
Chapter 1

Introduction

1.1 The Mittag-Leffler function

Gösta Magnus Mittag-Leffler was born on March 16, 1846, in Stockholm,

Sweden. His father, John Olof Leffler, was a school teacher, and was also elected

as a member of the Swedish Parliament. At his birth Gösta was given the name

Leffler and later (when he was a student) he added his mother’s name “Mittag”

as a tribute to this family, which was very important in Sweden in the nineteenth

century. Both sides of his family were of German origin.

He studied at the University of Uppsala, matriculated in 1865 and completed

his Ph.D. in 1872.

He founded Acta Mathematica, an international mathematical journal in

1882 and served as the Editor-in-Chief of the journal for 45 years.

In 1903, Mittag-Leffler [47] proposed a function Eα(z) defined by

Eα(z) =
∞
∑

n=0

zn

Γ(αn+ 1)
,

where z is a complex variable and α ∈ C, ℜ(α) > 0. Later on this function

was referred to as Mittag-Leffler function. The Mittag-Leffler function is direct

generalization of the exponential function to which it reduces for α = 1. This

function has some interesting properties which later became essential for the de-

scription of many problems arising in applications. Nowadays the Mittag-Leffler

function and its numerous generalizations have acquired a new life. The recent
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notable increased interest in the study of their relevant properties is due to the

close connection to the Fractional Calculus and its application to the study of

Differential and Integral Equations. Many modern models of fractional type have

recently been proposed in Probability Theory, Mechanics, Mathematical Physics,

Chemistry, Biology, Mathematical Economics, Engineering and Applied Sciences

etc. There are many applications of Mittag-leffler function and its generalizations

in Astrophysics problems (see [24]). One application of Mittag-Leffler function is

described below.

In a reaction-diffusion process if N(t) is the number density at a time t and

if the production rate is proportional to original number, then

d

dt
N(t) = λN(t), λ > 0 (1.1.1)

where λ is the rate of production. If the consumption or destruction rate is also

proportional to the original number then

d

dt
N(t) = −µN(t), µ > 0 (1.1.2)

where µ is the destruction rate. Then the residual part is given by

d

dt
N(t) = −cN(t), c = µ− λ. (1.1.3)

If c is free of t then the solution is exponential model

N(t) = N0e
−ct, N0 = N(t) at t = t0 (1.1.4)

where t0 is the starting time. Instead of total derivative in (1.1.1) to (1.1.3) if

the fractional derivative or fractional nature of reactions is considered, that is, an

equation of the form

N(t)−N0 = −cv 0D
−v
t N(t) (1.1.5)

is considered where 0D
−v
t is the standard Riemann-Liouville fractional integral

operator, then the solution

N(t) = N0

∞
∑

n=0

(−1)k (ct)vk

Γ(vk + 1)
= N0 Ev(−(ct)v), (1.1.6)

involves Ev(.) which is nothing but the Mittag-Leffler function.
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1.2 Definitions and formulas

1.2.1 Ordinary forms

The following definitions and formulas will be used in the work.

Definition 1.2.1. The Pochhammer symbol is defined as ([63],[78])

(λ)n =

{

(λ)(λ+ 1)(λ+ 2) · · · (λ+ n− 1) if n ∈ N,

1 if n = 0.
(1.2.1)

Here, (λ)n is also called the factorial function. If λ = 1 then it reduces to n!, thus

(1)n = n!.

Definition 1.2.2. The binomial coefficient is given by

(

λ

n

)

=
(λ)(λ− 1)(λ− 2) · · · (λ− n+ 1)

n!
=

(−1)n (−λ)n
n!

, (1.2.2)

or equivalently [63],

(

λ

n

)

=
Γ(λ+ 1)

Γ(λ− n+ 1) n!
. (1.2.3)

Remark 1.2.1. For 0 ≤ k ≤ n,

(λ)n−k =
(−1)k (λ)n
(1− λ− n)k

. (1.2.4)

For λ = 1, it reduces to

(−n)k =
(−1)k n!

