
Chapter 6

The `-H Bessel function

6.1 Introduction

In this chapter, the classical Bessel function (1.9)

Jn(z) =
∞∑
k=0

(−1)k zn+2k

2n+2k k! Γ(1 + n+ k)
, (n non negative integer)

is extended by means of `-Hypergeometric function introduced in Chapter 4. In

other words, besides the particular cases namely the `-H exponential, trigonomet-

ric and hyperbolic functions, one more special case: the Bessel function Jn(z)

is now considered with similar objective of examining `-extensions to its certain

properties. As the main results, the differential equation, the generating function

relation, and Contour integral representations including Schläfli’s integral ana-

logue are derived. With the aid of these, other results including some inequalities

are also obtained. Thus the properties 1. to 18. as stated in Subsection 1.3.4 of

Chapter 1, will be extended here.

It is worth mentioning that the proposed extension of Jn(z) is suggested by the

Laurent series expansion of the product of two `-H exponential functions (4.29).

The `-H trigonometric functions (Subsection 4.3.2) then give rise to `-analogues of

certain properties of the Bessel function occurring in the literature hitherto (e.g.

[59]).

In doing the `-extension, the binomial coefficient also needs to be extended which

consequently extends the binomial theorem.

Before all this done, the following definition and results of Chapter 4 ((6.1) to

(6.7)) are required to be rementioned.
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(i) The `-H exponential function is denoted and defined by

e`H(z) = H

[
−; z

−; (1 : `);

]
=
∞∑
n=0

zn

(n!)`n+1
(6.1)

for all z ∈ C and <(`) ≥ 0. By replacing z by iz in (6.1), one finds the `-H

trigonometric functions (4.36) and (4.37) of Chapter 4. That is,

(ii) e`H(iz) =
∞∑
n=0

(−1)n z2n

((2n)!)2`n+1
+ i

∞∑
n=0

(−1)n z2n+1

((2n+ 1)!)2`n+`+1
, (6.2)

(iii) e`H(iz) = cos`H(z) + i sin`H(z). (6.3)

Here

(iv) cos`H(−z) = cos`H(z), and sin`H(−z) = − sin`H(z), (6.4)

(v) cos0
H(z) = cos z, and sin0

H(z) = sin z, (6.5)

and

(vi)
1

2

[
e`H(iz) + e`H(−iz)

]
= cos`H(z), (6.6)

(vii)
1

2i

[
e`H(iz)− e`H(−iz)

]
= sin`H(z). (6.7)

The binomial coefficient and thereby binomial theorem may put into the following

extended forms.

Definition 6.1. For 0 ≤ k ≤ n, the `-binomial coefficient may be denoted and

defined by (
n

k

)(`)

=
(n!)`n+1

((n− k)!)`n−`k+1 (k!)`k+1
.

For z1, z2 ∈ C, denoting by (z1 + z2)n(`), the `-analogue of (z1 + z2)n, the binomial

theorem admits the extension in the form:

(z1 + z2)n(`) =
n∑
k=0

(
n

k

)(`)

zn−k1 zk2 . (6.8)

Remark 6.2. For ` = 0, the `-binomial coefficient and the theorem reduce to the

usual binomial coefficient and theorem respectively.

In the light of the expansion (6.8), the `-analogue of the identity:

e(z1+z2) = ez1 ez2
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assumes the form which is given in

Lemma 6.3. For the `-H exponential function (6.1), there holds the identity:

e`H(z1 + z2) = e`H(z1) e`H(z2). (6.9)

Proof. From (6.1),

e`H(z1 + z2) =
∞∑
n=0

(z1 + z2)n(`)
(n!)`n+1

. (6.10)

In view of (6.8),

e`H(z1 + z2) =
∞∑
n=0

1

(n!)`n+1

n∑
k=0

(n!)`n+1

((n− k)!)`n−`k+1 (k!)`k+1
zn−k1 zk2

=
∞∑
n=0

n∑
k=0

zn−k1 zk2
((n− k)!)`n−`k+1 (k!)`k+1

=
∞∑
n=0

zn1
(n!)`n+1

∞∑
k=0

zk2
(k!)`k+1

= e`H(z1) e`H(z2).

