Chapter 2

Expansiveness in Nonautonomous Discrete Dynamical Systems

In this chapter, we define the notion of expansiveness in nonautonomous discrete dynamical systems given by a sequence of maps and also by a sequence of homeomorphisms on a metric space. We give examples, study properties and obtain a characterization of expansiveness in nonautonomous discrete dynamical systems.

2.1 Expansiveness in Nonautonomous Discrete Dynamical Systems

Let (X, d) be a metric space and

 $\{f_n: X \to X: n = 0, 1, 2, \dots\}$

be a sequence of continuous maps with f_0 as the identity map on *X*. We call $F = \{f_n\}_{n=0}^{\infty}$ to be **a time varying map** on *X* and (*X*, *F*) to be **a** nonautonomous discrete dynamical system. We denote

 $F_n = f_n \circ f_{n-1} \circ \cdots \circ f_1 \circ f_0$, for all n = 0, 1, 2, ...

and define

$$F_{[i,j]} = \begin{cases} f_j \circ f_{j-1} \circ \cdots \circ f_{i+1} \circ f_i; & 0 \le i \le j \\ the \ identity \ map \ on \ X; & i > j. \end{cases}$$

For any k > 0, k^{th} -iterate of F is defined to be a time varying map $F^k = \{g_n\}_{n=0}^{\infty}$ on X, where

$$g_n = f_{nk} \circ f_{(n-1)k+k-1} \circ \cdots \circ f_{(n-1)k+2} \circ f_{(n-1)k+1}$$
 for all $n \ge 0$.

Thus $F^k = \{F_{[(n-1)k+1,nk]}\}_{n=0}^{\infty}$.

Following are the definitions of orbit, periodic point and fixed point in a nonautonomous discrete dynamical system induced by a sequence of continuous maps.

Definition 2.1.1 [64] Let (X, d) be a metric space and $f_n : X \to X$ be a sequence of continuous maps, n = 0, 1, 2, ... For a point $x_0 \in X$, define a sequence as follows :

$$\begin{aligned} x_{n+1} &= f_{n+1}(x_n), \\ &= F_{n+1}(x_0), \qquad n = 0, 1, 2, \dots. \end{aligned}$$

Then the sequence $O(x_0) = \{x_n\}_{n=0}^{\infty}$ is said to be **the orbit of** x_0 under time varying map $F = \{f_n\}_{n=0}^{\infty}$.

Definition 2.1.2 [64] Let (X, d) be a metric space and $f_n : X \to X$ be a sequence of continuous maps, n = 0, 1, 2, ..., A point $x_0 \in X$ is said to be **a periodic point of time varying map** $\mathbf{F} = {\{\mathbf{f}_n\}_{n=0}^{\infty} \text{ if } O(x_0) = {\{x_n\}_{n=0}^{\infty} \text{ is periodic i.e. there exists an integer } k > 0 \text{ such that}}$

$$x_{i+k} = x_i$$
, for all $i = 0, 1, 2, ...$

Hence $x_{ik+j} = x_j$ *i.e.* $F_{ik+j}(x_0) = F_j(x_0)$, for every $i \ge 0$ and $0 \le j < k$. *The set of all periodic points of* F *is denoted by* Per(F).

On nonautonomous discrete dynamical systems

Definition 2.1.3 [64] Let (X, d) be a metric space and $f_n : X \to X$ be a sequence of continuous maps, n = 0, 1, 2, ... A point $x \in X$ is said to be a fixed point of time varying map $\mathbf{F} = {\{\mathbf{f}_n\}_{n=0}^{\infty} \text{ if } f_n(x) = x, \text{ for all } n = 0, 1, 2, ...}$

Now we define expansiveness of a nonautonomous discrete dynamical system induced by a sequence of continuous maps.

Definition 2.1.4 Let (X, d) be a metric space and $f_n : X \to X$ be a sequence of continuous maps, n = 0, 1, 2, ... The time varying map $F = \{f_n\}_{n=0}^{\infty}$ is said to be **expansive** if there exists a constant c > 0 (called **an expansive constant**) such that for any $x, y \in X$, $x \neq y$,

 $d(F_n(x), F_n(y)) > c$ for some $n \ge 0$.

Equivalently, if for $x, y \in X$,

$$d(F_n(x), F_n(y)) \le c$$
 for all $n \ge 0$ then $x = y$.

Remark 2.1 If in the above definition $f_n = f$, for all $n \ge 0$, where $f: X \to X$ is continuous, then expansiveness of time varying map $F = \{f_n\}_{n=0}^{\infty}$ on X is equivalent to positive-expansiveness of f on X ([20]), as

$$F_n = f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1 = f \circ f \circ \cdots \circ f \circ f = f^n.$$

Remark 2.2 Note that expansiveness of a time varying map F is independent of choice of metric if X is compact. For metric space (X,d), let $N_d(x,\delta) = \{y \in X : d(x,y) < \delta\}$. Let d_1 and d_2 be two equivalent metrics on a compact metric space X. Suppose F is expansive on (X,d_1) with expansive constant $\varepsilon > 0$. Since d_1 is equivalent to d_2 , there exists an $\varepsilon_1 > 0$ such that for any $x \in X$,

$$N_{d_2}(x,\varepsilon_1)\subset N_{d_1}(x,\varepsilon),$$

where $N_{d_i}(z, \delta)$ denotes the open ball centred at z in X of radius δ under metric d_i , i = 1, 2. Since X is compact, ε_1 depends only on ε and not on x. Let $x \neq y$. Since F is expansive in (X, d_1) with expansive constant $\varepsilon > 0$,

$$F_n(y) \notin N_{d_1}(F_n(x), \varepsilon)$$

for some $n \ge 0$. Now since

$$N_{d_2}(F_n(x), \varepsilon_1) \subset N_{d_1}(F_n(x), \varepsilon),$$

we have

$$F_n(y) \notin N_{d_2}(F_n(x), \varepsilon_1).$$

Thus F is expansive on (X, d_2) *with expansive constant* ε_1 *.*

Following is an example of an expansive time varying map.

