Chain Recurrent Sets in Nonautonomous Discrete Dynamical Systems

In this chapter, we define, give examples and study chain recurrent sets and weak isolated sets in a nonautonomous discrete dynamical system induced by a sequence of homeomorphisms.

5.1 Properties of Chain Recurrent Sets in Nonautonomous Discrete Dynamical Systems

We first define chain recurrent point for a time varying homeomorphism.

Definition 5.1.1 Let (X, d) be a metric space and $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X. A point $x \in X$ is said to be a **chain** recurrent point for F if for any $\delta > 0$ and for any n > 0, there exist $m \ge n$ and a finite sequence $\{x_i\}_{i=0}^k$ of points of X with $x_0 = x_k = x$ such

that

$$d(f_{m+i}(x_i), x_{i+1}) < \delta,$$

for all i = 0, 1, ..., k - 1 or

$$d(f_{m+i}^{-1}(x_i), x_{i+1}) < \delta,$$

for all i = 0, 1, ..., k - 1. The sequence $\{x_i\}_{i=0}^k$ is said to be a δ -chain for **x** with action starting at **m**. The set of all chain-recurrent points of *F* is denoted by CR(F).

Remark 5.1 Let $x_0 \in X$ be a periodic point for F, then there exists k > 0such that $x_{i+k} = x_i$, for all $i \in \mathbb{Z}$, where $x_{n+1} = f_{n+1}(x_n)$, for all $n \ge 0$ and $x_n = f_{-n}^{-1}(x_{n+1})$, for all n < 0. Now for any $\delta > 0$ and for any $n \ge 0$, there exist $m = jk \ge n$ and a finite sequence $\{x_{jk+i}\}_{i=0}^k$ of points of X with $x_{jk} = x_{(j+1)k} = x_0$ such that

$$d(f_{m+i}(x_{m+i}), x_{m+i+1}) = d(f_{jk+i}(x_{jk+i}), x_{jk+i+1})$$

= $d(x_{jk+i+1}, x_{jk+i+1})$
= $0 < \delta$,

for all i = 0, 1, ..., k - 1. Hence x_0 is a chain recurrent point. Thus $Per(F) \subseteq CR(F)$. Also note that the set of periodic points need not be closed when CR(F) is closed.

The following example shows that Per(F) is a proper subset of CR(F).

Example 5.1 Let $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X = [0, 1], where for $x \in X$ and $n \ge 0$,

$$f_n(x) = \begin{cases} x^n, & if n \text{ is } non - prime; \\ x & if n \text{ is } prime. \end{cases}$$

Note that 0 and 1 are the only periodic points. For any $x \in [0,1]$, $\delta > 0$ and n > 0, there exist $m \ge n$ which is prime. Hence $\{x, f_m(x) = x\}$ is a δ -chain for x with action starting at m. Hence x is chain recurrent. Thus CR(F) = X.

Following is an example of a chain recurrent set which is a proper subset of *X*.

Example 5.2

$$X = \left\{\frac{1}{n} \colon n \in \mathbb{N}\right\} \cup \left\{1 - \frac{1}{n} \colon n \in \mathbb{N}\right\},\,$$

where \mathbb{N} is the set of all positive integers, under the usual metric d given by d(x, y) = |x - y|. Consider the map σ on X defined as follows :

$$\sigma(x) = \begin{cases} \frac{1}{n-1}, & \text{if } x = \frac{1}{n}, \ n > 2; \\ 1 - \frac{1}{n+1}, & \text{if } x = 1 - \frac{1}{n}, \ n \ge 2, \\ x, & \text{if } x = 0 \text{ or } x = 1. \end{cases}$$

Consider time varying homeomorphism $F = \{f_n\}_{n=0}^{\infty}$ on X where $f_n = \sigma^n$, $n \ge 0$.

For any $x \in X - \{0, 1\}$, $0 < \delta < \frac{1}{6}$ there exists n > 0 such that for any $m \ge n$,

$$d(f_m(x), 1) < \delta$$
 and $d(f_m^{-1}(x), 0) < \delta$.

