Chapter 4

The generalized

(-Hypergeometric function

4.1 Introduction

By introducing a finite number of numerator, denominator and ¢-denominator

parameters, a generalization of the /-H functions

1] & z _ S (a)n ﬁ
1H1 [ b; (C : €>’ ] o Z (b)n (C)en n!’

n=0 n

and

2 | o e z | _ (a1)n (a2)n ﬁ’
o [ by (c1,¢0:0); ; (0)n (c1)g* (c2)y m!

of Chapter 2 is studied in this chapter. First the series convergence and the order
of convergence of the series of proposed function are taken up. This is followed
by the derivation of the differential equation with the help of the hyper-Bessel
type operators defined in Chapter 2. The eigen function property and certain
contiguous function relations are also obtained.

As the special cases, the (-extensions of exponential, trigonometric and hyperbolic
functions are illustrated together with their graphical representations by means of
the Maple software.

Finally, the Ramanujan’s theorem and Kummer’s first formula are extended by
means of this theory.

The proposed generalization is defined as follows:
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Definition 4.1. For p,r,s € NU {0}, a;,z € C,Vi = 1,2,...,r,and bj, ¢, € C\
{0,—1,-2,...,}Vj=1,2,...,s, VkE=1,2,...,p, the generalized ¢-Hypergeometric

function is defined as

ay, o, ..., Q] z
T.Hsp(g;z> — ,,.Hf ) ) ) )
bi, be, ..., by (c1, cay ..., ¢:0);

n

_ = (a1>n(a2)n e (ar)n Z_
N Z (01)n(b2)n - -+ (bs)n (1) (co)fr-- - (cp)ir ml’ (4.1)

n=0 n n

Whereée(Cwith%(ﬁ)20and%((61+CQ+---+CP)€—%+s—r+1) > 0.

Now onward the function defined by (4.1) will be referred to as the generalized
(-H function. Also, throughout the work, the range of values of i, j, k to be ¢ =
1,2,...,r,7=1,2,...,s,and k = 1,2,...,p will be kept fixed.

Remark 4.2. The numbers r, s, p can all be zero simultaneously. The absence of

parameters is emphasized by a dash. As an example,

oH. [ 0 (es0) ] = %W (4.2)

In Section 4.3 this function in (4.2) will be seen to be an ¢-H exponential function.

Remark 4.3. The function ,HP(¢;z) reduces to the generalized hypergeometric

function , Fi[z] when ¢ = 0.

4.2 Main Results

The coefficient of z" in the series (4.1) will be symbolized as ¢, that is,

(al)n(a2)n s (ar)n _ .
(b)n(b2)n - -+ (bs)n ()T ()i (¢, nl n-

4.2.1 Convergence

In the following theorem, it is shown that the function in (4.1) exists.

Theorem 4.4. IfR(() >0 andR ((c1 +co+ -+ )l — L +s—r+1) >0 then

the generalized (-H function is an entire function of z.
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Proof. With ¢,, as stated above and from the Cauchy-Hadamard formula,
== lim s ¢/l
7 = Jmsuw e

= lim sup
n—oo

1

n

(a1)n(ag)n - - - (ar)n 1
(b1)n(b2)n (Do) (c1)i(ca)i - (cp)irml
T(b)T(by) - - T(b) | | T(ay + n)D(as + n) - - - T(a, + n)
T(a1)T(az)--T(a)| |T(r+n)T(bs +n)---L(by +n)

T(c))T(cs) -+ -T(cy) RO
D(ci +n)(ca +n) Ty + 1)

3=

= lim sup
n—oo

X

Tw(n+1)

Now applying of the Stirling’s formula [18]:
(o +n) ~ V2re™ @ (o 4 p)latn=1/2) (4.3)

for large n and taking o = a;, b;, ¢, in turn, one gets

—R(0)
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provided that R(¢) > 0 and R ((c1 + e+ + )l — L+s—7r+1) > 0. O

Remark 4.5. The series Y, 2" thus converges uniformly in any compact subset
of C.

4.2.2 Order of ,H?({;z) function

Theorem 4.6. If the conditions stated in Theorem /.J hold then the generalized

(-H function is an entire function of order zero.
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Proof. 1f the function f(z) = > a,2" is an entire function then the order p(f) of

n=0
f is given by [8, 40]
. nlnn
p(f) = lim sup e (4.4)
For f(z) = HP(l;2) = o 27,
nlnn

p( +HP(¢;z)) = lim sup

n—00 ln|(pn|_1.