Example 2.1 Consider the time varying map $F = \{f_n\}_{n=0}^{\infty}$ on the real line \mathbb{R} defined by $f_n(x) = (n+1)x$, for $x \in \mathbb{R}$ and $n \ge 0$.

Choose c > 0. Then for $x, y \in \mathbb{R}$, $x \neq y$, there exists $n \ge 0$ such that

$$|F_n(x) - F_n(y)| = (n+1)!|x - y| > c.$$

Thus *F* is expansive with expansive constant *c*.

Definition 2.1.5 If $h: X \to Y$ is a homeomorphism, h is uniformly continuous on X and h^{-1} is uniformly continuous on Y, then h is said to be **a uniform homeomorphism**.

Now we define uniform conjugacy between two nonautonomous discrete dynamical systems induced by a sequence of maps.

Definition 2.1.6 Let (X, d_1) and (Y, d_2) be two metric spaces. Let $F = \{f_n\}_{n=0}^{\infty}$ and $G = \{g_n\}_{n=0}^{\infty}$ be time varying maps on X and Y respectively. If there is a homeomorphism $h : X \to Y$ such that

$$h \circ f_n = g_n \circ h$$
,

for all n = 0, 1, 2, ... then F and G are said to be **conjugate** with respect to the map h or **h-conjugate**. In particular, if $h: X \rightarrow Y$ is a uniform homeomorphism then F and G are said to be **uniformly conjugate** or **uniformly h-conjugate**. For example, if $F = \{x^{n+1}\}_{n=0}^{\infty}$ on [0, 1], $G = \{2((x+1)/2)^{n+1} - 1\}_{n=0}^{\infty}$ on [-1, 1] then *F* is uniformly *h*-conjugate to *G*, where $h : [0, 1] \rightarrow [-1, 1]$ is defined by h(x) = 2x - 1.

Next we show that expansiveness is a property in a nonautonomous discrete dynamical system which is preserved under uniform conjugacy.

Theorem 2.1.1 Let (X, d_1) and (Y, d_2) be metric spaces. Let $F = \{f_n\}_{n=0}^{\infty}$ and $G = \{g_n\}_{n=0}^{\infty}$ be time varying maps on X and Y respectively such that F is uniformly conjugate to G. Then F is expansive on X if and only if G is expansive on Y.

Proof : Since *F* is uniformly conjugate to *G*, there exists a uniform homeomorphism $h : X \to Y$ such that

$$h \circ f_n = g_n \circ h$$
,

for all $n \ge 0$ i.e.

$$f_n \circ h^{-1} = h^{-1} \circ g_n,$$

for all $n \ge 0$ which implies

$$F_n \circ h^{-1} = f_n \circ f_{n-1} \circ \cdots f_2 \circ f_1 \circ f_0 \circ h^{-1}$$

= $f_n \circ f_{n-1} \circ \cdots f_2 \circ f_1 \circ h^{-1} \circ g_0$
:
= $h^{-1} \circ g_n \circ g_{n-1} \circ \cdots g_2 \circ g_1 \circ g_0$
= $h^{-1} \circ G_n$.

for all $n \ge 0$. Similarly $h \circ f_n = g_n \circ h$, $\forall n \ge 0$ will imply that for all $n \ge 0$,

$$h \circ F_n = G_n \circ h.$$

Let *F* be expansive with an expansive constant $\varepsilon > 0$. Now, *h* being a uniform homeomorphism, h^{-1} is uniformly continuous therefore for $\varepsilon > 0$ there exists a $\delta > 0$ such that for $y_1, y_2 \in Y$,

$$d_2(y_1, y_2) < \delta$$
 implies $d_1(h^{-1}(y_1), h^{-1}(y_2)) < \varepsilon$.

Let $y_1, y_2 \in Y$. Suppose that for all $n \ge 0$, $d_2(G_n(y_1), G_n(y_2)) < \delta$. Then

$$d_1(h^{-1}(G_n(y_1)), h^{-1}(G_n(y_2))) < \varepsilon,$$

for all $n \ge 0$ i.e.

$$d_1(F_n(h^{-1}(y_1)), F_n(h^{-1}(y_2))) < \varepsilon,$$

for all $n \ge 0$. Since *F* is expansive with expansive constant ε , we get $h^{-1}(y_1) = h^{-1}(y_2)$ which implies $y_1 = y_2$. Thus *G* is expansive with expansive constant δ .

Conversely, suppose *G* is expansive with expansive constant $\varepsilon_1 > 0$. Since *h* is continuous, there exists $\delta_1 > 0$ such that for any $x_1, x_2 \in X$,

 $d_1(x_1, x_2) < \delta_1$ implies $d_2(h(x_1), h(x_2)) < \varepsilon_1$.

For any $x_1, x_2 \in X$ with $x_1 \neq x_2$, $h(x_1) \neq h(x_2)$, it follows that there exists $n \in \mathbb{Z}$ such that

$$d_2(h(F_n(x_1)), h(F_n(x_2))) = d_2(G_n(h(x_1)), G_n(h(x_1))) > \epsilon_1.$$

which implies $d_1(F_n(x_1), F_n(x_2)) \ge \delta_1$. Thus *F* is expansive on *X*.

Corollary 2.1.1 Let (X, d_1) be a compact metric space and (Y, d_2) be a metric space, $F = \{f_n\}_{n=0}^{\infty}$ be a time varying map on X and $h: X \to Y$ is a homeomorphism. If F is expansive on X then $G = h \circ F \circ h^{-1} = \{g_n\}_{n=0}^{\infty}$, where $g_n = h \circ f_n \circ h^{-1}$; n = 0, 1, 2, ... is expansive on Y.

Definition 2.1.7 Let (X, d_1) and (Y, d_2) be metric spaces. A family of functions $\{f_n : X \to Y\}_{n=0}^{\infty}$ is said to be equicontinuous at $x_0 \in X$ if for every $\varepsilon > 0$, there exists a $\delta > 0$ (depending on the point x_0) such that $d_2(f_n(x_0), f_n(x)) < \varepsilon$ for each n = 0, 1, 2, ... and for each $x \in X$ satisfying $d_1(x_0, x) < \delta$. The family $\{f_n\}_{n=0}^{\infty}$ is called equicontinuous if it is equicontinuous at each point $x_0 \in X$.

