Ramped temperature and isothermal temperature are 

calculated from equations (4.2.14) and (4.2.17) using the relation 

𝑠ℎ = − (
𝜕𝐶

𝜕𝑦
)

𝑦=0
           (4.2.42) 

For ramped wall temperature and ramped surface concentration: 

𝑆ℎ = −[𝐼9(𝑡) − 𝐼9(𝑡 − 1)𝐻(𝑡 − 1)]           (4.2.43) 

For isothermal temperature and ramped surface concentration: 

𝑆ℎ = −[𝐼9(𝑡) − 𝐼9(𝑡 − 1)𝐻(𝑡 − 1)]           (4.2.44) 

Expressions of skin-friction for Ramped temperature and isothermal temperature are calculated 

from Equations (4.2.15) and (4.2.18) using the relations 

𝜏∗(𝑦, 𝑡) = − 𝜇𝛽 (1 +
1

𝛾
) 𝜏          (4.2.45) 

Where   𝜏 =
𝜕𝑢

𝜕𝑦
|

𝑦=0
              (4.2.46) 

For ramped wall temperature and ramped surface concentration: 

𝜏 = 𝐼11(𝑡) + 𝐼18(𝑡) − 𝐼18(𝑡 − 1)𝐻(𝑡 − 1)        (4.2.47) 

For isothermal temperature and ramped surface concentration: 
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𝜏 = 𝐼19(𝑡) + 𝐼20(𝑡) − 𝐼20(𝑡 − 1)𝐻(𝑡 − 1)        (4.2.48) 

Where 

𝐼1(𝑡) = −√
𝑏

𝑎
 erf(√𝑏𝑡) −

𝑒−𝑏𝑡

√𝜋𝑎𝑡
           (4.2.49) 

𝐼2(𝑡) = −
1

√4𝑎𝑏
 erf(√𝑏𝑡) − 𝑡√

𝑏

𝑎
erf(√𝑏𝑡) −

𝑡 𝑒−𝑏𝑡

√𝜋𝑎𝑡
       (4.2.50) 

𝐼3(𝑡) = −𝑒𝑎2 𝑡√
𝑏+𝑎2 

𝑎
 erf(√(𝑏+𝑎2 )𝑡) −

𝑒−𝑏𝑡

√𝜋𝑎𝑡
         (4.2.51) 

𝐼4(𝑡) = −𝑒−𝑎6 𝑡√
𝑏−𝑎6 

𝑎
 erf(√(𝑏−𝑎6 )𝑡) −

𝑒−𝑏𝑡

√𝜋𝑎𝑡
         (4.2.52) 

𝐼5(𝑡) = −√
1

𝜋𝑡𝑑
           (4.2.53) 

𝐼6(𝑡) = −2√
𝑡

𝑑 𝜋
            (4.2.54) 

𝐼7(𝑡) = −𝑒𝑎2𝑡√𝑎2/𝑑  erf(√𝑎2𝑡) − √
1

𝑑 𝜋𝑡
         (4.2.55) 

𝐼8(𝑡) = −√𝐾𝑟 𝑆𝑐  erf(√𝐾𝑟 𝑡) − √
𝑆𝑐

𝜋𝑡
𝑒−𝐾𝑟 𝑡        (4.2.56) 

𝐼9(𝑡) = −√
𝑆𝑐

4 𝐾𝑟
 erf(√𝐾𝑟 𝑡) − 𝑡√𝑆𝑐 𝐾𝑟 erf(√𝐾𝑟 𝑡) − √

𝑡 𝑆𝑐

𝜋
𝑒−𝐾𝑟 𝑡     (4.2.57) 

𝐼10(𝑡) = −𝑒−𝑎6𝑡√𝑆𝑐(𝐾𝑟 − 𝑎6) erf(√(𝐾𝑟 − 𝑎6)𝑡) − √
𝑆𝑐

𝜋𝑡
 𝑒− 𝐾𝑟 𝑡     (4.2.58) 