(n− k)!
, 0 ≤ k ≤ n. (1.2.5)

Definition 1.2.3. The Gamma function is defined as [63]:

Γ(z) =

∞
∫

0

e−t tz−1 dt; ℜ(z) > 0. (1.2.6)

The Stirling’s asymptotic formula [16] for the Gamma function is

Γ(z) ∼
√
2π e−z zz−

1
2 , for large |z|. (1.2.7)
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Note 1.2.1. This function is related with the factorial function by means of the

formula [63]:

(λ)n =
Γ(λ+ n)

Γ(λ)
. (1.2.8)

Definition 1.2.4. The Beta function denoted by B(a, b), is defined as [63]:

B(a, b) =

1
∫

0

za−1 (1− z)b−1 dz; ℜ(a, b) > 0. (1.2.9)

Note 1.2.2. Its relation with Gamma function is given by [63]

B(a, b) =
Γ(a) Γ(b)

Γ(a+ b)
; ℜ(a, b) > 0. (1.2.10)

Definition 1.2.5. The Wright generalized hypergeometric function is denoted and

defined as [44]

pψq

[

(a1, A1), · · · , (ap, Ap); z

(b1, B1), · · · , (bq, Bq);

]

=
∞
∑

r=0

p
∏

j=1

Γ(aj + rAj)

q
∏

j=1

Γ(bj + rBj)

zr

r!
(1.2.11)

= H1,p
p,q+1

[

−z (1− a1, A1), · · · , (1− ap, Ap)

(0, 1), (1− b1, B1), · · · , (1− bq, Bq)

]

, (1.2.12)

where Hm,n
p,q

[

−z (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

]

denotes the Fox H−function in

which ai, bj ∈ C, Ai, Bj ∈ R, (i = 1, 2, ...p ; j = 1, 2...q), and 1+
q
∑

j=1

Bj−
p
∑

i=1

Ai > 0.

In particular [40],

1ψ1

[

α; β; z
]

=
∞
∑

r=0

zr

Γ(αr + β) r!
, α > −1.

Theorem 1.2.1. If f(z) =
∞
∑

n=0

anz
n is an entire function then the order ̺(f) of

f is given by [7, Eq.(1.2)]

̺(f) = lim
n→∞

sup
n log n

log(1/|an|)
. (1.2.13)
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and the type of the function σ is given by [33]

e̺σ = lim
n→∞

sup
(

n |an|̺/n
)

. (1.2.14)

For every positive ǫ, the asymptotic estimate [33, Eq.(16)]

|f(z)| < exp ((σ + ǫ) |z|̺) , |z| ≥ r0 > 0 (1.2.15)

holds with ̺, σ as in (1.2.13), (1.2.14) for |z| ≥ r0(ǫ), r0(ǫ) sufficiently large.

Definition 1.2.6. The space L(a, b) of (real or complex valued) Lebesgue measur-

able functions is given by ([67], [31])

L(a, b) =
{

f : ‖f‖1 =
b
∫

a

|f(t)| dt <∞
}

. (1.2.16)

The following double series identities will also be used [63].

∞
∑

n=0

∞
∑

k=0

f(k, n) =
∞
∑

n=0

n
∑

k=0

f(k, n− k). (1.2.17)

∞
∑

n=0

n
∑

k=0

f(k, n) =
∞
∑

n=0

∞
∑

k=0

f(k, n+ k). (1.2.18)

∞
∑

n=0

∞
∑

k=0

f(k, n) =
∞
∑

n=0

[n
2
]

∑

k=0

f(k, n− 2k) (1.2.19)

∞
∑

n=0

[n
2
]

∑

k=0

f(k, n) =
∞
∑

n=0

∞
∑

k=0

f(k, n+ 2k) (1.2.20)

mn
∑

i=0

[ i
m
]

∑

j=0

f(i, j) =
n
∑

j=0

mn−mj
∑

i=0

f(i+mj, j). (1.2.21)
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n
∑

k=0

k
∑

j=0

f(k, j) =
n
∑

j=0

n
∑

k=j

f(k, j). (1.2.22)

n
∑

k=0

k
∑

j=0

A(k, j) =
n
∑

j=0

n−j
∑

k=0

A(k + j, j) (1.2.23)

The binomial series is given by [63]

∞
∑

n=0

(a)n
zn

n!
= (1− z)−a, |z| < 1. (1.2.24)

Lemma 1.2.1. For 0 < t < 1, a > 0, where s ∈ N,

∞
∑

n=0

(

(a)n
tn

n!