Thus there does not exist any δ -chain for x with action starting at $m \ge n$ and therefore $x \notin CR(F)$. Since 0 and 1 are fixed points, we have $CR(F) = \{0, 1\}$.

Next, we show that for an invertible nonautonomous discrete dynamical system on a compact metric space, if the family of homeomorphisms generating the time varying homeomorphism and its inverse maps is equicontinuous, then the set of all chain recurrent points is a closed set. Moreover, in this case, it contains the set of all nonwandering points .

Theorem 5.1.1 Let $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on a compact metric space (X, d). If the family of homeomorphisms $\{f_n, f_n^{-1}\}_{n=0}^{\infty}$ is equicontinuous then CR(F) is a closed set.

Proof : Let $\{y_j\}_{j=0}^{\infty}$ be a sequence of points of CR(F) converging to some $y \in X$. Let $\varepsilon > 0$ and N > 0 be given. Now X being compact, the family $\{f_n, f_n^{-1}\}_{n=0}^{\infty}$ is uniformly equicontinuous on X therefore there exists $0 < \delta < \frac{\varepsilon}{2}$ such that

$$d(f_i(x), f_i(y)) < \frac{\varepsilon}{2} \text{ and } d(f_i^{-1}(x), f_i^{-1}(y)) < \frac{\varepsilon}{2},$$

for all $i \ge 0$, whenever $d(x, y) < \delta$. Since $y_j \to y$, there exists n > 0 such that $d(y_n, y) < \delta$. Now since $y_n \in CR(F)$ therefore there exist $m \ge N$ and a finite sequence $\{x_i\}_{i=0}^k$ with $x_0 = x_k = y_n$ such that

$$d(f_{m+i}(x_i), x_{i+1}) < \frac{\varepsilon}{2}, \quad for \ all \ i = 0, 1, \dots, k-1$$
 (5.1)

or

$$d(f_{m+i}^{-1}(x_i), x_{i+1}) < \frac{\varepsilon}{2}, \text{ for all } i = 0, 1, \dots, k-1.$$
 (5.2)

Now

$$d(y, y_n) < \delta \Rightarrow d(f_m(y), f_m(y_n)) < \frac{\varepsilon}{2},$$
$$d(f_m(y_n), x_1) = d(f_m(x_0), x_1) < \frac{\varepsilon}{2}$$

and

$$d(f_{m+k-1}(x_{k-1}), y_n) = d(f_{m+k-1}(x_{k-1}), x_k) < \frac{\varepsilon}{2}$$

In case 5.1 holds then we have

$$d(f_m(y), x_1) \leq d(f_m(y), f_m(y_n)) + d(f_m(y_n), x_1) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Also

$$d(f_{m+k-1}(x_{k-1}), y) \le d(f_{m+k-1}(x_{k-1}), y_n) + d(y_n, y) < \frac{\varepsilon}{2} + \delta < \varepsilon.$$

Thus, taking $z_0 = z_k = y$ and $z_i = x_i$, for i = 1, 2, ..., k - 1, we have a finite sequence $\{z_i\}_{i=0}^k$ such that

$$d(f_{m+i}(z_i), z_{i+1}) < \varepsilon,$$

for all i = 0, 1, ..., k - 1 an therefore $y \in CR(F)$. Similarly

$$d(y, y_n) < \delta \implies d(f_m^{-1}(y), f_m^{-1}(y_n)) < \frac{\varepsilon}{2},$$

$$d(f_m^{-1}(y_n), x_1) = d(f_m^{-1}(x_0), x_1) < \frac{\varepsilon}{2}$$

and

$$d(f_{m+k-1}^{-1}(x_{k-1}), y_n) = d(f_{m+k-1}^{-1}(x_{k-1}), x_k) < \frac{\varepsilon}{2}$$