Here,

‘71

©n

Using asymptotic expansion

1 1
Inl(r) ~ (T - 5) Inr —r+ §1n\/27r,

for large r, one further gets
> InT(a;)
i=1
+2
j=1
i=1
a 1 1
1 —— 1 — —Inv2
+ n; {(ck—i—n 2) n(cy +n)— (g +n) + 51 7T:|

1H!¢n|71 ~

ilnf(bj)

1 1
(bj+n—§) ln(bj+n)—(bj+n)+§ln\/27r

1 1
<az~—|—n—§) ln(ai+n)—|—(ai+n)—§ln\/27r

1 1
+ <n+1—§) ln(n—l—l)—(n+1)+§ln\/27r

. (4.5)

P
— n Z InT(c)
k=1
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From this, one finds that
Info,| ™!
lim ———
n—oo nlnn

is unbounded, consequently, from (4.4) and (4.5),

1
p(+HE(l;2)) = lim supﬂ = 0.

n—o00 ln ’gpnyfl

O

Remark 4.7. It is known that [4, Theorem 1.1] “If f is entire and p(f) is finite
and is not equal to a positive integer, then f has infinitely many zeros or it is a

polynomial.” Thus, the generalized ¢-H function has infinitely many zeros.

4.2.3 Integral Representation

A generalized form of the integral representation of Theorem 2.7 is obtained in

Theorem 4.8. If a;,b;,c, € C with R(by) > R(az) > 0, bj, ¢, #0,—1,-2,...,
P

and%(zckﬁ—%—l—s—r—l—l) > 0 then
k=1

P ar, Az, ..., Qp; z
e bl, bz, e bs7 (Cl, Coy, ..., CpI€>;
1
F(bl) /tal_l(l . t)b1—a1—1
F(al) F(bl — al) J
as, ..., Qp; 2t
X r—1H§_1 dt.
ba, ..., bs; (c1, c2, .., ¢ ¥)

(a1)n [(ay +n) () T'(by —ay)
(b1)n I'(ar) T(br+n) (b1 — ar)
['(by) [(a; +n) T'(by — aq)
['(by —aq) T'(ay) I'(by +n)
I'(by)

_ B by —
T —ay) T(ay) @t b —ar)

1

I(by) / . o
— tal-‘rn 1 1—t¢ bi—a;—1 dt,
F(bl — 0,1) T(al) J ( )
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Under the convergence conditions permitting to interchange the series and the

integral, one obtains

o HY

[aly az, ..., Qr; <
s

bla b27 )

y (a2)n(az)n - . (ar)n " ¢
(02)n(b3)n - - - (bs)n (c1)g(c2)y” - .- (cp) !
I'(b ) - (aQ)n(CLS)n e (ar)n

(b2)n(bs)n - - (bs)n (cr)i(c2)i - - ()"

_ I'(b1) a1—171 _ p\bi—ai—1
= T(a) F(bl—al)o/t (1=1)

ag, ..., Q; zt
1
ba, ..., by (c1, c2, ..., i d);

dt.

]

Remark 4.9. For ¢ = 0, the theorem reduced to the a simple integral form of ,F[z]
[46, Ch.5, p.85].

4.2.4 Differential Equation

While deriving the differential equation of the ¢-H function ;H{ (¢ : z) (2.1) in
Chapter 2, the following differential operator was defined.

Let f(z) = > an2", 0# 2 € C, pe NU{0} and a € C. Then
n=1

S an(@)f (0 4+ a—1)Pmzn if peN

pAo(f(2) = § =t , (46)
f(Z), ’lf P = 0



Chapter 4. The generalized (-Hypergeometric function 57

4

e and

where 6 is the Euler differential operator z

O+a) =0+a)(f+a)...(0 +a)

N S

r times

is a special case of the hyper-Bessel differential operators (2.8) defined in Chapter 2.
With the aid of this operator it was shown in Theorem 2.10 that the /-H function
1Hi(¢: 2) (2.1) is a solution of the differential equation

{{A% {0 +b 136 —2(0 +a)} w =0,

Using the same operator (4.6), an infinite order differential equation for the gen-

eralized ¢-H function can be obtained as in the following theorem.

Theorem 4.10. For {,p,r,s € NU{0}, a;,b;,c, € C with bj, ¢, #0,—1,-2,...,

the function

ap, Qz, ..., GQr;

z
Slbl, ba, ..., by (c1, c2, ..., i d); ]

satisfies the equation

[{ﬁ gAgk} {ﬁ(@—{—ly—l)}@—zﬁ(@%—ai)

k=1 j=1

w =0, (4.7)

where (AY is as defined in (4.6).