)s

≤
(

∞
∑

n=0

(a)n
tn

n!

)s

. (1.2.25)

On comparing the coefficients of like powers of t, the above inequality follows.

1.2.2 q-Analogues

A q-analogue of a non zero number ‘ a’ denoted by [a], is defined by [27]

[a] =
1− qa

1− q

with the convention that [a] → a when q → 1. Based on this notion, the q-

theory has been extensively developed by a large number of eminent researchers

in varied directions such as Special Functions, Number theory, Distribution theory

etc. ([18], [5], [17]).

Definition 1.2.7. For a ∈ C, and 0 < |q| < 1, the q-shifted factorial is defined by

[18, Eq.(1.2.15), p.3 and Eq.(1.2.30), p.6]

(a; q)n =



















1 if n = 0

(1− a)(1− aq) · · · (1− aqn−1) if n ∈ N

(q; q)∞
(aqn; q)∞

if n ∈ C,

(1.2.26)
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where

(a; q)∞ =
∞
∏

k=0

(1− aqk) , |q| < 1.

A well-known extension of the q-shifted factorial is given by [12]

[t− |a]n = (t− a)(t− aq)(t− aq2) · · · (t− aqn−1). (1.2.27)

A finite series-product identity is [12]

n
∑

k=0

qk(k−1)/2

[

n

k

]

xk =
n
∏

k=1

(1 + xqk−1). (1.2.28)

Definition 1.2.8. The basic binomial coefficient with base qr is (cf. [18, Ex.(1.2),

p.20] with r=1):
[

n

m

]

r

=
(qr; qr)n

(qr; qr)n−m (qr; qr)m
, r 6= 0. (1.2.29)

Note 1.2.3.

(q−k; q−k)n = (qk; qk)n (−q−k) q−kn(n−1)/2. (1.2.30)

Definition 1.2.9. A q-Gamma function is defined as [23]:

Γq(α) =
(q; q)∞ (1− q)1−α

(qα; q)∞
, (1.2.31)

where α 6= 0,−1,−2, ..., and 0 < q < 1.

The q-analogue of Stirling’s asymptotic formula [42, Eq.(2.25), p.482] for the q-

Gamma function is

Γq(x) ∼ (1 + q)
1
2 Γq2

(

1

2

)

(1− q)
1
2
−x eµq(x), (1.2.32)

where µq(x) =
θ qx

1− q − qx
, 0 < θ < 1.

Definition 1.2.10. A q-Beta function Bq(x, y) is expressible in different ways

[18].

Bq(x, y) =

1
∫

0

tx−1(tq)y−1 dqt, (1.2.33)
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Bq(x, y) =
(1− q) (q)∞ (qx+y)∞

(qx)∞ (qy)∞
, (1.2.34)

and

Bq(x, y) =

1
∫

0

tx−1 (tq; q)∞
(tqy; q)∞

dqt (1.2.35)

in which y 6= 0,−1,−2, ..., ℜ(x) > 0.

Definition 1.2.11. The basic exponential functions are defined by (cf. W. Hahn

[22], Gasper and Rahman [18, p.236]):

eq(x) = 1φ0(0;−; q, x) =
∞
∑

n=0

xn

(q; q)n
=

1

(x; q)∞
, |x| < 1 (1.2.36)

and

Eq(x) = 0φ0(−;−; q, x) =
∞
∑

n=0

qn(n−1)/2 xn

(q; q)n
= (−x; q)∞, |x| <∞. (1.2.37)

Definition 1.2.12. A q-derivative of a function f(x) is defined by [18, Ex.1.12,

p.22]

Dqf(x) =
f(x)− f(xq)

x(1− q)
(1.2.38)

and [34]

∆qf(x) =
f(x)− f(xq−1)

x− xq−1
. (1.2.39)

Definition 1.2.13. A q-derivative of product of two functions is given by [9].