Remark 6.4. Since e`H(0) = 1, it follows from (6.9) with z2 = −z1 that

e`H(z1) e`H(−z1) = e`H(z1 − z1) = e`H(0) = 1. (6.11)

With these prerequisites, the `-extension of the Bessel function is defined as follows.

Definition 6.5. Let <(`) ≥ 0 and n ∈ N∪{0}, then a new class of Bessel functions

is denoted and defined by

J `n,H(z) =
∞∑
k=0

(−1)k (z/2)n+2k

(k!)`k+1 ((n+ k)!)`n+`k+1
. (6.12)

This function will be referred to here as the `-H Bessel function or briefly, the

`-HBF.

Remark 6.6. For ` = 0, the `-HBF (6.12) reduces to

J0
n,H(z) =

∞∑
k=0

(−1)k (z/2)n+2k

k! (n+ k)!
= Jn(z). (6.13)
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Remark 6.7. For ` ∈ N ∪ {0}, the `-HBF (6.12) can be expressed as generalized

`-H function ((4.1))

J `n,H(z) =

(
z
2

)n
(n!)`n+1 0H

2
`n+1

[
−; −z2

4(n!)`

n+ 1, n+ 1, . . . , n+ 1; (n+ 1, 1 : `);

]
. (6.14)

The series in (6.12) is indeed seen to be convergent yet the following theorem

assures it.

Theorem 6.8. If <(`) ≥ 0 and <(2`n + ` + 2) > 0 then the `-HBF is an entire

function of z.

Proof. Consider

J `n,H(z) =
∞∑
k=0

(−1)k (z/2)n+2k

(k!)`k+1 ((n+ k)!)`n+`k+1
=
∞∑
k=0

ϕn,k z
n+2k

where

ϕn,k =
(−1)k

(k!)`k+1 ((n+ k)!)`n+`k+1 4k
.

Applying here the Stirling’s formula [18]:

Γ(α + k) ∼
√

2π e−(α+k) (α + k)(α+k−1/2)

for large k and taking α = 1, n+ 1 in turn, one gets

|ϕn,k|
1
k =

∣∣∣∣ 1

Γ`k+1(k + 1) Γ`n+`k+1(n+ k + 1) 4k

∣∣∣∣ 1k

∼ 1

4

∣∣∣√2π e−(k+1) (k + 1)k+1− 1
2

∣∣∣− 1
k
−<(`)

∣∣∣√2π e−(n+k+1) (n+ k + 1)n+k+1− 1
2

∣∣∣<( `nk +`+ 1
k)
.

Hence from the Cauchy-Hadamard formula,

1

R
= lim

k→∞
sup k

√
|ϕn,k|

=
1

4 (2π)<(`)
lim
k→∞

sup

∣∣e2`n+2`+2
∣∣

|e`n+2` k2`n+`+2|

∣∣∣ e
k

∣∣∣2k<(`)

=
e2

4

∣∣∣∣ en2π

∣∣∣∣<(`)

lim
k→∞

sup
1

k2`n+`+2

∣∣∣ e
k

∣∣∣2k<(`)

= 0,
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provided <(`) ≥ 0 and <(2`n+ `+ 2) > 0.

6.2 Main results

In order to derive further `-analogues of certain properties of the Bessel function,

it is required to obtain the `-analogue of the relation: J−n(z) = (−1)nJn(z) when

n is a negative integer [59, Ch. 2, p.15]. This is considered in

Lemma 6.9. For a negative integer n and <(`) ≥ 0,

(−1)n J `n,H(z) = J `−n,H(z). (6.15)

Proof. Here

(−1)n J `n,H(z) = (−1)n
∞∑
s=0

(−1)s (z/2)n+2s

(s!)`s+1 ((n+ s)!)`n+`s+1

=
∞∑
s=0

(−1)s+n (z/2)2s+2n−n

(s!)`s+1 ((s+ n)!)`s+`n+1
,

Taking s+ n = k, this takes the form:

(−1)n J `n,H(z) =
∞∑
k=n

(−1)k (z/2)2k−n

(k!)`k+1 ((k − n)!)`k−`n+1

= J `−n,H(z).

For the `-HBF, the generating function relation (GFR) will now be derived and

then the differential equation and the integral representations.