In parallel to the Lemma 2.11 which was required to prove Theorem 2.10, here
also the following lemma is proved which enables one to apply the operator (4.6)

to the operand w. It uses the notation

HH gAgk} {H (04 b; — 1)} 9] = ALy

k=1 j=1

Lemma 4.11. If{ e NU{0}, w = > ¢,2" and

n=0

(b)A?c:Z)w = Z fn((av T)? (b7 8)7 (C,p : 5)7 Z)7

n=0
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then the operator (b)A?M) 1s applicable to the generalized (-H function provided that

the series

> en Fallar), (b,5), (c,p: 0); 2)

converges (cf. [49, Definition 11, p.20]).
Proof. With w = > ¢,2", and n! ¢, = A,,
n=0

(b) A?C:K)w

- {ﬁ Mﬁk}{(6+b1—1)(9+b2—1)---(9+b3—1)}i,4neni'"
k=1 — |
— {ﬁ zAgk}{(9+b1—1)(9+b2_1)...(9+b3_1_1)}
k=1
(0+b—1)2"
ZA T
— {ﬁ gAﬁk}{(6+b1—1)(6+b2_1)...(9+bs1_1)}
k=1

= (n+bs—1)z"
34, .
2 (n— 1)

By applying the operator (6 +0b; —1) for j = 1,2,...,s — 1, and proceeding as

above, one obtains

Zn

_ {kﬂlmﬁk}n:l {jl(bj+n—1)} A, o

= {k[[léAgk} £A§p<§;{]f[1(b~+n—l)} A, (nzfnl))
— {kl:[l mik} ; j:1(bj +n— 1)} A, (fpzns!
x (04 c, — 1) 2" (4.8)
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Noticing from (2.10) that

@+c—1"2 = 1+ag—-1",
O+c,—1)* 22 = (24¢,—1)% 22

in general, for n € N,

O +c,—1)" 2" = (n+4c,—1)" 2", (4.9)
one obtains from (4.8),
(b)A?c:Z)w
p—1 0 S (C >g
— {H A }Z {H(bj +n— 1)} A, (np_”;' (¢, +n —1)72".(4.10)
k=1 n=1 j=1 ’

. . 9 _ .
Proceeding now by applying A/ for k=1,2,...,p—1, yields

WA legw = Z{H<bj+n—1>}{ﬂ<ck>f;_1 <ck+n—1>f”} A T

n=1 {j=1 k=1

_ o (a1)n (az)n - (ar)n
Z (01)n—1 (b2)n—1--+ (bs)n-1

)T ()i z” ()i (n—1)! (4.11)
_ i (@)n+1 (a2)ns1 - (@r)nis 2 (4.12)

(01)n (b2)n -+ (bs)n (c1)i (o) -+ (cp)i n!

n=0

= > fulla,r),(b,5), (c.p: 0); 2) (say).

To complete the proof, it remains to show that the series

Y en falla,r), (bs), (e,p: 0); 2)

M@t} .

i=1

Il m} {1} "

n=0

j=1 k=1
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is convergent. For that take

{ H Fz(bj)} {H (a; +n) T?(a; + n)} {kﬁl r%n(ck>}
{Hl FQ(ai)} {Jf[l 2(b; + n)} {kﬁl 200 (¢ + n)} I2(n + 1)‘

Then in view of the Stirling’s asymptotic formula (4.3) for large n, one gets

S

e
)1
~
<
-

{e*(a””) (a; + n) =2y 27r}

<
I
—
pey
Il
i

1
[fn| 7~

S

=
=
Do
I
£
S~—
—

{ef(bfrn) (b] + n)bj‘i’nf%\/%}

7j=1
r p a
[T(ai +n)7| [T T*(0)| [ Dn+ )m-bv/ar| 7
i=1 k=1
X ) 1 20
11 {e—(ck+”)(ck + n)c’f+”_§\/_27r}
k=1

Using here the Cauchy-Hadamard formula, one finally obtains

‘E‘ané

P )( )fép e2(sfr)
: 1 . 20 "
nh—>Holo Sup |,U/n| B nh—)IEo Sup {H |F (Ck) ’ } |n2(01+cz+~~+0p)f—€p+2(s—r+1)|

k=1
= 0,

provided that ®(¢) > 0 and R (2(c; + o+ -+ )l —lp+2(s—r+1))>0. O

Proof. (of Theorem 4.10)

From (4.12),

D o e 23 et
- g%(bl)n (bz)n(.O?l.)&)s(;?)(zl')-;(‘(‘;);ﬁn,,_(cp)gln {Q(ai—kn)}
_ Zz(bl)n <b2)”<'6?1‘)(nS<)i2>(z;>'ﬁ;l(?gj;gn--.(cp)fﬁ {H(@—i—ai)}
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= Z{H(mai)} w,

i=1

4.2.5 Contiguous function relations

In parallel to the theory of contiguous functions of ,F,[z] [46, p.82], here the
functions that are contiguous to ,HP(/; z) are defined and obtain the relations
amongst them as follows. Put

ai, a2, ..., Qr; <

JHP = HP
# | by, by, ..., bs (c1, c2, ooy ¢y d);

and define the functions

HP(a4) = P ap, G, ..., Gi-1, a;+1, @i, .o, a0z 7
b1, ey oy by (c1, Coy vy Gpil)y

THE((IZ—) _ TH§ ay, G2, ..., -1, G — 17 Qig1y, - Q- Z 7
b1, ey oy by (c1, C, ooy i)y

and similarly, , H?(b;+), ,H?(b;—), »H?(cx+), and , H?(cy—) as the functions con-
tiguous to . HP(/; z).