Dq (f(x).g(x)) = g(qx)Dqf(x) + f(x)Dq(g(x)). (1.2.40)

∆q (f(x).g(x)) = g(q−1x)∆qf(x) + f(x)∆q(g(x)). (1.2.41)

Definition 1.2.14. The q-integrals are defined by [29]

x
∫

0

f(t) dqt = x(1− q)
∞
∑

k=0

qk f(xqk), (1.2.42)
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and

∞
∫

x

f(t) dqt = x(1− q)
∞
∑

k=1

q−k f(xq−k). (1.2.43)

Definition 1.2.15. The q-Beta integral due to W. Hahn [23] is

∫ 1

0

tλ−1Eq(tq) dqt = (1− q)
(q; q)∞
(qλ; q)∞

, λ > 0. (1.2.44)

1.3 Generalized hypergeometric function and ba-

sic hypergeometric function

The hypergeometric function and its associated series are given by [63]:

2F2

[

a, b, x

c,

]

=
∞
∑

n=0

(a)n (b)n
(c)n

xn

n!
, (1.3.1)

where c is neither zero nor negative integer and |x| < 1.

The series is convergent for |x| < 1. For |x| = 1, the series converges if ℜ(c−a−b) >
0. E. Heine ([25], [26]) introduced an interesting extension of this series in the form:

1 +
(1− qa) (1− qb)

(1− qc) (1− q)
x+

(1− qa) (1− qa+1) (1− qb) (1− qb+1)

(1− qc) (1− qc+1) (1− q) (1− q2)
x2 + . . . (1.3.2)

(c 6= 0,−1,−2, . . . ; |x| < 1, |q| < 1).

It readily follows that as q → 1, the series in (1.3.2) appoaches to the Gauss series

(1.3.1).

1 +
a b

c
x+

a (a+ 1) b (b+ 1)

c (c+ 1) 1 2
x2 + . . .

(c 6= 0,−1,−2, . . . ; |x| < 1).

Thus, Heine’s series defines a basic analogue (or a q-analogue) of the Gauss series;

and for this reason the Heine’s series is called a basic hypergeometric series or

q-hypergeometric series.

Just as it happened with the Gauss series that it was known in other particular

forms before its introduction, this q-series (1.3.2) was also known in special forms
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prior to its introduction. For example, the identity

1 +
∞
∑

n=1

(−1)n
{

qn(3n−1)/2 + qn(3n+1)/2
}

=
∞
∏

n=1

(1− qn)

due to Leonhard Euler is dated back to 1748 A. D. The triple product identity

∞
∏

n=0

{

(1− xqn) (1− qn+1x−1) (1− qn+1)
}

=
n=∞
∑

n=−∞

(−1)n qn
2/2xn,

and the four Theta functions : θi(z, q), i = 1, 2, 3, 4, were given by C.G.J. Jacobi

also dates back to in 1829 A.D.

The series in (1.3.2), was denoted by Heine by using the notation φ(a, b; c; q, x).

Alternatively, the other notations, namely

2φ1(a, b; c; q, x), 2φ1

[

a, b; q, x

c;

]

are often occurs in the literature. In this notation, the series (1.3.2) is representable

in the form

2φ1(a, b; c; q, x) =
∞
∑

n=0

(a; q)n (b; q)n
(c; q)n (q; q)n

xn, (1.3.3)

where |x| < 1, |q| < 1 and (a; q)n is as given in (1.2.26).