6.2.1 Generating function relation

The derivation of the GFR of the `-HBF uses the known finite summation formula

[46, Lemma 12, p.112] which is outlined here as

Lemma 6.10. For n ≥ 1,

n∑
k=0

A(k, n) =

[n2 ]∑
k=0

A(n− k, n) +

[n−1
2 ]∑

k=0

A(k, n). (6.16)
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Proof. First note that for n ≥ 1,

n = 1 +
[n

2

]
+

[
(n− 1)

2

]
,

in which [∗] is the usual greatest integer symbol then

n∑
k=0

A(k, n) =

[n2 ]∑
k=0

A(k, n) +

1+[n2 ]+[ (n−1)
2 ]∑

k=0

A(k, n). (6.17)

Now replacing k by n−k that is, k by 1 +
[
n
2

]
+
[

(n−1)
2

]
−k in the last summation

on the right hand side in (6.17), leads to (6.16).

By making use of this summation formula, an `-extension of the GFR:

exp
(z

2

(
t− t−1

))
=

∞∑
n=−∞

Jn(z) tn

is derived in

Theorem 6.11. For t 6= 0 and for all finite |z|,

∞∑
n=−∞

J `n,H(z) tn = e`H

(z
2

(
t− t−1

))
, (6.18)

where e`H(z) is as defined in (6.1).

Proof. The left hand side is

∞∑
n=−∞

J `n,H(z) tn =
−1∑

n=−∞

J `n,H(z) tn +
∞∑
n=0

J `n,H(z) tn

=
∞∑
n=0

J `−n−1,H(z) t−n−1 +
∞∑
n=0

J `n,H(z) tn.

In view of Lemma 6.9 and defining series (6.12), this further becomes

∞∑
n=−∞

J `n,H(z) tn

=
∞∑
n=0

(−1)n+1 J `n+1,H(z) t−n−1 +
∞∑
n=0

J `n,H(z) tn
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=
∞∑

n,k=0

(−1)n+k+1 (z/2)n+2k+1 t−n−1

(k!)`k+1 ((n+ k + 1)!)`n+`k+`+1
+

∞∑
n,k=0

(−1)k (z/2)n+2k tn

(k!)`k+1 ((n+ k)!)`n+`k+1

=
∞∑
n=0

[n2 ]∑
k=0

(−1)n−2k+k+1 (z/2)n−2k+2k+1 t−n+2k−1

(k!)`k+1 ((n− 2k + k + 1)!)`n−2`k+`k+`+1

+
∞∑
n=0

[n2 ]∑
k=0

(−1)k (z/2)n−2k+2k tn−2k

(k!)`k+1 ((n− 2k + k)!)`n−2`k+`k+1

=
∞∑
n=0

[n−1
2 ]∑

k=0

(−1)n−k (z/2)n t−n+2k

(k!)`k+1 ((n− k)!)`n−`k+1
+ 1

+
∞∑
n=1

[n2 ]∑
k=0

(−1)k (z/2)n tn−k−k

(k!)`k+1 ((n− k)!)`n−`k+1

= 1 +
∞∑
n=1

[ [n−1
2 ]∑

k=0

(−1)n−k (z/2)n t−n+2k

(k!)`k+1 ((n− k)!)`n−`k+1
+

[n2 ]∑
k=0

(−1)k (z/2)n tn−k−k

(k!)`k+1 ((n− k)!)`n−`k+1

]
.

Finally, from the result stated in Lemma 6.10, one obtains

∞∑
n=−∞

J `n,H(z) tn = 1 +
∞∑
n=1

n∑
k=0

(−1)k (z/2)n tn−2k

(k!)`k+1 ((n− k)!)`n−`k+1

=
∞∑
n=0

∞∑
k=0

(−1)k (z/2)n+k tn−k

(k!)`k+1 (n!)`n+1

=
∞∑
n=0

(z/2)n tn

(n!)`n+1

∞∑
k=0

(−1)k (z/2)k t−k

(k!)`k+1

= e`H

(
zt

2

)
e`H

(
−z
2t

)
.

Thus, the GFR follows from Lemma 6.3.

Remark 6.12. The special case ` = 0 provides the GFR of Jn(z).