Definition 2.1.8 Let (X, d_1) and (Y, d_2) be metric spaces. A family of functions $\{f_n : X \to Y\}_{n=0}^{\infty}$ is said to be uniformly equicontinuous if for every $\varepsilon > 0$, there exists a $\delta > 0$ (depending on ε only) such that $d_2(f_n(x), f_n(y)) < \varepsilon$ for each n = 0, 1, 2, ... and for all $x, y \in X$ satisfying $d_1(x, y) < \delta$.

Now, we show that a time varying map $F = \{f_n\}_{n=0}^{\infty}$, where the family $\{f_n\}_{n=0}^{\infty}$ is equicontinuous, is expansive if and only if its k^{th} iterate is expansive, where *k* is a positive integer.

Theorem 2.1.2 Let (X, d) be a compact metric space, $\{f_n\}_{n=0}^{\infty}$ be an equicontinuous family of self maps on X and k be a positive integer. Then time varying map $F = \{f_n\}_{n=0}^{\infty}$ is expansive if and only if F^k is expansive.

Proof: Let e > 0 be an expansive constant for F. Since X is compact and $\{f_n\}_{n=0}^{\infty}$ is equicontinuous family, for any n > 0 and $nk + 1 \le j \le$ (n + 1)k, $F_{[nk+1,j]}$ is uniformly continuous on X and therefore there exists a $\delta_i > 0$ ($i = j - (nk + 1) \in \{0, 1, 2, ..., k - 1\}$) such that

$$d(x, y) < \delta_i \Rightarrow d(F_{[nk+1,j]}(x), F_{[nk+1,j]}(y)) < e.$$

Note that due to equicontinuity of $\{f_n\}_{n=0}^{\infty}$, δ_j does not depend on n. Take $\delta = \min\{\delta_i : 0 \le i \le k-1\}$. Then for any $n \ge 0$,

$$d(x, y) < \delta \Rightarrow d(F_{[nk+1,j]}(x), F_{[nk+1,j]}(y)) < e.$$

Now $F^k = \{g_n\}_{n=0}^{\infty}$, where $g_n = F_{[(n-1)k+1,nk]}$ and $G_n = g_n \circ \cdots \circ g_1 \circ g_0$. It is easy to see that $G_n = F_{nk}$. Note that for any $j \ge 0$, there exists $n \ge 0$ such that $nk \le j \le (n + 1)k$. Now for any $n \ge 0$ and $nk \le j \le (n + 1)k$,

$$d(G_n(x), G_n(y)) < \delta \Rightarrow d(F_{nk}(x), F_{nk}(y)) < \delta$$

$$\Rightarrow d(F_{[nk+1,j]}(F_{nk}(x)), F_{[nk+1,j]}(F_{nk}(y))) < e$$

$$\Rightarrow d(F_j(x), F_j(y)) < e.$$

Since *e* is an expansive constant for *F*, x = y and hence δ is an expansive constant for F^k .

Conversely, if F^k is expansive with an expansive constant ε then for any $x, y \in X$, $x \neq y$, there exists $n \ge 0$ such that

$$d(G_n(x),G_n(y))>\varepsilon$$

On nonautonomous discrete dynamical systems

which implies

$$d(F_{nk}(x),F_{nk}(y))>\varepsilon$$

proving that ε is an expansive constant for *F*.

The following example shows that 'equicontinuity' in the hypothesis of Theorem 2.1.2 is necessary.

Example 2.2 Consider the sequence of maps $F = \{f_n\}_{n=0}^{\infty}$ on the unit circle S^1 defined by

$$f_n(z) = \begin{cases} z^{\frac{n}{2}+1} & \text{if } n \text{ is even;} \\ z^{\frac{2}{n+1}} & \text{if } n \text{ is odd,} \end{cases}$$

for any $z \in S^1$, where $z \in S^1$, $z^{\frac{1}{m}} = \exp \{\frac{i}{m} Arg(z)\}$, in which Arg(z) is the principle argument of z.

Note that

$$F_n(z) = \begin{cases} z^{\frac{n}{2}+1} & if n \text{ is even;} \\ z & if n \text{ is odd,} \end{cases}$$

for any $z \in S^1$ and therefore *F* is expansive. Observe that $F^2 = \{g_n\}_{n=0}^{\infty}$, where each $g_n = F_{[2n-1,2n]}$ is the identity map, therefore F^2 is not expansive. Note that $\{f_n\}$ is not an equicontinuous family on S^1 .

Using Theorem 2.1.2, we have the following example of a time varying map which is not expansive.

Example 2.3 Let N be any positive integer. Consider the time varying map $F = \{f_n\}_{n=0}^{\infty}$ on the unit circle S¹ defined by

$$f_n(z) = \begin{cases} z^{k+1} & 0 \le n = 2k \le 2N; \\ z^{\frac{1}{k+2}} & 1 \le n = 2k+1 < 2N; \\ z & n > 2N. \end{cases}$$

for any $z \in S^1$.

Note that $\{f_n\}_{n=0}^{\infty}$ is equicontinuous family of maps on compact space S^1 and $F^2 = \{g_n\}_{n=0}^{\infty}$, where each $g_n = F_{[2n-1,2n]}$ is the identity map. Since F^2 is not expansive, by Theorem 2.1.2, F is not expansive.

Now we define invariant subset for a time varying map and show that if a time varying map is expansive on a metric space then it is also expansive on any invariant subset of it.

Definition 2.1.9 Let (X, d) be a metric space, $F = \{f_n\}_{n=0}^{\infty}$ be a time varying map on X and Y be a subset of X. Then Y is said to be **invariant under F** *if*

 $f_n(Y) \subset Y$,

for all $n \ge 0$, equivalently $F_n(Y) \subset Y$, for all $n \ge 0$.

Lemma 2.1.1 Let (X, d) be a metric space, $F = \{f_n\}_{n=0}^{\infty}$ be a time varying map which is expansive on X and Y be an invariant subset of X, then restriction of F to Y, defined by $F|Y = \{f_n|Y\}$ is expansive.