𝐼11(𝑡) = −𝑒𝑎′𝑡√
𝑏+𝑎′

𝑎
 erf (√(𝑏 + 𝑎′)𝑡) −

𝑒−𝑏𝑡

√𝜋𝑎𝑡
         (4.2.59) 

𝐼12(𝑡) = 𝑎14𝐼1(𝑡) + 𝑎15𝐼2(𝑡) + 𝑎9𝐼3(𝑡) + 𝑎12𝐼4(𝑡)         (4.2.60) 

𝐼13(𝑡) = 𝑎10𝐼5(𝑡) + 𝑎8𝐼6(𝑡) + 𝑎9𝐼7(𝑡)        (4.2.61) 

𝐼14(𝑡) = 𝑎13𝐼8(𝑡) + 𝑎11𝐼9(𝑡) + 𝑎12𝐼10(𝑡)        (4.2.62) 
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𝐼15(𝑡) = 𝑎8𝐼1(𝑡) − 𝑎8𝐼3(𝑡)            (4.2.63) 

𝐼16(𝑡) = 𝑎13𝐼1(𝑡) + 𝑎11𝐼2(𝑡) + 𝑎12𝐼4(𝑡)        (4.2.64) 

𝐼17(𝑡) = 𝑎8𝐼5(𝑡) − 𝑎8𝐼7(𝑡)            (4.2.65) 

𝐼18(𝑡) = 𝐼12(𝑡) − 𝐼13(𝑡) − 𝐼14(𝑡)           (4.2.66) 

𝐼19(𝑡) = 𝐼11(𝑡) + 𝐼15(𝑡) − 𝐼17(𝑡)         (4.2.67) 

𝐼20(𝑡) = 𝐼16(𝑡) − 𝐼14(𝑡)          (4.2.68) 

 

4.2.5 Results and discussion 

Fluid velocity, temperature and concentration profiles for several values of Casson parameter 𝛾, 

magnetic parameter 𝑀, radiation parameter 𝑁𝑟, chemical reaction parameter 𝐾𝑟 and permeability 

of porous medium 𝑘 are presented in Figure 4.2.2 to Figure 4.2.10.  

 

Figure 4.2.2: Velocity profile 𝑢 for different values of 𝑦 and 𝛾 at 𝑀 =  5, 𝑘 =  0.5, 𝑃𝑟 =  15,  

                         𝑆𝑐 =  0.66, 𝐺𝑚 =  3, 𝐺𝑟 =  4, 𝑁𝑟 =  5, 𝐾𝑟 =  5 and 𝑡 =  0.4 



Chapter 4: 

 

112 
 

 

Figure 4.2.3: Velocity profile 𝑢 for different values of 𝑦 and 𝑀 at 𝛾 = 1, 𝑘 =  0.5, 𝑃𝑟 =  15, 

                            𝑆𝑐 =  0.66, 𝐺𝑚 =  3, 𝐺𝑟 =  4, 𝑁𝑟 =  5, 𝐾𝑟 =  5 and 𝑡 =  0.4 

 

Figure 4.2.4: Velocity profile 𝑢 for different values of 𝑦 and 𝑘 at 𝛾 = 1, 𝑀 =  5, 𝑃𝑟 =  15,  

                            𝑆𝑐 =  0.66, 𝐺𝑚 =  3, 𝐺𝑟 =  4, 𝑁𝑟 =  5, 𝐾𝑟 =  5 and 𝑡 =  0.4 
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Figure 4.2.5: Temperature profile 𝜃 for different values of 𝑦 and 𝑃𝑟 at 𝑁𝑟 =  5 and 𝑡 =  0.4 

 

Figure 4.2.6: Concentration profile 𝐶 for different values of 𝑦 and 𝑆𝑐 at 𝐾𝑟 =  5 and 𝑡 =  0.4. 
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Figure 4.2.7: Temperature profile 𝜃 for different values of 𝑦 and 𝐾𝑟 at 𝑃𝑟 =  15 and 𝑡 =  0.4 