6.2.2 Differential equation

The differential equation of the `-HBF is obtained by means of the infinite order

hyper-Bessel type differential operator which is already defined in Chapter 4. This

is restated here.
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Let f(z) =
∞∑
n=1

anz
n, 0 6= z ∈ C, p ∈ N ∪ {0} and α ∈ C. Define

p∆
θ
α(f(z)) =


∞∑
n=1

an(α)pn−1(θ + α− 1)pnzn, if p ∈ N

f(z), if p = 0
, (6.19)

where θ is the Euler differential operator z d
dz

and

(θ + α)r = (θ + α)(θ + α) . . . (θ + α)︸ ︷︷ ︸
r times

is a special case of the hyper-Bessel differential operators (2.8).

Also, the following operators will be needed.

Definition 6.13. For f(z) =
∞∑
k=0

ak z
αk, α ∈ R, define the lowering operator:

Oα−f(z) =
∞∑
k=0

ak z
(α−1)k, (6.20)

the raising operator:

Oα+f(z) =
∞∑
k=0

ak z
(α+1)k (6.21)

and as suggested by (6.19), the operator:

`ΛM(f(z)) = `∆
θ
1 (θ(f(z))). (6.22)

These operators combination will be symbolized as follows.

`Ω
(z)
n ≡

(
O1+ `ΛMz

−n
`ΛMO2−

)
. (6.23)

With these, the differential equation of the `-HBF is derived in

Theorem 6.14. For `, n ∈ N ∪ {0} and z 6= 0, then the function w = J `n,H(z)

satisfies the differential equation[
`Ω

(z)
n +

z−n+2

4

]
w = 0, (6.24)

where `Ω
(z)
n is as defined in (6.23).
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Proof. Here

`Ω
(z)
n J `n,H(z)

=
(
O1+ `ΛMz

−n
`ΛMO2−

)( ∞∑
k=0

(−1)k (z/2)n+2k

(k!)`k+1 ((n+ k)!)`n+`k+1

)

= O1+ `ΛMz
−n

`ΛM

(
∞∑
k=0

(−1)k zn+k

2n+2k (k!)`k+1 ((n+ k)!)`n+`k+1

)

= O1+ `ΛMz
−n

`∆M

(
∞∑
k=0

(−1)k zn+k

2n+2k (k!)`k+1 ((n+ k)!)`n+`k (n+ k − 1)!

)

= O1+ `ΛMz
−n

(
∞∑
k=0

(−1)k (1)`n+k−1 θ
`n+`k zn+k

2n+2k (k!)`k+1 ((n+ k)!)`n+`k (n+ k − 1)!

)
.

Since θ`n+`k zn+k = (n+ k)`n+`k zn+k (cf. (4.34)),

`Ω
(z)
n J `n,H(z)

= O1+ `ΛMz
−n

(
∞∑
k=0

(−1)k zn+k

2n+2k (k!)`k+1 ((n+ k − 1)!)`n+`k−`+1

)

= O1+ `ΛM

(
∞∑
k=0

(−1)k zk

2n+2k (k!)`k+1 ((n+ k − 1)!)`n+`k−`+1

)

= O1+ `∆M

(
∞∑
k=1

(−1)k zk

2n+2k (k!)`k (k − 1)! ((n+ k − 1)!)`n+`k−`+1

)

= O1+

(
∞∑
k=1

(−1)k (1)`k−1 θ
`k zk

2n+2k (k!)`k (k − 1)! ((n+ k − 1)!)`n+`k−`+1

)

= O1+

(
∞∑
k=1

(−1)k zk

2n+2k ((k − 1)!)`k−`+1 ((n+ k − 1)!)`n+`k−`+1

)

=
∞∑
k=1

(−1)k z2k

2n+2k ((k − 1)!)`k−`+1 ((n+ k − 1)!)`n+`k−`+1

=
∞∑
k=0

(−1)k+1 z2k+2

2n+2k+2 (k!)`k+1 ((n+ k)!)`n+`k+1

= −z
−n+2

4
J `n,H(z).

Remark 6.15. The zero order `-HBF, that is w = J `0,H(z) satisfies the differential

equation: [
`Ω

(z)
0 +

z

4

]
w = 0,
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where `Ω
(z)
0 = O1+ `Λ

2
M O2−.

6.2.3 The `-HBF integral

By using the `-trigonometric functions (6.3), the `-analogue of the Bessel’s integral

[46, Theorem 40, p.114] is obtained in

Theorem 6.16. For n ∈ Z,

J `n,H(z) =
1

π

π∫
0

[
cosnθ cos`H(z sin θ) + sinnθ sin`H(z sin θ)

]
dθ. (6.25)

Proof. The generating function relation of the `-HBF (6.18) if regarded as the

Laurent series expansion of the function e`H
(
z
2
(t− t−1)

)
; valid near the essential

singularity t = 0 then the coefficient

J `n,H(z) =
1

2πi

∫ (0+)

u−n−1 e`H

(z
2

(u− u−1)
)

du (6.26)

in which the contour (0+) is a simple closed path encircling the origin u = 0 once

in the positive direction.