Proof: Let $\varepsilon > 0$ be an expansive constant for *F* on *X*. Let $x \neq y$, $x, y \in Y$ then $x, y \in X$ also, therefore there exists $n \ge 0$ such that

$$d(F_n(x),F_n(y)) > \varepsilon.$$

Since *Y* is invariant under *F*, $F_n(x)$, $F_n(y) \in Y$. Hence *F*|*Y* is also expansive with expansive constant ε .

Now we show that every finite direct product of expansive time varying maps is expansive.

Theorem 2.1.3 Let (X, d_1) and (Y, d_2) be metric spaces and $F = \{f_n\}_{n=0}^{\infty}$, $G = \{g_n\}_{n=0}^{\infty}$ be time varying maps on X and Y respectively. Define a metric d on $X \times Y$ by

 $d((x_1, y_1), (x_2, y_2)) = \max\{d_1(x_1, x_2), d_2(y_1, y_2)\}; (x_1, y_1), (x_2, y_2) \in X \times Y.$ Also for any $f: X \to X$ and $g: Y \to Y$ define $f \times g: X \times Y \to X \times Y$ by

$$(f \times g)(x, y) = (f(x), g(y)), \quad (x, y) \in X \times Y.$$

Then time varying map $F \times G = \{f_n \times g_n\}_{n=0}^{\infty}$ is expansive on $X \times Y$ if and only if F and G are expansive on X and Y respectively.

Proof : Let $F \times G$ is expansive on $X \times Y$ with expansive constant $\varepsilon > 0$. For $x_1, x_2 \in X$ and $y_1, y_2 \in Y$, we have $(x_1, y_1), (x_2, y_2) \in X \times Y$. Suppose for any $n > 0, d_1(F_n(x_1), f_n(x_2)) < \varepsilon$ and $d_2(G_n(y_1), G_n(y_2)) < \varepsilon$ then for any n > 0,

$$d((F \times G)_n(x_1, y_1), (F \times G)_n(x_2, y_2))$$

= max{d₁(F_n(x₁), f_n(x₂)), d₂(G_n(y₁), G_n(y₂))}
< \varepsilon.

Since $F \times G$ is expansive with expansive constant ε , we have $(x_1, y_1) = (x_2, y_2)$ i.e. $x_1 = x_2$ and $y_1 = y_2$ which implies that F and G both are expansive with expansive constant ε . Conversely suppose F and G are expansive on X and Y respectively. Note that for any $n \ge 0$,

$$(F \times G)_n(x, y) = (F_n(x), G_n(y)), \quad (x, y) \in X \times Y.$$

Let $\varepsilon_1 > 0$ and $\varepsilon_2 > 0$ be expansive constants for *F* and *G* respectively. Let $\varepsilon = \min{\{\varepsilon_1, \varepsilon_2\}}$ and $(x_1, y_1), (x_2, y_2) \in X \times Y$.

If for all $n \ge 0$,

$$d((F \times G)_n(x_1, y_1), (F \times G)_n(x_2, y_2)) < \varepsilon$$

then

$$d((F_n(x_1), G_n(y_1)), (F_n(x_2), G_n(y_2))) < \varepsilon$$

which implies

$$\max\{d_1(F_n(x_1), F_n(x_2)), d_2(G_n(y_1), G_n(y_2))\} < \varepsilon.$$

Hence

$$d_2(F_n(x_1),F_n(x_2)) < \varepsilon \le \varepsilon_1$$

and

$$d_1(G_n(y_1), G_n(y_2)) < \varepsilon \le \varepsilon_2$$

which by expansiveness of *F* and *G* implies $x_1 = x_2$ and $y_1 = y_2$ i.e. $(x_1, y_1) = (x_2, y_2)$. Hence $F \times G$ is expansive with expansive constant ε .

2.2 Invertible Nonautonomous Discrete Dynamical Systems and Expansiveness

Let (X, d) to be a metric space and $f_n : X \to X$ to be a sequence of homeomorphisms, n = 0, 1, 2, ..., where we always consider f_0 to be the identity map on X. We call $F = \{f_n\}_{n=0}^{\infty}$ to be a **time varying homeomorphism** on X and (X, F), an invertible nonautonomous discrete dynamical system. We denote

$$F_n = \begin{cases} f_n \circ f_{n-1} \circ \dots \circ f_1 \circ f_0, & \text{for } n \ge 0\\ f_{-n}^{-1} \circ f_{-(n-1)}^{-1} \circ \dots \circ f_1^{-1} \circ f_0^{-1}, & \text{for } n \le -1. \end{cases}$$

For any $0 \le i \le j$, we define

$$F_{[i,j]} = \begin{cases} f_j \circ f_{j-1} \circ \cdots \circ f_{i+1} \circ f_i, & 0 \le i \le j \\ the \ identity \ map \ on \ X, & i > j. \end{cases}$$

For time varying homeomorphism $F = \{f_n\}_{n=0}^{\infty}$ on *X*, its inverse map is given by $F^{-1} = \{f_n^{-1}\}_{n=0}^{\infty}$. Thus

$$F_{[i,j]}^{-1} = \begin{cases} f_j^{-1} \circ f_{j-1}^{-1} \circ \dots \circ f_{i+1}^{-1} \circ f_i^{-1}, & 0 \le i \le j \\ \text{the identity map on } X, & i > j. \end{cases}$$

For any k > 0, we define a time varying homeomorphism (k^{th} -iterate of F) $F^k = \{g_n\}_{n=0}^{\infty}$ on X, where

$$g_n = f_{nk} \circ f_{(n-1)k+k-1} \circ \cdots \circ f_{(n-1)k+2} \circ f_{(n-1)k+1}$$
 for all $n \ge 0$.

Thus $F^k = \{F_{[(n-1)k+1,nk]}\}_{n=0}^{\infty}$, for k > 0 and for k = -m < 0, $F^k = (F^{-1})^m$. Also, for k = 0, $F^k = \{f_n\}_{n=0}^{\infty}$, where each f_n is the identity map on X. Thus $F^k = \{g_n\}_{n=0}^{\infty}$, where

$$g_n = \begin{cases} F_{[(n-1)k+1,nk]} & if \ k > 0; \\ F_{[(n-1)k+1,nk]}^{-1} & if \ k < 0; \\ the \ identity \ map \ on \ X & if \ k = 0. \end{cases}$$

On nonautonomous discrete dynamical systems

Let us define orbit, periodic point and fixed point for a time varying homeomorphism.