In case 5.2 holds then we have

$$d(f_m^{-1}(y), x_1) \le d(f_m^{-1}(y), f_m^{-1}(y_n)) + d(f_m^{-1}(y_n), x_1) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Also

$$d(f_{m+k-1}^{-1}(x_{k-1}), y) \leq d(f_{m+k-1}^{-1}(x_{k-1}), y_n) + d(y_n, y) < \frac{\varepsilon}{2} + \delta < \varepsilon.$$

Thus taking $z_0 = z_k = y$ and $z_i = x_i$, for i = 1, 2, ..., k - 1, we have a finite sequence $\{z_i\}_{i=0}^k$ such that

$$d(f_{m+i}^{-1}(z_i), z_{i+1}) < \varepsilon,$$

for all i = 0, 1, ..., k - 1. Thus $y \in CR(F)$. Hence CR(F) is closed.

Theorem 5.1.2 Let $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on a compact metric space (X, d). If the family $\{f_n, f_n^{-1}\}_{n=0}^{\infty}$ is equicontinuous on X then $\Omega(F) \subseteq CR(F)$.

Proof : Let $x \in \Omega(F)$, $\varepsilon > 0$ and n > 0 be given. Now *X* being compact, the family $\{f_n, f_n^{-1}\}_{n=0}^{\infty}$ is uniformly equicontinuous on *X* therefore there exists $0 < \delta < \varepsilon$ such that

$$d(f_i(x), f_i(y)) < \varepsilon$$
 and $d(f_i^{-1}(x), f_i^{-1}(y)) < \varepsilon$,

for all $i \ge 0$, whenever $d(x, y) < \delta$. For $\delta > 0$ there exist $m \ge n$ and $r \ge 0$ such that

$$F_{[m,m+r]}(U_{\delta}(x)) \cap U_{\delta}(x) \neq \phi \text{ or } F_{[m,m+r]}^{-1}(U_{\delta}(x)) \cap U_{\delta}(x) \neq \phi,$$

where $U_{\delta}(x) = \{y \in X : d(x, y) < \delta\}$. Equivalently, there exists $y \in X$ such that $d(x, y) < \delta$ and

$$d(F_{[m,m+r]}(y), x) < \delta \text{ or } d(F_{[m,m+r]}^{-1}(y), x) < \delta.$$

If

 $d(F_{[m,m+r]}(y),x) < \delta$

then put $x_0 = x_{r+1} = x$ and $x_i = F_{[m,m+i-1]}(y)$, for i = 1, 2, ..., r. We get

$$d(f_m(x_0), x_1) = d(f_m(x), f_m(y)) < \varepsilon$$

(as $x_0 = x$ and $x_1 = F_{[m,m]}(y) = f_m(y)$) and

$$d(f_{m+r}(x_r), x_{r+1}) = d(F_{[m,m+r]}(y), x) < \delta < \varepsilon$$

(as
$$f_{m+r}(x_r) = f_{m+r}(F_{[m,m+r-1]}(y)) = F_{[m,m+r]}(y)$$
.) Thus
$$d(f_{m+i}(x_i), x_{i+1}) < \varepsilon,$$

for i = 0, 1, ..., r.

On the other hand, if

$$d(F_{[m,m+r]}^{-1}(y),x)<\delta$$

then put $x_0 = x_{r+1} = x$ and $x_i = F_{[m,m+i-1]}^{-1}(y)$, for i = 1, 2, ..., r. We get

$$d(f_m^{-1}(x_0), x_1) = d(f_m^{-1}(x), f_m^{-1}(y)) < \varepsilon$$

(using the facts $x_0 = x$ and $x_1 = F_{[m,m]}^{-1}(y) = f_m^{-1}(y)$) and

$$d(f_{m+r}^{-1}(x_r), x_{r+1}) = d(F_{[m,m+r]}^{-1}(y), x) < \delta < \varepsilon$$

(using the facts $f_{m+r}^{-1}(x_r) = f_{m+r}^{-1}(F_{[m,m+r-1]}^{-1}(y)) = F_{[m,m+r]}^{-1}(y)$). Hence

$$d(f_{m+i}^{-1}(x_i), x_{i+1}) < \varepsilon,$$

for i = 0, 1, ..., r. Thus, in any case $\{x_i\}_{i=0}^{r+1}$ is an ε -chain for x with action starting at m which proves that $x \in CR(F)$.