Figure 4.2.8: Concentration profile 𝐶 for different values of 𝑦 and 𝐾𝑟 at S𝑐 =  0.66 and 𝑡 =  0.4 
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Figure 4.2.2 shows effect of Casson fluid parameter 𝛾 on velocity profile for both thermal 

conditions. It is seen that velocity profile decreases with increase in Casson fluid parameter 𝛾. It 

occurs because of plasticity of Casson fluid. The plasticity of the fluid increases with decrease in 

Casson parameter. It causes the increment in velocity boundary layer thickness. Figure 4.2.3 

displays the effect of magnetic parameter 𝑀 on the velocity profiles. It is seen that the amplitude of 

the motion as well as the boundary layer thickness decreases when 𝑀 is increased. Figure 4.2.4 

illustrates that effect of permeability of porous medium 𝑘 on velocity profile. It is observed that for 

increasing values of 𝑘, the resistance of the porous medium is lowered which increases the 

momentum development of the flow regime. Figure 4.2.5 shows effect of Prandtl number 𝑃𝑟 on 

temperature profile. For both thermal conditions, it is seen that Prandtl number 𝑃𝑟 tends to reduce 

heat transfer process. In heat transfer problems, the Prandtl number controls thickness of the 

momentum and thermal boundary layers. This means that for liquid metals, thickness of the 

temperature boundary layer is much bigger than the momentum boundary layer. Effect of Schmidt 

number 𝑆𝑐 on concentration profiles is shown in Figure 4.2.6. It is seen that, the concentration near 

the plate gets reducing the thickness this leads minimizing the mass buoyancy force due to 

enhancement in the values of 𝑆𝑐. Figure 4.2.7 shows that effect of thermal radiation Parameter 𝑁𝑟 

on Temperature profile. It is observed that temperature is increase with increase in 𝑁𝑟. It is noticed 

that thermal radiation parameter reduces thermal buoyancy force, minimizing the thickness of the 

thermal boundary layer. Therefor temperature profiles increase with increase in radiation parameter 

𝑁𝑟. Chemical reaction has a delaying effect on concentration profile for both thermal cases as shown 

in Figure 4.2.8. This shows that the 𝐾𝑟 >  0 leads to fall in the concentration field which in turn 

declines the buoyancy effects due to concentration gradients. Consequently, the flow field is 

retarded. This occurrence has a superior agreement with the physical realities.  

 

Table 4.2.1: Skin friction variation 

𝑃𝑟 

 

𝛾 𝑆𝑐 𝐺𝑟 𝐺𝑚 𝐾𝑟 𝑀 𝑘 𝑁𝑟 𝑡 Skin friction 𝜏 

for Ramped  

temperature 

Skin friction 𝜏 

for isothermal 

temperature 

10 0.9 0.66 2 3 2 1 0.8 3 0.3 6.8445 6.4381 

11 0.9 0.66 2 3 2 1 0.8 3 0.3 6.8478 6.4539 

12 0.9 0.66 2 3 2 1 0.8 3 0.3 6.8508 6.4681 

https://en.wikipedia.org/wiki/Boundary_layers
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10 1.0 0.66 2 3 2 1 0.8 3 0.3 9.6725 9.2700 