Now using the symbols

p

A:ﬁai, B:ﬁbj, C’:H(ck)z, HY = igpnz
i=1 j=1 k=1 n=0

one finds at once that

ng)(az—i_) - ZO% Pn Zn7 er(az_) - Z(] a,ain 1 ¥n % 7

Hp b — S bj n Hp b o s bj4+n—1 n

r s(j+)_2b.+n Pn 2, r s(j_)—Z:O b—1 Pn 27,
s C C n In

TH?(Ck—i_) = Z_:O (c(kfr)n)[” (pn 7 TH ( ) z_: k:,: 1121 gpn z

By making use of these, the contiguous functions relations are obtained in
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Theorem 4.12. For j =2,3,...,s and R(¢) > 0 there hold the contiguous func-

tions relations:
(CLl — bj + 1) er = aq TH§<G1+) - (b] - 1) er(bj—). (413)

Whereas for ¢ € N U {0}, there hold the following extended contiguous function

relations.

a; er = a; TH?(CLZ—F)

A
B C < TH?—M

b= 1) B = (= 1) ) - o 2
» (a) + 1, Z
et ) 1@+ 0% (@ 4110 ] (4.15)

and

a; —£
HL ) (1—c)?
' 1M[b,c,c,...,c; (c:0);

aﬂ (1_26)4
b+ 1,¢,¢,...,¢; (c:0);

a—+1; —Z
+ab™' 1 H{,, (1=t ] (4.16)

b+1,¢,¢,...,¢; (c:¥0);

in which (a) + 1 stands for the array of the parameters: aq+1,as+1,... a,, + 1.

Proof. The function relations (4.13) may be obtained as follows. Choose the pa-

rameter a; from the set {a;;i = 1,2,...,r} of numerator parameters and consider
ay »HY (a1 +) — a; »HE (a;+),

where ¢ # 1. Then using the above definitions,

a; H?(a1+) — a; +HP(a;4+) = a4 Z a1a+n on 2" — ay Z ai;—n On 2"
1 i

n=0 n=0

[e.9]

= Z(al—i-n—ai—n) On 2"

n=0
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= (a1 — (li) ng (417)
Taking z% = 0, one gets
0, H = 0 Z(pn z”:Zn ©On 2" (4.18)
n=0 n=0
Hence
0+a;) H? = 0 ngn 2" 4, Zg@n 2"
n=0 n=0
“Na;+n n
- ainzzo a; Pn 2
a; er(ai+)v (419)
and

@+b;—1),H =0 Z(pnz"—l—(bj—l) Zcpnz”
n=0 n=0

o0

bj+mn—1 "
= (bj_l)Z]bT Pn 2
n=0 J
= (b —1) HI(bj—). (4.20)

From (4.17) and (4.19),
ar HY(a1+) — (0 +a;) HY = (a1 — ;) (HY,
that is

aq THf(a1+) —0 er = a rHsp (421)

On adding (4.20) and (4.21), one arrives at the required contiguous functions

relations:
(Gl — bj =+ 1) 7J—’[Sp = a3 er(al—i—) — (bj — 1) er(b]—)

If the parameter a; is replaced by a,, with m # i in (4.17) then (4.13) gives rise

to a set of contiguous functions relations:

am —b; +1) . H® = a,, ,H?(a,,+) — (b; — 1) ,H?(b;—).
J s s J s \Y2
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Now if £ € NU {0} then

[e.e]

0,.HY = ) ¢, 02"

n=0

Here by eliminating 6 from (4.19) and (4.22) gives the desired relation:

a; er = THf(aﬁ—)
A

(a) +1;
B C Z THS—M

On the other hand, the relation:

(bj = 1) HY = (bj—1) HY(bj—) —

0)+1,((e)+1)5 ((e)+1:0);

Qe
1
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is obtained by the eliminating 6 from (4.20) and (4.22).
To prove (4.16), let £ € NU {0} in

Then

0 1H11(C—>

Now, writing

this further gives

9 1H11<C—) =

Also

0.H =

_ i (a)n 2"
= B (c=1)5r (n—1)
_ i (a)n 2"
= (0)n (= 1) (c)iy (n = 1)
 ~a+n (a)n 2"
T b (b)n (c— 1)t ()it
B a+n (a)n 2" /(1— )
- (1—-¢) )= bt (b)n (o)) (0 n!
at+n a—b
b+n  b4n’
z a; o
(1 B )f e b7 yCyor iy G (C : 6)?
zla—0b) a; “ 5
4 H (=% | (4.23
bA =) T bt Lo (e:0); 2
(@)n 2"

n—1

_az > a—l—lnl z
b Z (b+ 1)1 (c+ 1), c(n—1)!