In (6.26), choosing the particular path

u = eiθ = cos θ + i sin θ,

where θ runs from −π to π, then u−1 = cos θ − i sin θ and (6.26) yields

J `n,H(z) =
1

2πi

π∫
−π

e(−n−1)iθ e`H

(z
2

(cos θ + i sin θ − cos θ + i sin θ)
)
ieiθdθ

=
1

2πi

π∫
−π

e(−n−1)iθ e`H

(z
2

(2i sin θ)
)
ieiθdθ (6.27)

=
1

2π

π∫
−π

(cosnθ − i sinnθ)
[
cos`H(z sin θ) + i sin`H(z sin θ)

]
dθ

=
1

2π

π∫
−π

cosnθ cos`H(z sin θ) dθ +
1

2π

π∫
−π

sin nθ sin`H(z sin θ) dθ

− i

2π

 π∫
−π

sinnθ cos`H(z sin θ) dθ −
π∫

−π

cos nθ sin`H(z sin θ) dθ


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= I1 + I2 + I3 + I4 (say).

Here the integrands in I1 and I2 are even functions of θ. But the integrands in I3

and I4 are odd functions of θ, by (6.4), hence I3 = I4 = 0.

Remark 6.17. When `=0, then in view of (6.5) and (6.14), (6.25) reduces to the

Bessel’s integral [46, Theorem 40, p.114]:

Jn(z) =
1

π

π∫
0

cos (nθ − z sin θ) dθ,

for integral n.

6.2.4 Schläfli’s Integral analogue

Here the integral of Theorem 6.16 is modified so as to include the non integral

values of n. For non integral n, the `-HBF takes the form:

J `n,H(z) =
∞∑
k=0

(−1)k (z/2)n+2k

(k!)`k+1 Γ`n+`k+1(n+ k + 1)
. (6.28)

Theorem 6.18. If <(z) > 0, then for any n,

J `n,H(z) =
1

π

{ π∫
0

cosnθ cos`H(z sin θ) + sinnθ sin`H(z sin θ)dθ

−sinnπ

π

∞∫
0

e−nθ e`H (−z sinh θ) dθ

}
. (6.29)

Proof. The integral in (6.26) is

J `n,H(z) =
1

2πi

∫ (0+)

u−n−1 e`H

(z
2

(u− u−1)
)

du.

Now the branch

u−n−1 e`H

(z
2

(u− u−1)
)

(|u| > 0, −π < arg u < π)

when integrated with branch cut arg u = π around the contour C which is traced

out by a point moving (i) along the lower edge of the cut from −∞ to −1, then

(ii) around the circle |u| = 1 in positive direction and finally (iii) along the upper
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edge of the cut from −1 to −∞ (as shown in the figure),

-1-∞ .
O

C

then for <(z) > 0, one gets

J `n,H(z) =
1

2πi

∫
C

u−n−1 e`H

(z
2

(u− u−1)
)

du

=
1

2πi


−1∫
−∞

+

∫
|u|=1

+

−∞∫
−1

u−n−1 e`H

(z
2

(u− u−1)
)

du.

Writing u = e∓iπ t in the first and third integrals respectively and u = eiθ,−π <
θ < π in the second, one further gets