10 1.1 0.66 2 3 2 1 0.8 3 0.3 16.3901 15.9910 

10 0.9 0.7 2 3 2 1 0.8 3 0.3 5.4086 5.0022 

10 0.9 1.0 2 3 2 1 0.8 3 0.3 3.7118 3.3054 

10 0.9 0.66 2.1 3 2 1 0.8 3 0.3 6.8393 6.4126 

10 0.9 0.66 2.2 3 2 1 0.8 3 0.3 6.8340 6.3870 

10 0.9 0.66 2 3.1 2 1 0.8 3 0.3 6.9520 6.5457 

10 0.9 0.66 2 3.2 2 1 0.8 3 0.3 7.0596 6.6532 

10 0.9 0.66 2 3 2.1 1 0.8 3 0.3 4.5998 4.1935 

10 0.9 0.66 2 3 2.2 1 0.8 3 0.3 3.6534 3.2471 

10 0.9 0.66 2 3 2 1.1 0.8 3 0.3 22.6077 22.2038 

10 0.9 0.66 2 3 2 1.2 0.8 3 0.3 374.0227 373.6214 

10 0.9 0.66 2 3 2 1 0.9 3 0.3 4.2335 3.8255 

10 0.9 0.66 2 3 2 1 1.0 3 0.3 3.2818 2.8725 

10 0.9 0.66 2 3 2 1 0.8 3.1 0.3 6.8436 6.4340 

10 0.9 0.66 2 3 2 1 0.8 3.2 0.3 6.8428 6.4300 

10 0.9 0.66 2 3 2 1 0.8 3 0.4 6.9344 6.5148 

10 0.9 0.66 2 3 2 1 0.8 3 0.5 6.9807 6.5655 

 

Table 4.2.2: Nusselt number variation 

𝑃𝑟 𝑁𝑟 𝑡 Nusselt number 𝑁𝑢 for 

Ramped Temperature 

Nusselt number 𝑁𝑢 

for isothermal Temperature 

10 3 0.3 0.9772 1.6287 

11 3 0.3 1.0249 1.7082 

12 3 0.3 1.0705 1.7841 

10 3.1 0.3 0.9652 1.6087 

10 3.2 0.3 0.9537 1.5894 

10 3 0.4 1.1284 1.4105 

10 3 0.5 1.2616 1.2616 
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Table 4.2.3: Sherwood number variation 

𝑆𝑐 𝑡 Sherwood number for Ramped wall 

concentration 𝑆ℎ 

0.66 0.3 0.5970 

0.7 0.3 0.6148 

1.0 0.3 0.7348 

0.66 0.3 0.6014 

0.66 0.3 0.6059 

0.66 0.4 0.7233 

0.66 0.5 0.8454 

 

Table 4.2.4: Comparison of Sherwood number with Ref. [150] 

t 𝐾𝑟 𝑆𝑐 

Sherwood number 

Sh for ramped 

temp. Ref [150] 

Sherwood 

number Nu for 

ramped temp. 

Sherwood number 

Sh for isothermal 

temp. Ref [150] 

Sherwood 

number Sh for 

isothermal temp. 

0.3 0.2 0.22 0.295649 0.2956 0.525702 0.5257 

0.5 0.2 0.22 0.386593 0.3866 0.428415 0.4284 

0.7 0.2 0.22 0.463189   0.4632 0.379505 0.3796 

0.3 2.0 0.22 0.344659 0.3447 0.839945 0.8399 

0.5 2.0 0.22 0.488076 0.4881 0.785973 0.7860 

0.7 2.0 0.22 0.625355 0.6254 0.757863 0.7579 

0.3 5.0 0.22 0.416933 0.4169 1.1897 1.1897 

0.5 5.0 0.22 0.628694 0.6287 1.12945 1.1294 

0.7 5.0 0.22 0.838894 0.8389 1.09522 1.0952 

 

Table 4.2.5: Comparison of Nusselt number with Ref. [141] 

t Nr 𝑃𝑟 

Nusselt number Nu 

for ramped temp. 

Ref [141] 

Nusselt number 

Nu for ramped 

temp. 

Nusselt number 

Nu for isothermal 

temp. Ref [141] 

Nusselt number 

Nu for 

isothermal temp. 