A generalization of (1.3.3) which is a basic analogue of (1.3.1) is rφs function

defined by ([8], [18]):

rφs

[

a1, a2, · · · , ar; q, x

b1, b2, · · · , bs;

]

=
∞
∑

n=0

[a1]n [a2]n · · · [ar]n xn
[b1]n [b2]n · · · [bs]n (q; q)n

×
{

(−1)n qn(n−1)/2
}s−r+1

. (1.3.4)

This infinite basic series converges for all x if r ≤ s, 0 < |q| < 1. If r = s+1

then it converges for |x| < 1. The various specializations of this rφs[x] function

include the basic exponential functions (1.2.36) and (1.2.37), and basic Bessel

functions [18, p.25])
J (1)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

(x/2)ν 2φ1

(

0, 0; qν+1; q,−x2/4
)

,

and

J (2)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

(x/2)ν 0φ1

(

−; qν+1; q,−x
2 qν+1

4

)

,
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1.4 Integral transforms

Some well-known integral transforms are given as follows ([14], [63], [79], [80]).

Definition 1.4.1. Beta (or Euler) transform.

B{f(x); a, b} =

1
∫

0

xa−1 (1− x)b−1f(z) dz; ℜ(a, b) > 0. (1.4.1)

Definition 1.4.2. Finite Laplace transform.

LT{f(x)} =

T
∫

0

e−Stf(t) dt; ℜ(S) > 0, (1.4.2)

where T is a positive number.

Definition 1.4.3. Laplace transform.

L{f(x)} =

∞
∫

0

e−Stf(t) dt; ℜ(S) > 0. (1.4.3)

Definition 1.4.4. Convolution formula.

If L(f1(t)) = F1(S) and L(f2(t)) = F2(S) then

L







t
∫

0

f1(x) f2(x− t) dx







= F1(S) F2(S). (1.4.4)

Definition 1.4.5. Derivative rule.

∂n

∂Sn
([L y(x)] (S)) = (−1)n L [xn y(x)] (S), n ∈ N0. (1.4.5)

Definition 1.4.6. Laguerre transform.

L{f(x)} =

∞
∫

0

e−x xµ L(µ)
n (x) f(x) dx; (1.4.6)

where L
(µ)
n (x), µ > −1, is the Laguerre polynomial of degree n ≥ 0.

Definition 1.4.7. Generalized Stieltjes transform.

Sg{f(x)} =

∫

f(x)

(x+ z)ρ
dx, (1.4.7)
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where z is a complex variable, |arg(z)| < π, ρ ≥ 1.

Definition 1.4.8. Mellin-Barnes transform.

M [f(z); s] =

∞
∫

0

zs−1f(z) dz = f ∗(s), ℜ(s) > 0, (1.4.8)

then

f(z) =M−1[f ∗(s); x] =
1

2πi

∫

f ∗(s) x−s ds. (1.4.9)

Definition 1.4.9. Whittaker transform.

W (f(x); ν, λ, µ) =

∞
∫

0

e−
t
2 tν−1 Wλ,µ(t) f(t) dt, ℜ(ν) > 0, (1.4.10)

in which Wλ,µ(t) is a Whittaker function [93] defined as

Wλ,µ(z) =
e−

z
2 zλ

Γ

(

1

2
− λ+ µ

)

∞
∫

0

t−λ−
1
2
+µ

(

1 +
t

z

)λ− 1
2
+µ

e−t dt, (1.4.11)

with ℜ
(

λ− 1

2
− µ

)

≤ 0 and λ− 1

2
− µ is not an integer.

1.5 q-Integral transforms

Definition 1.5.1. q-Laplace transform.

Hahn [23] defined the q-analogues of the well known Laplace transform:

F (S) = φ(S) =

∞
∫

0

e−St f(t) dt,

by means of the following two integral equations.

Lq{f(t)} =
1

(1− q)

S−1
∫

0

Eq(qSt) f(t) dqt, (1.5.1)
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and

Lq{f(t)} =
1

(1− q)

∞
∫

0

eq(−St) f(t) dqt, (1.5.2)

where ℜ(S) > 0.

A q-Laplace transform of integration is given by [34]

Lq





x
∫

0

f(t) dqt



 =
1

S
Fq(S), (1.5.3)

whereas the formula for q-Laplace transform of differentiation is ([34])

Lq [Dq f(t)] = S Fq(S)− f(0). (1.5.4)

Lq [xf(x)] = −1

q
∆qFq(S), (1.5.5)

in which Fq(S) = Lq(f(x))(S).