J `n,H(z) =
1

2πi

π∫
−π

e(−n−1)iθ e`H

(z
2

(cos θ + i sin θ − cos θ + i sin θ)
)
ieiθdθ

− 1

2πi

1∫
∞

e(−n−1)(−iπ)t−n−1 e`H

(
z

2

(
e−iπt− eiπ

t

))
dt

− 1

2πi

∞∫
1

e(−n−1)(iπ)t−n−1 e`H

(
z

2

(
eiπt− e−iπ

t

))
dt

=
1

2π

π∫
−π

e−inθe`H(iz sin θ)dθ

+

∞∫
1

t−n−1 e`H

(z
2

(
−t+ t−1

)) [e(n+1)πi − e−(n+1)πi

2πi

]
dt

=
1

2π

π∫
−π

e−inθe`H(iz sin θ)dθ

+
sin(n+ 1)π

π

∞∫
1

t−n−1 e`H

(z
2

(
t−1 − t

))
dt.
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Now evaluating the first integral by following the procedure of obtaining (6.25)

from (6.27), and evaluating the second integral by putting t = eθ, one finally finds

J `n,H(z) =
1

π

π∫
0

[cosnθ cos`H(z sin θ) + sinnθ sin`H(z sin θ)] dθ

+
sin(n+ 1)π

π

∞∫
0

e−nθ e`H

(z
2

(
e−θ − eθ

))
dθ

=
1

π

π∫
0

[cosnθ cos`H(z sin θ) + sinnθ sin`H(z sin θ)] dθ

−sinnπ

π

∞∫
0

e−nθ e`H (−z sinh θ) dθ.

Remark 6.19. (1) The integral (6.29) may be termed as the `-Schläfli’s integral.

If ` = 0 then (6.29) yields the Schläfli’s integral for Bessel function Jn(z) given by

[60, Sec.17.231, p.362]

Jn(z) =
1

π

π∫
0

cosn(θ − z sin θ) dθ − sinnπ

π

∞∫
0

e−nθ−z sinh θdθ.

(2) If n is an integer, then the integral (6.29) reduces to the `-HBF integral (6.25).

6.3 Other properties

In this section, a differential recurrence relation is derived and then with the help

of the GFR and the `-HBF integral representation, some other properties will be

deduced.

6.3.1 Differential recurrence relation

Let `∆
θ
1 be as defined in (6.19). Then by using the operator defined in (4.30):

`D(z)
M (f(z)) =

(
z−1

`∆
θ
1 θ
)

(f(z)) or
(
≡ `∆

Dz
1 θ(f(z))

)
, (6.30)

the differential recurrence relation is derived in
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Theorem 6.20. For ` ∈ N ∪ {0},

2 `D(z)
M J `n,H(z) = J `n−1,H(z)− J `n+1,H(z). (6.31)

The theorem is proved by using the following lemma which describes the eigen

function property of `-exponential function.

Lemma 6.21. The `-exponential function e`H
(
z
2

(t− t−1)
)

with t fixed, is an eigen

function with respect to the operator `D(z)
M as defined in (6.30). That is,

`D(z)
M

[
e`H

(z
2

(
t− t−1

))]
=

1

2

(
t− t−1

)
e`H

(z
2

(
t− t−1

))
(6.32)

for fixed t.

Proof. The left hand side is

`D(z)
M

[
e`H

(z
2

(
t− t−1

))]
= `∆

Dz
1

(
θ
∞∑
n=0

(t− t−1)
n
zn

2n (n!)`n+1

)

= `∆
Dz
1

(
∞∑
n=1

(t− t−1)
n
zn

2n (n!)`n (n− 1)!

)

=
∞∑
n=1

(t− t−1)
n

(1)`n−1 (Dz)n zn

2n (n!)`n (n− 1)!
.

Now from (4.34)

(Dz)
`n zn =

d

dz
z
d

dz
. . .

d

dz
z
d

dz︸ ︷︷ ︸
`n derivatives

zn = n`n zn−1,

one gets

`D(z)
M

[
e`H

(z
2

(
t− t−1

))]
=

∞∑
n=1

(t− t−1)
n

(1)`n−1 n
`n zn−1

2n (n!)`n (n− 1)!

=
∞∑
n=1

(t− t−1)
n
zn−1

2n ((n− 1)!)`n−`+1

=
1

2

(
t− t−1

)
e`H

(z
2

(
t− t−1

))
.
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Proof. (of Theorem 6.20)

From Theorem 6.11,

e`H

(z
2

(
t− t−1

))
=

∞∑
n=−∞

J `n,H(z) tn.

Applying the operator `D(z)
M both the sides, one obtains

`D(z)
M

[
e`H

(z
2

(
t− t−1

))]
=

∞∑
n=−∞

`D(z)
M

(
J `n,H(z)

)
tn.