_ (a+1) 2
= ab
a ZHZ:O (b—|— ]-)n (C+ 1)%11—5—6 ctntln)

o0

n

_az (a+1), 2" /ct
- ¢ ¢ o gl
bet = (b+1), (c+ 1)) (c+1)5* nl
_ @ g atl;
bt I b+1,c+1,c+1,...,c+1;

(c+1:0);
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Hence
+ 1: T
0 H\(c—) = —= _ H! e 0" | (4.24
1Hi(e-) b(c— 1) b+1,¢,¢,...,¢; (c:d); (4.24)
Elimination of 6 ; H{ (c—) from (4.23) and (4.24) yields (4.16). O

Remark 4.13. By taking ¢ = 0 in (4.13), (4.14), (4.15) and (4.16), they reduce
to the contiguous function relations of hypergeometric function respectively which

are given below. For j =2,3,...,s,

(ar — b; + 1) Iy = @ qu(a1+) - (bj —-1) qu(bJ_)>

A
a; ply = a; plylait) — — z 1,

B (b) + 1;
A (a)+1; =z
(bj—l)qu = (bj_l)pF(I(bj_)_Ep q (b)+1, ]7
and
a: z a: a+1; z
FlY P l=g—aY),F ! +ab' | F ’
N ]( e Rt Sl ]

These are found to be true.

4.2.6 Eigen function property

The eigen function property of ¢-H function o HZ(¢ : z) obtained in Theorem 2.20

when extended in straight forward manner yields the eigen function property of the

generalized ¢-H function. For that the operator (2.17) must be put in generalized

form. This is given below.

Definition 4.14. Let f(2) = > a,2™, 0 # |z2] < R,R > 0, [,m,n € N, and
=0

a;, Bj, v € C with R(a;) > 0, and as before § = 2 %. Define the operator
Him (2)
() T3 m)J \#

- [{H]ai} 1 {H EA?WC} {H(Q + ﬂj — 1)} 9] f(z), (4.25)

k=1
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where
z

I(f(2)) = z_a/to‘_lf(t) dt (4.26)

0

and (A is as defined in (4.6).

This operator enables one to derive the eigen function property which is

proved in

Theorem 4.15. If z # 0, and R(a;) > 0,Yi =1,2,...,r, then the function

a1, Aag, ..., Qp; z

_ P
w= ,H
bi, by, ..., bs (c1, cay ..., ¢y d);

is an eigen function with respect to the operator (4 ,\H (b ) defined in (4.25).
That is, (an " (HE(GA2) = X HP(6;M2), A€ C. (4.27)

Note 4.16. Once again in view of the Lemma 4.11, the applicability of the operator

(aﬂ“)HEb to the generalized ¢-H function follows.

Proof. In (4.11) using the notation

(al)n (a2)n T (ar)n A"
(b1)n—1 (b2)n—1 -+ (bs)n1 ()i 3" ()7 - ()5 (= 1)V

B, =

one gets

@ ") (HP(6)z))
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r—1 00 B
_ n n—1
= {Zl_IlLl} ;—aern_lz :

Applying in this manner the operator /,, fori = 1,2,...,7—1, one finally obtains

) r —1
(avr)HEZZISJ)) (-HE(l;Nz) = Z {H(Gi +n— 1)} B, 2"t

n=1 \(i=1

00
— § ©n )\n+1 zn
n=0

= X, HP(6; \2).

4.3 Special cases

When the parameters a;’s; @ = 2,3,...7 and b;’s are all absent and a1 =¢; =/¢ =1
n (4.1), then

1; z 2, 2"
Hy | =1+) —.
' 0[—; (L:1); ] ;”1”

Thus,

Al ]
= (1:1);

gives the Sikemma’s function (1.8).

4.3.1 The (-H exponential function

In (4.1), if r = s,p = 1 with all a; = b; and ¢; = ¢, then

I

oH, [ _ - z ] _ Z@ (C)»Zn —. (4.28)

This defines the /-H exponential function as follows.

Definition 4.17. The ¢-H exponential function is denoted and defined by

W)= °H5[_f 10y ] -3 20
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for all z € C and R(¢) > 0.