Definition 2.2.1 *Let* (*X*, *d*) *be a metric space and* $f_n : X \to X$ *be a sequence of homeomorphism,* n = 0, 1, 2, ... *For a point* $x_0 \in X$ *, let*

$$x_n = \begin{cases} f_n(x_{n-1}) & n \ge 1; \\ f_{-n}^{-1}(x_{n+1}) & n \le -1 \end{cases}$$

then the sequence $\{x_n\}_{n=-\infty}^{\infty}$, denoted by $O(x_0)$, is said to be the orbit of $\mathbf{x_0}$ under time varying homeomorphism $\mathbf{F} = \{\mathbf{f_n}\}_{n=0}^{\infty}$.

Definition 2.2.2 Let (X,d) be a metric space and $f_n : X \to X$ be a sequence of homeomorphisms, n = 0, 1, 2, ..., A point $x_0 \in X$ is said to be a **periodic point** of $F = \{f_n\}_{n=0}^{\infty}$ if orbit of x_0 ($O(x_0) = \{x_n\}_{n=-\infty}^{\infty}$) is periodic i.e. there exists an integer k > 0 such that

$$x_{n+k} = x_n,$$

for all $n \in \mathbb{Z}$, where

$$x_n = \begin{cases} f_n(x_{n-1}) & if \ n \ge 0; \\ f_{-n}^{-1}(x_{n+1}) & if \ n < 0. \end{cases}$$

The set of all periodic points of F is denoted by Per(F).

Definition 2.2.3 *Let* (*X*, *d*) *be a metric space and* $f_n : X \to X$ *be a sequence of homeomorphisms,* n = 0, 1, 2, ..., A *point* $x \in X$ *is said to be* **a fixed point** *of time varying homeomorphism* $F = \{f_n\}_{n=0}^{\infty}$ *if*

$$f_n(x) = x$$

for all $n = 0, 1, 2, \ldots$

Note 2.1 If $f_n(x) = x$ then f_n being homeomorphism $f_n^{-1}(x) = x$. Hence orbit of fixed point x is $\{x\}$.

Now we define expansiveness of a time varying homeomorphism i.e. expansiveness of an invertible nonautonomous discrete dynamical system and study them in detail.

Definition 2.2.4 *Let* (*X*, *d*) *be a metric space and* $f_n : X \to X$ *be a sequence of homeomorphisms,* n = 0, 1, 2, ... *The time varying homeomorphism* $F = \{f_n\}_{n=0}^{\infty}$ *is said to be* **expansive** *if there exists a constant* e > 0 (*called* **an expansive constant**) *such that for any* $x, y \in X, x \neq y$,

$$d(F_n(x),F_n(y)) > e$$

for some $n \in \mathbb{Z}$. Equivalently, if for $x, y \in X$,

 $d(F_n(x), F_n(y)) \le e$ for all $n \in \mathbb{Z}$ then x = y.

Remark 2.3 If in the above definition $f_n = f$ for all $n \ge 0$, where $f: X \to X$ is homeomorphism, then expansiveness of time varying homeomorphism $F = \{f_n\}_{n=0}^{\infty}$ on X is equivalent to expansiveness of f on X ([2]).

Remark 2.4 Note that expansiveness of a time varying homeomorphism *F* is independent of the choice of metric for X if X is compact.

Let us define conjugacy between two time varying homeomorphisms.

Definition 2.2.5 Let (X, d_1) and (Y, d_2) be two metric spaces. Let $F = \{f_n\}_{n=0}^{\infty}$ and $G = \{g_n\}_{n=0}^{\infty}$ be time varying homeomorphisms on X and Y respectively. If there exists a homeomorphism $h : X \to Y$ such that

$$h \circ f_n = g_n \circ h$$
,

for all n = 0, 1, 2, ... then F and G are said to be **conjugate** with respect to the map h or **h-conjugate**.

In particular, if $h: X \to Y$ is a uniform homeomorphism then F and G are said to be **uniformly conjugate** or **uniformly h-conjugate**.

The following theorem shows that expansiveness of a time varying homeomorphism is a property which is preserved under uniform conjugacy.

Theorem 2.2.1 Let (X, d_1) and (Y, d_2) be metric spaces. Let $F = \{f_n\}_{n=0}^{\infty}$ and $G = \{g_n\}_{n=0}^{\infty}$ be time varying homeomorphisms on X and Y respectively such that F is uniformly conjugate to G. Then F is expansive on X if and only if G is expansive on Y.

Proof : Since *F* is uniformly conjugate to *G* therefore there exists a uniform homeomorphism $h: X \to Y$ such that

$$h \circ f_n = g_n \circ h,$$

for all $n \ge 0$, which implies

$$f_n \circ h^{-1} = h^{-1} \circ g_n,$$

for all $n \ge 0$ and

$$f_n^{-1} \circ h^{-1} = h^{-1} \circ g_n^{-1},$$

for all $n \ge 0$. Now for all $n \ge 0$,

$$F_n \circ h^{-1} = f_n \circ f_{n-1} \circ \cdots f_2 \circ f_1 \circ f_0 \circ h^{-1}$$

= $f_n \circ f_{n-1} \circ \cdots f_2 \circ f_1 \circ h^{-1} \circ g_0$
:
= $h^{-1} \circ g_n \circ g_{n-1} \circ \cdots g_2 \circ g_1 \circ g_0$
= $h^{-1} \circ G_n$

and similarly for all $n \leq 0$, we also have

$$F_{n} \circ h^{-1} = f_{-n}^{-1} \circ f_{-n+1}^{-1} \circ \cdots f_{2}^{-1} \circ f_{1}^{-1} \circ f_{0}^{-1} \circ h^{-1}$$

= $f_{-n}^{-1} \circ f_{-n+1}^{-1} \circ \cdots f_{2}^{-1} \circ f_{1}^{-1} \circ h^{-1} \circ g_{0}^{-1}$
:
= $h^{-1} \circ g_{n}^{-1} \circ g_{-n+1}^{-1} \circ \cdots g_{2}^{-1} \circ g_{1}^{-1} \circ g_{0}^{-1}$
= $h^{-1} \circ G_{n}$.