Definition 1.5.2. q-Convolution formula [34].

Lq





x
∫

0

f1(t) f2(x− tq) dqt



 = F1q(S) F2q(S), (1.5.6)

whenever F1q(S), F2q(S) exist.

Here F1q(S) = Lq(f1(x))(S) and F2q(S) = Lq(f2(x))(S).

Definition 1.5.3. The q-Euler (Beta) transform is [18]:

B{f(z) : a, b|q} =

1
∫

0

uβ−1 (uq; q)∞
(uqη; q)∞

f(z) dqu. (1.5.7)

1.6 Fractional integrals and derivatives

In a letter dated September 30th, 1695 Guillaume De L’Hospital(1661-1704) wrote

to Leibnitz asking him about a particular notation he had used in his publications

for the nth-derivative
Dn

Dxn
x of the linear function f(x) = x. L’Hospital posed the
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question to Leibnitz, what would the result be if n =
1

2
? Leibnitz’s responded by

saying: ”An apparent paradox, from which one day useful consequences will be

drawn’. By these words, the fractional calculus was born.

Definition 1.6.1. Riemann-Liouville fractional integral operators.

For f(x) ∈ L(a,b), µ ∈ C, and ℜ(µ) > 0, the Riemann-Liouville (R-L)

fractional integrals of order µ [67] are defined as follows.

The left-sided R-L fractional integral operator of order µ is defined as

xI
µ
a f(x) = Iµa+f(x) =

1

Γ(µ)

x
∫

a

f(t)

(x− t)1−µ
dt, x > a, (1.6.1)

whereas the right-sided R-L fractional integral operator of order µ is defined as

xI
µ
b f(x) := Iµb−f(x) =

1

Γ(µ)

b
∫

x

f(t)

(x− t)1−µ
dt, x < b, (1.6.2)

Further, if µ, β ∈ C, ℜ(µ, β) > 0, then ([46],[67])

Iµa+[(t− a)β−1](x) =
Γ(β)

Γ(µ+ β)
(x− a)µ+β−1. (1.6.3)

Definition 1.6.2. Riemann-Liouville fractional derivative.

For µ ∈ C,ℜ(µ) > 0; n = [ℜ(µ)] + 1, the R-L fractional derivative [67] is

(Dα
a+ f)(x) =

(

d

dx

)n

(In−αa+ f)(x). (1.6.4)

Definition 1.6.3. Generalized Riemann-Liouville fractional integral operator.

The fractional integral operator investigated by Erdélyi and Kober is defined

as

Iη,ν0+ {f(x)} =
x−η−ν+1

Γ(ν)

x
∫

0

(x− t)ν−1f(t) dt, ℜ(ν) > 0, η > 0. (1.6.5)

This is a generalization of the Riemann-Liouville fractional integral operator

(1.6.2).

Definition 1.6.4. Generalized Riemann-Liouville fractional derivative operator.
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Hilfer ([15], [28]) generalized the Riemann-Liouville fractional derivative op-

erator Dµ
a+ in (1.6.4) by introducing a right-sided fractional derivative operator

Dµ, ν
a+ of order 0 < µ < 1 and type 0 ≤ ν ≤ 1 with respect to x as follows.

(Dµ, ν
a+ f)(x) =

(

I
ν(1−µ)
a+

d

dx
(I

(1−ν)(1−µ)
a+ f)

)

(x). (1.6.6)

Remark 1.6.1. The Laplace transforms of generalized the Riemann-Liouville frac-

tional derivative operator is given by ([15], [28]):

L[Dµ, ν
0+ f(x)](S) = Sµ L[f(x)](S)− Sν(1−µ)(I

(1−ν)(1−µ)
0+ f)(0+), (1.6.7)

where 0 < µ < 1, and the initial-value term: (I
(1−ν)(1−µ)
0 f)(0+) involves the

Riemann-Liouville fractional integral operator of order (1 − ν)(1 − µ) evaluated

by taking limit t→ 0+. Here, as usual

L[f(x)](S) =
∞
∫

0

e−Sx f(x) dx, (1.6.8)

provided that the integral exists.