In view of Lemma 6.21, this changes to

1

2

(
t− t−1

)
e`H

(z
2

(
t− t−1

))
=

∞∑
n=−∞

`D(z)
M

(
J `n,H(z)

)
tn.

Once again using Theorem 6.11,

∞∑
n=−∞

`D(z)
M

(
J `n,H(z)

)
tn

=
t

2

∞∑
n=−∞

J `n,H(z) tn +

(
−1

2t

) ∞∑
n=−∞

J `n,H(z) tn

=
1

2

∞∑
n=−∞

J `n,H(z) tn+1 − 1

2

∞∑
n=−∞

J `n,H(z) tn−1

=
1

2

∞∑
n=−∞

J `n−1,H(z) tn − 1

2

∞∑
n=−∞

J `n+1,H(z) tn.

On comparing the coefficients of tn both sides, (6.31) follows.

The iteration of the relation (6.31) yields the following general formula.

Theorem 6.22. If n ∈ N∪{0} and k ∈ N then (cf. [46, Ex. 7, p.121] with ` = 0)

2k
(

`D(z)
M

)k
J `n,H(z) =

k∑
m=0

(−1)k−m
(
k

m

)
J `n+k−2m,H(z). (6.33)

Proof. For k = 1, Theorem holds true from Theorem 6.20. That is,

2 `D(z)
M J `n,H(z) = J `n−1,H(z)− J `n+1,H(z).
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Here, applying the operator 2 `D(z)
M both the sides and then making use of Theorem

6.20, one obtains

22
(
`D(z)

M

)2

J `n,H(z) = 2 `D(z)
M J `n−1,H(z)− 2 `D(z)

M J `n+1,H(z)

= J `n−2,H(z)− 2J `n,H(z) + J `n+2,H(z)

=
2∑

m=0

(−1)2−m
(

2

m

)
J `n+2−2m,H(z). (6.34)

Similarly,

23
(
`D(z)

M

)3

J `n,H(z)

= 2 `D(z)
M J `n−2,H(z)− 2 `D(z)

M

[
2J `n,H(z)

]
+ 2 `D(z)

M J `n+2,H(z)

= J `n−3,H(z)− 3J `n−1,H(z) + 3J `n+1,H(z)− J `n+3,H(z)

=
3∑

m=0

(−1)3−m
(

3

m

)
J `n+3−2m,H(z).

The recursive procedure k-times, leads to the theorem.

Alternatively, this theorem can also be proved by using the principle of mathe-

matical induction on k as follows.

Proof. (of Theorem 6.22 by the principle of Mathematical induction)

For k = 1, it is true from Theorem 6.20. Now suppose that the theorem holds for

k =some positive integer r. That is,

2r
(
`D(z)

M

)r
J `n,H(z) =

r∑
m=0

(−1)r−m
(
r

m

)
J `n+r−2m,H(z). (6.35)

Then to prove that for k = r + 1, the theorem holds true. In fact, from Theorem

6.20,

2r+1
(
`D(z)

M

)r+1

J `n,H(z)

= 2 `D(z)
M

(
2r
(
`D(z)

M

)r
J `n,H(z)

)
= 2 `D(z)

M

(
r∑

m=0

(−1)r−m
(
r

m

)
J `n+r−2m,H(z)

)
= 2 `D(z)

M

[
(−1)rJ `n+r,H(z) + r(−1)r−1 J `n+r−2,H(z) + . . .+ J `n−r,H(z)

]
= (−1)r

[
J `n−1+r,H(z)− J `n+1+r,H(z)

]
+ r(−1)r−1

[
J `n−3+r,H(z)− J `n−1+r,H(z)

]
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+ . . .+
[
J `n−1−r,H(z)− J `n+1−r,H(z)

]
= (−1)r+1J `n+1+r,H(z) + (−1)r(r + 1)J `n−1+r,H(z) + . . .+ J `n−1−r,H(z)

=
r+1∑
m=0

(−1)r+1−m
(
r + 1

m

)
J `n+r+1−2m,H(z).

In the following two theorems, the properties involving series and definite integrals

are extended.