In the following example $\Omega(F)$ is a proper subset of CR(F).

Example 5.3 Let

$$Y = \left\{\frac{1}{n} \colon n \in \mathbb{N}\right\} \cup \left\{1 - \frac{1}{n} \colon n \in \mathbb{N}\right\},\,$$

where \mathbb{N} is the set of all positive integers under the usual metric d_0 given by $d_0(x, y) = |x - y|$. Define a map $f: Y \to Y$ by

$$f(y) = \begin{cases} 0 & if \ y = 0 \text{ or } y = 1; \\ y & y \in Y - \{0, 1\}. \end{cases}$$

Consider the quotient space X = Y/f *with metric d defined on* X *as follows. For any* $\{a\}, \{b\} \in X$ *,*

 $d(\{a\},\{b\}) = \min\{d_0(a,b), 1 - d_0(a,b)\}$

Define shift map σ *on X as follows :*

$$\sigma(x) = \begin{cases} \{\frac{1}{n-1}\} & \text{if } x = \{\frac{1}{n}\}, \ n > 2; \\ \{1 - \frac{1}{n+1}\} & \text{if } x = \{1 - \frac{1}{n}\}, \ n \ge 2, \\ x & \text{if } x = \{0, 1\}. \end{cases}$$

Consider the time varying homeomorphism $F = \{f_n\}_{n=0}^{\infty}$ on X, where $f_n = \sigma^n$, $n \ge 0$. Let $x \in X - \{A\}$, where $A = \{0, 1\}$ be given. Put $\varepsilon = \frac{d(x,A)}{4}$. Then there exists n > 0 such that for any $m \ge n$, any $r \ge 0$ and for any $y \in U_{\varepsilon}(x)$,

$$d(F_{[m,m+r]}(y),A) < \varepsilon.$$

Therefore

$$F_{[m,m+r]}(U_{\varepsilon}(x)) \cap U_{\varepsilon}(x) = \phi$$

which implies x is not a nonwandering point. Let $x \in X$ be fixed. Now for any $\varepsilon > 0$ and $n \ge 0$, there exists $m \ge n + 1$ such that

$$F_{[n,m-1]}(x) \in U_{\frac{\varepsilon}{2}}(A).$$

We can choose $y \in U_{\frac{\varepsilon}{2}}(A)$ such that $F_{[m,m+r]}(y) = x$ for some $r \ge 0$. Note that

$$d(f_{m-1}(F_{[n,m-2]}(x)), y) = d(F_{[n,m-1]}(x), y) \leq d(F_{[n,m-1]}(x), A) + d(A, y) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus

$$\{x, f_n(x), F_{[n,n+1]}(x), \cdots, F_{[n,m-2]}(x), y, f_m(y), F_{[m,m+1]}(y), \cdots \\ \dots, F_{[m,m+r]}(y) = x\}$$

is an ε -chain for x with action starting at n. Hence $x \in CR(F)$. Thus CR(F) = X and $\Omega(F) = \{A\}$.

In the above example, if $f_n = \sigma$, $n \ge 0$ then for time varying homeomorphism $F = \{f_n\}_{n=0}^{\infty}$, we have $\Omega(F)$ is a proper subset of CR(F) and the family $\{f_n, f_n^{-1}\}_{n=0}^{\infty}$ is equicontinuous on *X* being a finite family of homeomorphisms $\{\sigma, \sigma^{-1}\}$.

5.2 Chain Recurrence and Shadowing Property

In this section, we study chain recurrent sets in an invertible nonautonomous discrete dynamical system having shadowing property.