1.7 Fractional q-integrals and q-derivatives

Definition 1.7.1. Riemann-Liouville fractional q-integral operator.

A q-analogue of Riemann-Liouville fractional integral operator [1] is given

by

qI
µ
a+f(x) =

1

Γq(µ)

x
∫

a

(x− |yq)µ−1 f(y) dqy, (1.7.1)

where µ is an arbitrary order of integration with Re(µ) > 0.

In particular, for f(x) = xν−1, the equation (1.7.1) reduces to

qI
µ
0+f(x)[x

ν−1] =
Γq(ν)

Γq(ν + µ)
xν+µ−1. (1.7.2)

Definition 1.7.2. Generalized Riemann-Liouville fractional q-integral operator.
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A basic analogue of the Kober fractional integral operator is given by [1],

qI
η,µ
0+ f(t) =

t−η−µ

Γq(µ)

t
∫

0

(t− |xq)µ−1 x
η f(x) dqx, (1.7.3)

where µ is an arbitrary order of integration with ℜ(µ) > 0 and type η is in general,

complex.

Definition 1.7.3. Riemann-Liouville fractional q-derivative.

The fractional q-differential operator of arbitrary order α, is defined as [3] :

(

qD
α
0+f
)

(x) =
1

Γq(−α)

x
∫

0

(x− |yq)−α−1 f(y) dqy, (1.7.4)

in which ℜ(α) < 0, 0 < |q| < 1.

It is to be noted that
(

qD
α
0+f
)

(x) = Dα
x,qf(x). In this context,

(

qD
α
a+f
)

(x) =

(

dq
dqx

)n
(

qI
n−α
a+ f

)

(x). (1.7.5)

If f(x) = xµ−1, then (1.7.4) reduces to

qD
α
0+[x

µ−1] =
Γq(µ)

Γq(µ− α)
xµ−α−1. (1.7.6)

Note 1.7.1. Hilfer ([15], [28]) generalized the Riemann-Liouville fractional deriva-

tive operator Dµ
a+ in (1.6.4) by introducing a right-sided fractional derivative op-

erator Dµ, ν
a+ of order 0 < µ < 1 and type 0 ≤ ν ≤ 1 with respect to x given by

(1.6.6). Its q-analogue is defined here in the form:

( qD
µ, ν
a+ f)(x) =

(

qI
ν(1−µ)
a+

d

dx
( qI

(1−ν)(1−µ)
a+ f)

)

(x), (1.7.7)

in which qI
(1−ν)(1−µ)
a+ denotes a q-analogue of the Kober fractional integral operator

(1.6.5).

A q-analogue of the formula (1.6.7) is given by

Lq[ qDµ, ν
0+ f(x)](S) = Sµ Lq[f(x)](S)− Sν(1−µ)( qI

(1−ν)(1−µ)
0+ f)(0+), (1.7.8)
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where 0 < µ < 1, and the initial-value term: ( qI
(1−ν)(1−µ)
0+ f)(0+) involves the

Riemann-Liouville fractional q-integral operator of order (1− ν)(1− µ) evaluated

when the limit t→ 0+.

1.8 Inverse series relation

A series is said to be the inverse series of a given series if one of the series when

substituted into the other, simplifies to the expression involving the Kronecker

delta :

δnk =

{

0, if k 6= n

1, if k = n
.

To illustrate this, consider the inverse pair

an =
n
∑

k=0

(

n

k

)

bk, bn =
n
∑

k=0

(−1)k+n
(

n

k

)

ak.

Here, if second series is substituted into the first series then the inner sum simplifies

to the form

n
∑

k=0

(−1)k+j
(

n

j

) (

j

k

)

= δnk,

thus proving one side of inverse relation. The poof of the converse part is similar.

Now in order to illustrate a q-analogue of inverse pair, consider the series

an =
n
∑

k=0

[

n

k

]

bk.

Then its inverse series is given by

bn =
n
∑

k=0

(−1)n+k qk(k−2n+1)/2

[

n

k

]

ak

and vise versa.
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