So, we get $F_n \circ h^{-1} = h^{-1} \circ G_n$, for all $n \in \mathbb{Z}$. Similarly,

$$h \circ F_n = G_n \circ h,$$

for all $n \in \mathbb{Z}$. Suppose *F* is expansive on *X* with expansive constant $\varepsilon > 0$. Since h^{-1} is uniformly continuous therefore there exists a $\delta > 0$ such that for any $y_1, y_2 \in Y$ with $d_2(y_1, y_2) < \delta$,

$$d_1(h^{-1}(y_1), h^{-1}(y_2)) < \varepsilon.$$

Let $y_1, y_2 \in Y$ such that $y_1 \neq y_2$ then $h^{-1}(y_1) \neq h^{-1}(y_2)$ therefore *F* being expansive on *X*, there exists $n \in \mathbb{Z}$ such that

$$d_1(h^{-1}(G_n(y_1)), h^{-1}(G_n(y_2))) = d_1(F_n(h^{-1}(y_1)), F_n(h^{-1}(y_2))) > \varepsilon$$

which implies

$$d_2(G_n(y_1), G_n(y_2)) \geq \delta.$$

Hence *G* is expansive on *Y*.

Conversely, suppose *G* is expansive on *Y* with expansive constant $\varepsilon > 0$. Since *h* is uniformly continuous, there exists $\delta > 0$ such that for any $x_1, x_2 \in X$ with $d_1(x_1, x_2) < \delta$,

$$d_2(h(x_1), h(x_2)) < \varepsilon.$$

For any $x_1, x_2 \in X$ with $x_1 \neq x_2$, observing that $h(x_1) \neq h(x_2)$, it follows that there exists $n \in \mathbb{Z}$ such that

$$d_2(h(F_n(x_1)), h(F_n(x_2))) = d_2(G_n(h(x_1)), G_n(h(x_1))) > \epsilon$$

which implies $d_1(F_n(x_1), F_n(x_2)) \ge \delta$. Thus *F* is expansive on *X*.

Corollary 2.2.1 Let (X, d_1) be a compact metric space, (Y, d_2) be a metric space, $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X and $h: X \to Y$ is a homeomorphism. If F is expansive on X then $G = h \circ F \circ h^{-1} = \{g_n\}_{n=0}^{\infty}$, where $g_n = h \circ f_n \circ h^{-1}$; n = 0, 1, 2, ... is expansive on Y.

The following theorem shows that a time varying homeomorphism is expansive if and only if its inverse is expansive.

Theorem 2.2.2 Let (X, d) be a compact metric space, $\{f_n\}_{n=0}^{\infty}$ be a family of self homeomorphisms on X. Then time varying homeomorphism $F = \{f_n\}_{n=0}^{\infty}$ is expansive if and only if F^{-1} is expansive.

Proof : Let *F* be expansive with an expansive constant e > 0. It is easy to verify that

$$F_{(-n)} = (F^{-1})_n,$$

for all $n \in \mathbb{Z}$. Equivalently $(F^{-1})_{(-n)} = F_n$, for all $n \in \mathbb{Z}$. Let $x \neq y$, $x, y \in X$ then there is some $n \in \mathbb{Z}$ such that

$$d(F_n(x),F_n(y)) > e$$

i.e.

$$d((F^{-1})_{(-n)}(x),(F^{-1})_{(-n)}(y))>e$$

for some $(-n) \in \mathbb{Z}$, which implies F^{-1} is also expansive. Consequently, F^{-1} expansive implies $(F^{-1})^{-1} = F$ is expansive.

By above result and analogous to the Theorem 2.1.2, we have the following result.

Theorem 2.2.3 Let (X, d) be a compact metric space, $\{f_n\}_{n=0}^{\infty}$ be an equicontinuous family of self maps on X and k be an integer. Then time varying homeomorphism $F = \{f_n\}_{n=0}^{\infty}$ is expansive if and only if F^k is expansive for any $k \in \mathbb{Z} - \{0\}$.

Now we define invariant set under time varying homeomorphism and show that if a time varying homeomorphism is expansive on a metric space then the restricted map to an invariant subset is also expansive.

Definition 2.2.6 Let (X, d) be a metric space, $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X and Y be a subset of X. Then Y is said to be **invariant** under F if $f_n(Y) = Y$, (and therefore $f_n^{-1}(Y) = Y$) for all $n \ge 0$, equivalently $F_n(Y) = Y$, for all $n \in \mathbb{Z}$.

Analogous to Theorem 2.1.1, one can prove the following result.

Theorem 2.2.4 Let (X, d) be a metric space, $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism which is expansive on X and Y be an invariant subset of X, then restriction of F to Y, defined by $F|Y = \{f_n|Y\}$ is expansive.

Analogous to Theorem 2.1.3, one can prove the following result.

Theorem 2.2.5 Let (X, d_1) and (Y, d_2) be metric spaces and $F = \{f_n\}_{n=0}^{\infty}$, $G = \{g_n\}_{n=0}^{\infty}$ be time varying homeomorphisms on X and Y respectively. Consider the metric d on $X \times Y$ defined by

 $d((x_1, y_1), (x_2, y_2)) = \max\{d_1(x_1, x_2), d_2(y_1, y_2)\}; (x_1, y_1), (x_2, y_2) \in X \times Y.$

Then the time varying homeomorphism $F \times G = \{f_n \times g_n\}_{n=0}^{\infty}$ is expansive on $X \times Y$ if and only if F and G are expansive on X and Y respectively. Hence every finite direct product of expansive time varying homeomorphisms is expansive.

We have following result for time varying homeomorphism similar to that for an expansive homeomorphism on a compact metric space ([6]).

Theorem 2.2.6 Let (X, d) be a compact metric space, $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism such that for any given pair of integers r and s, there is an integer t such that $F_r(F_s(x)) = F_t(x)$, for all $x \in X$. If F is expansive on X and θ is the least upper bound of the set of expansive constants for F then θ is not an expansive constant for F.