Theorem 5.2.1 Let $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on a metric space (X, d). If F has P.O.T.P. on X then $CR(F) \subseteq \Omega(F)$.

Proof : Let $x \in CR(F)$, $\varepsilon > 0$ and $n_0 > 0$ be given. Since *F* has P.O.T.P., there exists a $\delta > 0$ such that any δ -pseudo orbit can be ε -traced by an orbit of *F*.

On nonautonomous discrete dynamical systems

Since $x \in CR(F)$, there exists m with $m + 1 \ge n_0$ and a finite sequence $\{x_i\}_{i=m}^{m+r}$ with $x_m = x_{m+r} = x$ such that

$$d(f_{m+i+1}(x_{m+i}), x_{m+i+1}) < \delta$$
 for $i = 0, 1, \dots, r-1$,

or

$$d(f_{m+i+1}^{-1}(x_{m+i}), x_{m+i+1}) < \delta \text{ for } i = 0, 1, \dots, r-1.$$

In the first case, put $z = (F_m)^{-1}(x)$, $x_i = F_i(z)$, for all i < m and $x_i = F_{[m+r+1,i]}(x)$, for all i > m + r. Hence

$$d(f_{n+1}(x_n), x_{n+1})$$

 $=\begin{cases} d(f_{n+1}(F_n(z)), F_{n+1}(z)) & if n < m; \\ d(f_{m+i+1}(x_{m+i}), x_{m+i+1}) & if n = m+i, o \le i \le r-1; \\ d(f_{m+r+1}(x_{m+r}), x_{m+r+1}) & if n = m+r; \\ d(f_{m+r+2+i}(F_{[m+r+1,m+r+1+i]}(x)), \\ F_{[m+r+1,m+r+2+i]}(x)) & if n = m+r+1+i, i \ge 0; \end{cases}$

$$=\begin{cases} d(F_{n+1}(z), F_{n+1}(z)) & if \ n < m; \\ d(f_{m+i+1}(x_{m+i}), x_{m+i+1}) & if \ n = m+i, \ o \le i \le r-1; \\ d(f_{m+r+1}(x), f_{m+r+1}(x)) & if \ n = m+r; \\ d(F_{[m+r+1,m+r+2+i]}(x), & F_{[m+r+1,m+r+2+i]}(x)) & if \ n = m+r+1+i, \ i \ge 0; \end{cases}$$

 $<\delta$ (in any case)

Thus we get a δ -pseudo orbit $\{x_i\}_{i=-\infty}^{\infty}$ for *F*. By the P.O.T.P. of *F*, there exists a $y \in X$ such that

$$d(F_i(y), x_i) < \varepsilon,$$

for every $i \in \mathbb{Z}$. Note that $x_m = x_{m+r} = x$,

$$d(F_m(y), x_m) < \varepsilon$$
 and $d(F_{m+r}(y), x_{m+r}) < \varepsilon$

i.e.

$$d(F_m(y), x) < \varepsilon$$
 and $d(F_{[m+1,m+r]}(F_m(y)), x) < \varepsilon$.

Thus

$$F_{[m+1,m+r]}(U_{\varepsilon}(x)) \cap U_{\varepsilon}(x) \neq \emptyset,$$

where $U_{\varepsilon}(x) = \{y \in X : d(x, y) < \varepsilon\}$. Similarly in the latter case, put $z = (F_{(-m)})^{-1}(x), x_i = F_{(-i)}(z)$, for all i < m and $x_i = F_{[m+r+1,i]}^{-1}(x)$, for all i > m + r. Hence