0.2 0.5 0.71 0.3472 0.3472 0.8679 0.8679 

0.4 0.5 0.71 0.4910 0.4910 0.6137 0.6137 
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0.6 0.5 0.71 0.6013 0.6013 0.5011 0.5011 

0.8 0.5 0.71 0.6944 0.6944 0.4340 0.4340 

1.0 0.5 0.71 0.7763 0.7763 0.3882 0.3882 

1.2 0.5 0.71 0.5032 0.5032 0.3543 0.3543 

1.4 0.5 0.71 0.4276 0.4276 0.3281 0.3281 

0.2 1.0 0.71 0.3007 0.3007 0.7517 0.7517 

0.4 1.0 0.71 0.4252 0.4252 0.5315 0.5315 

0.6 1.0 0.71 0.5208 0.5208 0.4340 0.4340 

0.8 1.0 0.71 0.6013 0.6013 0.3758 0.3758 

1.0 1.0 0.71 0.6723 0.6723 0.3362 0.3362 

1.2 1.0 0.71 0.4358 0.4358 0.3069 0.3069 

1.4 1.0 0.71 0.3703 0.3703 0.2841 0.2841 

0.2 5.0 0.71 0.1736 0.1736 0.4340 0.4340 

0.4 5.0 0.71 0.2455 0.2455 0.3069 0.3069 

0.6 5.0 0.71 0.3007 0.3007 0.2506 0.2506 

0.8 5.0 0.71 0.3472 0.3472 0.2170 0.2170 

1.0 5.0 0.71 0.3882 0.3882 0.1941 0.1941 

1.2 5.0 0.71 0.2516 0.2516 0.1772 0.1772 

1.4 5.0 0.71 0.2138 0.2138 0.1640 0.1640 

0.2 10 0.71 0.1282 0.1282 0.3205 0.3205 

0.4 10 0.71 0.1813 0.1813 0.2266 0.2266 

0.6 10 0.71 0.2221 0.2221 0.1850 0.1850 
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0.8 10 0.71 0.2564 0.2564 0.1603 0.1603 

1.0 10 0.71 0.2867 0.2867 0.1433 0.1433 

1.2 10 0.71 0.1858 0.1858 0.1308 0.1308 

1.4 10 0.71 0.1579 0.1579 0.1211 0.1211 

 

Table 4.2.1 shows effects of governing parameter on Skin friction for both thermal conditions. It is 

observed that, Schmidt number 𝑆𝑐, thermal Grashof number 𝐺𝑟, chemical reaction 𝐾𝑟, permeability 

of porous medium k and thermal radiation parameter 𝑁𝑟 tends to reduce Skin friction whereas, 

Prandtl number 𝑃𝑟, Casson fluid 𝛾, mass Grashof number 𝐺𝑚, Magnetic field 𝑀 and time 𝑡 has 

reverse effect on it. Table 4.2.2 shows influence of Prandtl number 𝑃𝑟, thermal radiation parameter 

𝑁𝑟 and time 𝑡 on Nusselt number. For both thermal conditions, it is seen that 𝑁𝑟 tends to reduce 

rate of heat transfer whereas, 𝑃𝑟 has reverse effect on it. Table 4.2.3 shows concentration gradient 

at the surface increase with increase in 𝐾𝑟, 𝑆𝑐 and 𝑡. Table 4.2.4 validates our results in terms of 

Sherwood number as it shows strong agreement with Seth et al. [150], whereas Table 4.2.5 

strengthens values of Nusselt number by comparing with those of Seth et al. [141].  

 

4.2.6 Conclusion 

Concluding remarks can be summarized as follows: 

 Casson fluid parameter 𝛾  and Magnetic field 𝑀 tend to reduce momentum whereas 

permeability of porous medium 𝑘 has reverse effect on it throughout the flow field. 

 Heat transfer process improve with thermal radiation parameter 𝑁𝑟. 

 Concentration decrease tendency with chemical reaction 𝐾𝑟 and Schmidt Number 𝑆𝑐. 

 For both thermal plates, Skin friction and Nusselt number increases with increase in 

𝑃𝑟, 𝛾, 𝐺𝑚, 𝑀 and 𝑡 while decrease with increase in 𝑁𝑟, 𝑆𝑐, 𝐺𝑟, 𝐾𝑟 and 𝑘. 

 Rate of mass transfer get reduced with 𝑆𝑐, 𝐾𝑟 and 𝑡. 

 Rate of Heat transfer get reduced with 𝑁𝑟, whereas improves with 𝑃𝑟. 