Remark 4.18. Obviously, e%(z) = ¢* and €% (0) = 1.
Remark 4.19. The differential equation (4.7) when ¢ = 0, gets reduced to the

differential equation
(0 —2)w=0,
where w = e*.

In order to derive the eigen function property for the /-H exponential func-
tion, the operator defined in Definition 4.14 is particularized by removing all the

parameters a;’s and b;’s, and ¢;’s for k = 2,3,...,p and taking ¢; = 1.

Definition 4.20. Let f(z) = > a,2™, |2] < R, R > 0. Define the operator

n=0

DY (F(2)) = 271 A (0(£(2))), (4.30)

where z # 0,p € NU {0} and the operator ,Af is as defined in (2.7).

Remark 4.21. When the parameters a;’s; b;’s and ¢;’s; k = 2,3,...,p are absent
and ¢; = 1 then
pD](\Z) _ H(l:l)

where the operator H*V) is defined in Definition 4.14 as 2~! ,AY 6.
It can be noticed that if f(z) = Y a,2" and g(z) = > b,2", |2| < R then for
n=0 n=0
a,f €R
pDi7 (0f(2) + B9()) = a D (F(2) + 6,047 (9(2).  (431)

In view of Lemma 4.11, the operator ﬂ)](\j) is applicable to the ¢-H exponential
function, consequently leading to

Theorem 4.22. With ¢ € N U {0}, the (-H exponential function is the eigen
function of the operator ﬂ?g? as defined in (4.30), that is,

gDE\Z) (efy(X2)) = A efy(Az), A e C. (4.32)

Proof. From (4.30),

Dy (h(A2) = 27ty (Z <n$;+1 wz”))

n=0
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-1 - A" 0. n
= LG A
_ Z#((n—m)ﬁ gn (). (4.33)
Now

0)z = =(=(1""2),

d d d d
20,2 _ a a4 ay
(6)7=" = <Zdz dz dzzdz) ©

N

20 devaatives
- @)
and in general,
(0)"z" =nf2" n=1,2,...., (4.34)
hence using (4.34) in (4.33), one gets
(2) (¢ _ -1 = A" In n
Dif (ez(A2)) = = Z n"z

- Z (n — )nyn+i—¢ *

n=1
o /\n+1 on
= Aeh(h)
O
It is interesting to see that from (4.29), one further finds
N = (iz)"
eH(ZZ) - % (n!)fnﬂ
0o I _2n oo 2n+1 22n+1
= HZ:O (( 2£n+1 + n:O 2n + 2en+£+1
_ i <_1)n 2 4y Z 1) S2n+l )
N n—0 ((2n)1)2en+t (2n + 1)!)2nte+1 .

These infinite series are resembling with those of cosine and sine series. They are

further taken up in the next Subsection.
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4.3.2 The (-H trigonometric functions

The first and second series on the right hand side of (4.35), give rise to the extended

cosine and sine functions respectively which are denoted here by cosf(z) and

sinf;(2). In fact, for any z € C,

R(ely (i2))) = R <0Hg | ) = costy(2), (4.36)

and

S(el, (i2))) = S <0H3 - " ) = sin’y (2), (4.37)
whence one obtains from (4.35),

e (iz) = costy(2) 4 isiny (2). (4.38)

Remark 4.23. Tt is noteworthy that cos%(2) = cos z, and sin%(z) = sin z.

Further,

Lre o 0 LI~ ()" — (—i2)"
5 lew(iz) +ey(—iz)] = 5 [Z ot T2 et
2 2 | (nh)fmtt £ (nl)intt

iz (iz)?
-~ 9 1+ (1)e T (21)2+1 T

—iz (iz)?
1+ e+ e

RSN O
= 2 G

and

1 ) . 1 | 12)" 0 (—iz)"

n=0 n=0
1 . iz (i2)?
9 + (11)é+1 T (21)26+1 LR

(1)1 (2n)2e+1

L —iz (iz)? _]
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& (_1)n 2n+1
nzzo ((2n + 1)1)2tntt+1
= sin%(2).
Also, 1
cosiy(0) = 1 [e(0) + ey(0)] = 1.
sinfy(0) = o [eh(0) — € (0)] = 0

Remark 4.24. The operator (4.30) yields the identities:
1. gD](\Z)(COS%(Z)) = —sin%(2),

2. D\ (sin, (2)) = costy (2).

Just as the functions sin z and cos z are solutions of the equation %—1—3; =0,
the ¢-H sine and the ¢-H cosine functions are also solution of a differential equation.