$$d(f_{n+1}^{-1}(x_n), x_{n+1})$$

$$=\begin{cases} d(f_{n+1}^{-1}(F_{-n}(z)), F_{-(n+1)}(z)) & if \quad n < m; \\ d(f_{m+i+1}^{-1}(x_{m+i}), x_{m+i+1}) & if \quad n = m+i, \quad o \le i \le r-1; \\ d(f_{m+r+1}^{-1}(x_{m+r}), x_{m+r+1}) & if \quad n = m+r; \\ d(f_{m+r+2+i}^{-1}(F_{[m+r+1,m+r+1+i]}^{-1}(x)), & \\ F_{[m+r+1,m+r+2+i]}^{-1}(x)) & if \quad n = m+r+1+i, \quad i \ge 0; \end{cases}$$

$$=\begin{cases} d(F_{-(n+1)}(z)), F_{-(n+1)}(z))) & if \quad n < m; \\ d(f_{m+i+1}^{-1}(x_{m+i}), x_{m+i+1}) & if \quad n = m+i, \quad o \le i \le r-1; \\ d(f_{m+r+1}^{-1}(x), f_{m+r+1}^{-1}(x)) & if \quad n = m+r; \\ d(F_{[m+r+1,m+r+2+i]}^{-1}(x), & F_{[m+r+1,m+r+2+i]}^{-1}(x)) & if \quad n = m+r+1+i, \quad i \ge 0; \end{cases}$$

 $<\delta$ (in any case)

Thus we get a δ -pseudo orbit $\{x_i\}_{i=-\infty}^{\infty}$ for *F*. By P.O.T.P. of *F*, there is a $y \in X$ such that

$$d(F_i(y), x_i) < \varepsilon,$$

for every $i \in \mathbb{Z}$. Note that $x_m = x_{m+r} = x$,

$$d(F_m(y), x_m) < \varepsilon$$
 and $d(F_{m+r}(y), x_{m+r}) < \varepsilon$,

i.e.

$$d(F_m(y),x)<\varepsilon \quad and \quad d(F_{[m+1,m+r]}(F_m(y)),x)<\varepsilon.$$

Thus

$$F_{[m+1,m+r]}(U_{\varepsilon}(x)) \cap U_{\varepsilon}(x) \neq \emptyset,$$

where $U_{\varepsilon}(x) = \{y \in X : d(x, y) < \varepsilon\}$. Similarly we can show that

$$F^{-1}_{[m+1,m+r]}(U_{\varepsilon}(x))\cap U_{\varepsilon}(x)\neq \emptyset.$$

Hence $x \in \Omega(F)$ which proves $CR(F) \subseteq \Omega(F)$.

From Theorem 5.1.2 and Theorem 5.2.1, we have the following result.

Corollary 5.2.1 Let $F = \{f_n\}_{n=0}^{\infty}$ be a time-varying homeomorphism on a compact metric space (X, d). If F has P.O.T.P. on X and the family $\{f_n, f_n^{-1}\}_{n=0}^{\infty}$ is equicontinuous on X then $CR(F) = \Omega(F)$.

Proof : Since $\{f_n, f_n^{-1}\}_{n=0}^{\infty}$ is equicontinuous therefore by Theorem 5.1.2 (76), $\Omega(F) \subseteq CR(F)$. Further since *F* has P.O.T.P. on *X*, by Theorem 5.2.1 (on Page 79) we have $CR(F) \subseteq \Omega(F)$ also. Hence $CR(F) = \Omega(F)$.

5.3 Weak Isolated set for an Invertible Nonautonomous Discrete Dynamical Systems

We define and study the notion of weak isolated set for an invertible nonautonomous discrete dynamical system.

Definition 5.3.1 Let (X, d) be a compact metric space and $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X. A subset E of X is said to be **weak isolated** for F if it is compact and there exist a neighborhood U of E such that for any $y \in X$, $F_n(y) \in cl(U)$, for every $n \in \mathbb{Z}$, where cl(U) is the closure of set U in X, implies that $y \in E$ i.e.

$$\bigcap_{n=-\infty}^{\infty} (F_n)^{-1}(cl(U)) \subseteq E.$$

The following result gives a sufficient condition under which the set of all chain recurrent points is weak isolated.