Proof: Let *e* be an expansive constant for *F*, θ be the least upper bound of the set of expansive constants for *F* and $\varepsilon_i = \frac{1}{i}$ for $i = 1, 2, 3, \dots$. Since $\theta + \varepsilon_i$ is not an expansive constant for *F* therefore for each *i* there exist $x'_i \neq y'_i$ such that

$$d(F_n(x'_i), F_n(y'_i)) \le \theta + \varepsilon_i \tag{2.1}$$

for each integer n. Also, for each i, there exists an integer k_i such that

$$d(F_{k_i}(x'_i),F_{k_i}(y'_i)) > e.$$

(Since *e* is an expansive constant for *F* and $x'_i \neq y'_i$, for each *i*.)

Let $x_i = F_{k_i}(x'_i)$ and $y_i = F_{k_i}(y'_i)$. Since *X* is a compact metric space therefore passing to a subsequence if necessary, without loss of generality, we can assume that there exist $x, y \in X$ such that $x_j \to x$ and $y_j \to y$. Note that $x \neq y$. (As for each *i*, $d(x_i, y_i) > e$.)

Let *m* be an arbitrary integer and α be an arbitrary positive real number. Choose *p*, *q* and η with the following properties:

- (a) $\varepsilon_p < \frac{\alpha}{3}$, (Such *p* exists as $\varepsilon_i = \frac{1}{i}$ converges to zero.)
- **(b)** $d(u, v) < \eta$ implies $d(F_m(u), F_m(v)) < \frac{\alpha}{3}$, (Such η exists as X being compact, F_m is uniformly continuous on X.)
- (c) n > p implies $d(x, x_n) < \eta$ and n > q implies $d(y, y_n) < \eta$. (As the sequences $\{x_i\}_{i=0}^{\infty}$ and $\{y_i\}_{i=0}^{\infty}$ converge to x and y respectively.)

Let $i > \max\{p, q\}$, then

$$d(F_m(x), F_m(y)) \le d(F_m(x), F_m(x_i)) + d(F_m(x_i), F_m(y_i)) + d(F_m(y_i), F_m(y))$$

$$< \frac{\alpha}{3} + \left(\theta + \frac{\alpha}{3}\right) + \frac{\alpha}{3} = \alpha + \theta$$

(Since i > p therefore from (c), $d(x, x_i) < \eta$ and hence form (b),

$$d(F_m(x),F_m(x_i))<\frac{\alpha}{3}.$$

Similarly *i* > *q* implies

$$d(F_m(y_i),F_m(y)) < \frac{\alpha}{3}$$

Further since i > p therefore using (a), $\varepsilon_i < \varepsilon_p < \frac{\alpha}{3}$ and

$$\begin{aligned} d(F_m(x_i), F_m(y_i)) &= d(F_m(F_{k_i}(x'_i)), F_m(F_{k_i}(y'_i))) \\ &= d(F_t(x'_i), F_t(y'_i)) \text{ for some integer } t \\ &\leq \theta + \varepsilon_i \text{ (from equation (2.1))} \\ &< \theta + \frac{\alpha}{3}. \end{aligned}$$

Thus $d(F_m(x), F_m(y)) \le \theta$ implying θ is not an expansive constant for *F*.

Definition 2.2.7 Let (X, d) be a metric space, $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X and $A \subseteq X$. Then F is said to be expansive on A with expansive constant e > 0 if for any $x, y \in A$, $x \neq y$, there exists an integer $n \ge 0$ (depending upon pair (x, y)) such that $d(F_n(x), F_n(y)) > e$ or equivalently if for $x, y \in A$

$$d(F_n(x), F_n(y)) \le e$$
, for all $n \ge 0$ then $x = y$.

Now we show that a if a time varying homeomorphism is expansive on a subset whose complement is finite then it is expansive on the entire metric space.

Theorem 2.2.7 Let (X, d) be a metric space, $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X and $A \subseteq X$ such that X - A is finite. If F is expansive on A then it is expansive on X.

Proof : Let *F* be expansive on *A* with expansive constant *e*. Since X - A is finite, it is sufficient to show that *F* is expansive on $A \cup \{x\}$, where $x \in X - A$. Then one can show expansiveness of *F* on *X* using induction for finitely many steps. Note that there is at most one point $p \in A$ such that

$$d(F_n(x), F_n(p)) \leq \frac{e}{2}, \ \forall n \in \mathbb{Z}.$$

If p and q are two such points in *A*, then

$$d(F_n(p), F_n(q)) \le d(F_n(p), F_n(x)) + d(F_n(x), F_n(q))$$

$$\le \frac{e}{2} + \frac{e}{2}$$

$$\le e,$$

for all $n \in \mathbb{Z}$, which contradicts the expansiveness of *F* on *A*. If a point *p* as described above exists, let 0 < c < d(x, p); otherwise let $c = \frac{e}{2}$. Now for any $a, b \in A \cup \{x\}$, $a \neq b$, if $a, b \in A$ then expansiveness of *F* on *A* implies that there exist $m \in \mathbb{Z}$ such that

$$d(F_m(a),F_m(b)) > e > c.$$

If a = x and $b \in A$ with $b \neq p$ then there exists $m \in \mathbb{Z}$ such that

$$d(F_m(a), F_m(b)) = d(F_m(x), F_m(b))$$

> $\frac{e}{2} \ge c.$

If a = x and $b \in A$ with b = p then for m = 0 we have

$$d(F_m(a), F_m(b)) = d(F_m(x), F_m(p))$$

= $d(x, p)$ (as $m = 0$)
> c .

Thus in any case there exists $m \in \mathbb{Z}$ such that

$$d(F_m(a),F_m(b)) > c.$$

Thus *F* is expansive on $A \cup \{x\}$ with expansive constant *c*.

2.3 Generator and Weak Generator in Nonautonomous Discrete Dynamical Systems

The topological analogue of generator was defined and studied by Keynes and Robertson [34]. We define and study this notion

```
Page 37
```

for an invertible non-autonomous discrete dynamical system and obtain a characterization of expansiveness in terms of generator and weak generator.