This is shown in

Theorem 4.25. The (-H cosine and the (-H sine functions are solutions of the

differential equation
( D(z>>2 _
2247 v+v=0.
Proof. Tt may be noted from Theorem 4.22, that
(D3 (€l (i2)) = i(ely (i2)).
Hence,
) (s G E (L ( (2) (0l (7 ¢
(D7) (hiz)) = DG D) = D (e (i2)) = —€yi2).
Now in view of (4.38), this may be written as
D(z)Q(e C Y _ 1 P
/Dy ) (cosy(z) +ising(2)) = —(cosy(z) + ising(z)).

By making an appeal to the property (4.31) and comparing the real and imaginary

parts, one finds

( ﬂ)g\?f (cos;(2)) + costy(2) =0 and ( ﬂ?](\f[)>2 (sinf; (2)) + sin%; (2) = 0.



Chapter 4. The generalized (-Hypergeometric function 73

4.3.3 The (-H hyperbolic functions

Again splitting the series of the ¢-H exponential function (4.29) into even-odd

powers of z, it takes the form:

Z?’l

(n!)énJrl

NE

culz) =

Il
o

n
o 2n+1

2n + 1 2€n+€+1 '
=0

2n

(4.39)

I
Mg

( 2€n+1 +
n

I
o

n

If the first series (with even powers of z) on the right hand side is denoted by (cf.
[14])

= ! B : = COS 0 <z .
e<e2<z>>—s(oHo [ S D =coshiy(z)  (440)

which may be called the hyperbolic ¢-H cosine function and the second series (with

odd powers of z) on right hand side by (cf. [14])

O(e4y(2)) = O (Oﬂg [ : o © D — sinh’, (2) (4.41)
which may be termed as the hyperbolic ¢-H sine function, then from (4.39),

e%;(2) = cosh’; (2) 4 sinh%;(2). (4.42)
Remark 4.26. cosh?;(z) = cosh(z), and sinh () = sinh(z).

Also

= ( n=0
e
9 (1 T (2N
—z 22
+l+ (1) + (21)26+1 T
o0 on
= cosh%(2), (4.43)

and
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1., ' B 1 [ 2" - (=2)"
3 [er(2) —eu(=2)] = b [ZW_ZW]

n=0

L+ (1!>Z+1 + (2!)2@4—1 +.

—1- (L)t (2nze+t ]

o)
22n+1

— (<2n + 1)!)2€n+€+1

n
= sinhf;(2).
In particular,

coshf;(0) = = [ef(0) +€f;(0)] =1, sinhf, (0) =

N | —

In parallel to Theorem 4.25, the following is

Theorem 4.27. The hyperbolic {-H cosine and the hyperbolic (-H sine functions

are solutions of the differential equation
( D(Z)>2 v =0
2=47s 14 v .
Proof. One can see that from (4.43), (4.31) and (4.32),

(D) (cosily(2)) - costiy(2)
(o) (et (b))

2 2

[€41(2) + (=) — (=) — ()]

Likewise,

- (o) (em —Qefq(—z)) ) (@g@ _;g(_Z))
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Remark 4.28. The new functions (4.1) can evidently be considered as extensions
of the generalized hypergeometric function ,Fs., (see [18, Ch.4]), reduced to the
so-called hyper-Bessel functions (F}, if r = s;a; = b;, and being eigen functions of
the hyper-Bessel operators ([33, 36]) where p in the second index goes to infinity

together with the summation index n in the power series.

4.3.4 Graphs

Following are the graphs of particular ¢-H functions.

T
-80 -60 -40 -20 2
x

1009

1
100

r T
-100 -50

-50

-100 -

5
FIGURE 4.2: A: Graph of cos}{ (z) and B: Graph of sin}; ()
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807

60

v 4049

T T T T
-40 -20 0 20 40

1
FIGURE 4.3: A: Graph of cosh};(z) and B: Graph of sinh }; ()

4.3.5 [(-Analogues of Ramanujan’s theorem and Kummer’s

first formula

It is noteworthy that the generalized ¢-H-function provides f-extensions to
(i) the Ramanujan’s theorem [46, Ex.5, p.106]:

a; x a; —x a, b—a; =
VP VP ] = of3 ’ S ] o (4.44)
b; b; b, 3. 5+ 3
and (ii) the Kummer’s first formula [46, p.125]:
_, a; z b—a;, —=z
(& 1F1 b7 = 1F1 b7 . (445)
This is shown below.
Theorem 4.29. (¢-Analogue of Ramanujan’s Theorem)
If ¢ e NU {0} then
a x a —x
Hl ’ 1 )
[b (c: 0); ][b (c: 0 ]
2. b), (fr 7l
—n,a,1 —b—n, (1 —c—n)" —1)n=1(¢)t
_ (1-c—n) SIEIe
b,1 —a—n; (c,1—c—n:{);
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Proof. From the definition of the generalized /-function (4.1) and the formula:

= O_O - (CL n—k: z" (a)k (_1)k

: Z Z (O)nmrc ()5 (n =R () () K

_ — \ <—1)k a), (1—b—n)k (1—C—n)k In—tk
= Z (1—a—-n) (=1)kb), [ (=1)*(c)n ]

e (i @ (1= b= )y (1= e )t (O
2 Bk (1—a—mn OF (1= c—n)fF A

k=0
S
In
n=0 (b)n C)n 77/‘
n,a,1—b—mn,(1l—c—n)" 1)4=1 ()t
X 310 Hj ( ) (=1) ()
b1 —a—mn; (c,1—c—n:{l);
O

Remark 4.30. It may be seen that for £ = 0, Theorem 4.29 gets reduced to the

Ramanujan’s theorem (4.44). This may be verified as follows.

For ¢ = 0, from Remark 4.3, Theorem 4.29 takes the form

a; —x = (a), =" -n, a, 1—b—n;1
= F. .
b; ] 2 (b)n ! P77 [ b; ]

— l1—a—mn,

1F1

Replacing n by 2n, this becomes

a; —x N P —2n, a, 1—-b—2n;1
B U L |
b; ()2n (2n)! b;

— 1—a—2n,
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Then Theorem 1.9 together with the formula:
1
(@), = 27" <g> (OH_ ) ,neN aeC
2/n 2 ),
leads to
a; T a; —x = (a)y, 22 (20)! (@), (b—a),
- S~ @k 2 @0} (@ (= 0)
b; b; = (D) (20)! (a)2n (b)n 1
B i (a), (b—a), z*"
=2 (3), 5+3), On!
a, b—a; =
= 23 b b1 ]
bu 2y 92 + 2
Theorem 4.31. ((-Analogue of Kummer’s first formula)
If ¢t e NU{0} and z € C then
et (—2) 1 Hi “ ©
I e,
par (nl)tnt1
—n,—Mn,...,—n a; (1)f (=1)¥=1)
X ormH? oo ’ " . (4.46
T [ b; (¢, =n 1 0); (4.46)

where €% (z) is the (-H exponential function as defined in (4.29).

Proof. The left hand side

n

- - n—=k (a’)k <
= —1 —_—
2 & o o o R

i [CDE (=) 17 (a)y 2m
- [ ! } O (F

. (=)™ 2" . (_n)inﬂ n!* (a) Ink—tk
> 2 Cod o o e Y
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& (D G () (a) [ (—1)1 D]

= ; (n!)n+1 £t (— ) (b)x (C)Kk Ll

— S (=)™ 2" 9 |—ny —m, ..., N, a; (n!)f(—l)f("fl)
B ; (nl)fn+1 2+t b e —n: )

Remark 4.32. When ¢ = 0, Theorem 4.31 reduces to the Kummer’s first formula
(4.45). This can also be verified as follows.

From Remarks 4.18 and 4.3, (4.46) reduced to

n=0

Now the application of Gauss summation formula (stated in Chapter 1 as Theorem
1.8) yields

a; z | = (b—a), (—2)"
b; ] - nZ:O (0)n n!

4.4 Generalized Maclaurin’s Theorem

Let f be an n-times differentiable function at zg, then its Taylor series expansion

is given by [5] : N
flo) =S 2 oy, (1.47)

n!
n=0

where D" f is the usual n'® order derivative of f. At z, = 0, this expansion is well
known as Maclaurin’s expansion of f. Here a generalized ¢-H function analogue

of the Maclaurin’s expansion of f(z) = ,HP({: z) is proved as

Theorem 4.33. For the generalized {-H function,

o0 n

=3[ H(:2)] % (4.48)

n=0

d
here D = —
wnere dz
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Proof. From the definition of the generalized ¢-H function (4.1),

(ay,a9,...,a:), P

D(,.HP((:z2) = |
( ( )) 1 <b17b27 s 7bs)n (Cl,CQ, e 7Cp;Q)£Ln (n — 1)'

NE

3
Il

- (a'la az, ... 7ar>n+m 2"
D" (LHI(L: =) = =
nZ:O (b1, b, - - by )nim (1,2, .., Cpyq)intlm nl
and
(ala az, ... )a”l‘)m
D™( HY(l:2))]._, = :
[ ( ( >)] =0 (b17b27“'7bs)m (017627"‘JCP;Q)£)7171
Hence,
Z [‘Dn T‘Hg(g : Z)]z:O _|
n=0
_ i (CLl,CLQ,...,CLT)n ﬁ
= (b1, ba, ..., bs)y (c1, 025, Cp; q)r n!
= LHI((:z).

Remark 4.34. When ¢ = 0, (4.48) reduces to the form

n

=30 R

T
0 n:
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