Theorem 5.3.1 Let (X, d) be a compact metric space and $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X with the family $\{f_n, f_n^{-1}\}_{n=0}^{\infty}$ being equicontinuous. If F is expansive on X and $F|_{CR(F)}$ has P.O.T.P. then CR(F) is weak isolated.

Proof : Let $\varepsilon > 0$ be an expansive constant for *F*. Since $F|_{CR(F)}$ has P.O.T.P., for $0 < \beta < \frac{\varepsilon}{2}$, there exists $\alpha > 0$ such that any α -pseudo orbit is β -traced by *F*.

Since *X* is compact, therefore $\{f_n, f_n^{-1}\}_{n=0}^{\infty}$ is uniformly continuous and therefore there exists $0 < \gamma < \min\{\frac{\alpha}{2}, \frac{\varepsilon}{2}\}$, such that for any $x, y \in X$,

$$d(x,y) < \gamma \Rightarrow d(f_n(x), f_n(y)) < \frac{\alpha}{2} \text{ and } d(f_n^{-1}(x), f_n^{-1}(y)) < \frac{\alpha}{2},$$

for any $n \ge 0$. Let $0 < \delta < \gamma$ and $U = \{y \in X : d(y, CR(F)) < \delta\}$. Choose $y \in X$ such that $F_n(y) \in cl(U)$, for every $n \in \mathbb{Z}$. It remains to show that $y \in CR(F)$. Note that

$$cl(U) = \{ y \in X \colon d(y, CR(F)) \le \delta \}.$$

Hence there is $x_n \in CR(F)$ with

$$d(F_n(y), x_n) \leq \delta$$
, for every $n \in \mathbb{Z}$.

Now

$$d(x_n, F_n(y)) \le \delta < \gamma$$

and therefore

$$d(f_{n+1}(x_n), f_{n+1}(F_n(y))) < \frac{\alpha}{2}$$

and

$$d(f_{-n+1}^{-1}(x_n), f_{-n+1}^{-1}(F_n(y))) < \frac{\alpha}{2}$$

Thus for $n \ge 0$

$$d(f_{n+1}(x_n), x_{n+1}) \le d(f_{n+1}(x_n), f_{n+1}(F_n(y))) + d(F_{n+1}(y), x_{n+1}) < \frac{\alpha}{2} + \gamma < \alpha,$$

and for n < 0 we have,

$$d(f_{-n+1}^{-1}(x_n), x_{n-1}) \le d(f_{-n+1}^{-1}(x_n), f_{-n+1}^{-1}(F_n(y))) + d(F_{n-1}(y), x_{n-1}) < \frac{\alpha}{2} + \gamma < \alpha$$

which implies $\{x_n\}_{n=-\infty}^{\infty}$ is an α -pseudo orbit for *F*. Hence there is a β -tracing point $x \in CR(F)$ satisfying

$$d(F_n(x), x_n) < \beta,$$

for every $n \in \mathbb{Z}$. Thus for any $n \in \mathbb{Z}$,

$$d(F_n(y), F_n(x)) \leq d(F_n(y), x_n) + d(x_n, F_n(x)) < \gamma + \beta < \varepsilon.$$

Since *F* is expansive, we have x = y and therefore $y \in CR(F)$. So CR(F) is weak isolated.

Remark 5.2 Let (X, d) be a compact metric space and $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X, where $\{f_n, f_n^{-1}\}_{n=0}^{\infty}$ is an equicontinuous family. Then for any $x \in X$, $\omega(x) \subseteq \Omega(F) \subseteq CR(F)$ and $\alpha(x) \subseteq \Omega(F) \subseteq CR(F)$. From the definition of $\mathcal{R}(F)$ for any $x \in \mathcal{R}(F)$, $x \in \alpha(x) \cap \omega(x)$ and thus $\mathcal{R}(F) \subseteq \Omega(F) \subseteq CR(F)$. From Theorem 4.1.1 (63) $\Omega(F)$ is nonempty, so CR(F) is also a nonempty set.