Definition 2.3.1 Let (X, d) be a compact metric space and $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X. A finite open cover α of X is said to be **a generator for F** if for every bisequence $\{A_n\}$ of members of α ,

$$\bigcap_{n=-\infty}^{\infty} (F_n)^{-1} (\overline{A_n})$$

is at most one point, where $\overline{A_n}$ denotes the closure of set A_n .

Definition 2.3.2 Let (X, d) be a compact metric space and $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X. A finite open cover α of X is said to be **a weak generator for F** if for every bisequence $\{A_n\}$ of members of α ,

$$\bigcap_{n=-\infty}^{\infty} (F_n)^{-1} (A_n)$$

is at most one point .

The following result gives a characterization of expansiveness. We show that a time varying homeomorphism on a compact metric space is expansive if and only if it has a generator or a weak generator.

Theorem 2.3.1 Let (X, d) be a compact metric space and $F = \{f_n\}_{n=0}^{\infty}$ be a time varying homeomorphism on X. Then following are equivalent :

(1) F is expansive,

(2) F has a generator,

(3) *F* has a weak generator.

Proof : We first show that $(2) \Rightarrow (3)$. (2) \Rightarrow (3) : Let α be a finite open cover of *X* and {*A_n*} be bisequence of members of α . Since $A_n \subseteq \overline{A_n}$, we have

$$\bigcap_{n=-\infty}^{\infty} (F_n)^{-1} (A_n) \subseteq \bigcap_{n=-\infty}^{\infty} (F_n)^{-1} (\overline{A_n}).$$

On nonautonomous discrete dynamical systems

If α is generator for *F* then

$$\bigcap_{n=-\infty}^{\infty} (F_n)^{-1}(\overline{A_n})$$

contains at most one point and therefore

$$\bigcap_{n=-\infty}^{\infty} (F_n)^{-1} (A_n)$$

also contains at most one point. Hence α is also a weak generator for *F*.

(3) \Rightarrow (2) : Let $\beta = \{B_1, B_2, \dots, B_n\}$ be a weak generator for *F* and $\delta > 0$ be a Lebesgue number for β . Let α be a finite open cover by sets A_i with $diam(\overline{A_i}) \leq \delta$. If $\{A_{i_n}\}$ is a bisequence of members of α then for every *n*, there is j_n such that $\overline{A_{i_n}} \subset B_{j_n}$, and so

$$\bigcap_{n=-\infty}^{\infty} (F_n)^{-1}(\overline{A_{i_n}}) \subseteq \bigcap_{n=-\infty}^{\infty} (F_n)^{-1}(B_{j_n}).$$

Since

$$\bigcap_{n=-\infty}^{\infty} (F_n)^{-1} (B_{j_n})$$

contains almost one point therefore

$$\bigcap_{n=-\infty}^{\infty} (F_n)^{-1} (\overline{A_{i_n}})$$

also contains at most one point and hence α is a generator.

Next we prove that (1) \Rightarrow (2) : Let $\delta > 0$ be an expansive constant for *F* and α be a finite open cover of *X* by open balls of radius $\frac{\delta}{2}$. Suppose

$$x, y \in \bigcap_{n=-\infty}^{\infty} (F_n)^{-1}(\overline{A_{i_n}}),$$

On nonautonomous discrete dynamical systems

where $A_{i_n} \in \alpha$ then $d(F_n(x), F_n(y)) \leq \delta$ for every *n*, and since *F* is expansive with expansive constant δ , we have x = y.

(3) \Rightarrow (1): Suppose α is a weak generator. Let $\delta > 0$ be a Lebesgue number for α . If $d(F_n(x), F_n(y)) < \delta$, for all $n \in \mathbb{Z}$ then for every n, there is $A_n \in \alpha$ such that $F_n(x), F_n(y) \in A_n$ and so

$$x, y \in \bigcap_{-\infty}^{\infty} (F_n)^{-1} (A_n)$$

which is at most one point implying x = y.

We use the above result in the following example.

Example 2.4 Let $F = \{f_n\}_{n=0}^{\infty}$, where $f_n: [0,1] \rightarrow [0,1]$ is defined by $f_n(x) = x^{n+1}$ for n=0,1,2... and $x \in [0,1]$, be a time varying homeomorphism on [0,1]. Now note that

$$F_n(x) = x^{n!}$$
 and $F_{-n} = x^{\frac{1}{n!}}$,

for all $n \ge 0$. Let α be a finite open cover of [0, 1] with Lebesgue number $0 < \delta < \frac{1}{2}$. Note that

$$\lim_{n \to \infty} F_n = 0 \quad and \quad \lim_{n \to \infty} F_{-n} = 1$$

uniformly on $[\delta, 1 - \delta]$. So there exists N > 0 such that n > N implies $F_n(x) \in [0, \delta)$ and $F_{-n}(x) \in (1 - \delta, 1]$, for any $x \in [\delta, 1 - \delta]$. Since δ is Lebesgue number of α , there are A_0 and A_1 in α such that $[0, \delta) \subseteq A_0$ and $(1 - \delta, 1] \subseteq A_1$. Now since $\{F_{-N}, F_{-N+1}, \dots, F_N\}$ is uniformly equicontinuous family, there exists $\varepsilon > 0$ such that $d(x, y) < \varepsilon$ implies $d(F_n(x), F_n(y)) < \delta$, for any $|n| \le N$. Let $x, y \in [\delta, 1 - \delta]$, $x \ne y$ such that $d(x, y) < \varepsilon$. Then for any n, $|n| \le N$ there exists $A_n \in \alpha$ such that $F_n(x), F_n(y) \in A_n$. Thus $x, y \in (F_n)^{-1}(A_n)$, $|n| \le N$. Now put

$$A_n = \begin{cases} A_0, & n \ge N+1; \\ A_1, & n \le -(N+1). \end{cases}$$

On nonautonomous discrete dynamical systems

Now note that

$$x, y \in \bigcap_{n=-\infty}^{\infty} (F_n)^{-1} (A_n).$$

Thus α can not be a weak generator for F. Therefore F has no weak generator and hence by above result F is a time-varying homeomorphism which is not-expansive.