Theorem 6.23. For an integer n, (cf. [46, Ex.2, p.120])

cos`H(z) = J `0,H(z) + 2
∞∑
n=1

(−1)n J `2n,H(z) (6.36)

sin`H(z) = 2
∞∑
n=0

(−1)n J `2n+1,H(z). (6.37)

Proof. From the GFR of the `-HBF (6.18) and the identity (6.15),

e`H

(z
2

(
t− t−1

))
=

∞∑
n=−∞

J `n,H(z) tn

= J `0,H(z) +
∞∑
n=1

J `n,H(z) tn +
∞∑
n=1

J `−n,H(z) t−n

= J `0,H(z) +
∞∑
n=1

J `n,H(z) [tn + (−1)n t−n]. (6.38)

Taking t = i, one gets

e`H(iz) = J `0,H(z) +
∞∑
n=1

J `n,H(z) [in + (−1)n i−n]

= J `0,H(z) +
∞∑
n=1

J `2n,H(z) [i2n + (−1)2n i−2n]

+
∞∑
n=0

J `2n+1,H(z) [i2n+1 + (−1)2n+1 i−(2n+1)].

In view of (6.3), this gives

cos`H(z) + i sin`H(z) = J `0,H(z) + 2
∞∑
n=1

(−1)n J `2n,H(z) + 2i
∞∑
n=0

(−1)n J `2n+1,H(z).
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On comparing the real and imaginary parts, the required result is obtained.

Theorem 6.24. For n ∈ Z, there hold (cf. [46, Ex.3, p.120]):

[1 + (−1)n] J `n,H(z) =
2

π

π∫
0

cosnθ cos`H(z sin θ)dθ, (6.39)

[1− (−1)n] J `n,H(z) =
2

π

π∫
0

sinnθ sin`H(z sin θ)dθ. (6.40)

Further,

J `2n,H(z) =
1

π

π∫
0

cos 2nθ cos`H(z sin θ)dθ, (6.41)

J `2n+1,H(z) =
1

π

π∫
0

sin(2n+ 1)θ sin`H(z sin θ)dθ (6.42)

and

π∫
0

cos(2n+ 1)θ cos`H(z sin θ)dθ = 0, (6.43)

π∫
0

sin 2nθ sin`H(z sin θ)dθ = 0. (6.44)

Proof. From the `-HBF integral considered in Theorem 6.16, it follows that

J `n,H(z) =
1

π

π∫
0

[
cosnθ cos`H(z sin θ) + sinnθ sin`H(z sin θ)

]
dθ (6.45)

hence,

J `−n,H(z) =
1

π

π∫
0

[
cos(−nθ) cos`H(z sin θ) + sin(−nθ) sin`H(z sin θ)

]
dθ,

that is,

(−1)n J `n,H(z) =
1

π

π∫
0

[
cosnθ cos`H(z sin θ)− sinnθ sin`H(z sin θ)

]
dθ. (6.46)
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Here adding (or subtracting) (6.45) and (6.46) one obtains (6.39) (or (6.40)).

By considering the even (or odd) order `-HBF in (6.39) (or (6.40)) yields (6.41)

(or (6.42)), whereas considering odd (or even) order `-HBF in (6.39) (or (6.40)),

one obtains the formula (6.43) (or (6.44)).

6.3.2 `-Analogue of Jacobi’s expansion

In the following theorem, the Jacobi’s expansion in series of Bessel coefficients for

n ∈ Z ([46, Ex.3, p.120], [59, Sec. 2.22, p.22]), given by

exp(z sin θ) = J0(z) + 2
∞∑
n=1

J2n(z) cos 2nθ + 2i
∞∑
n=0

J2n+1(z) sin(2n+ 1)θ

is extended.

Theorem 6.25. For n ∈ Z,

e`H(z sin`H θ) = J `0,H(z)+2
∞∑
n=1

J `2n,H(z) cos`H 2nθ+2i
∞∑
n=0

J `2n+1,H(z) sin`H(2n+1)θ.

That is,

cos`H(z sin`H θ) = J `0,H(z) + 2
∞∑
n=1

J `2n,H(z) cos`H 2nθ, (6.47)

sin`H(z sin`H θ) = 2
∞∑
n=0

J `2n+1,H(z) sin`H(2n+ 1)θ. (6.48)

Proof. In (6.38), substituting t = e`H(iθ) the `-H exponential function, it gives

e`H

(z
2

(
e`H(iθ)− e`H(−iθ)

))
= J `0,H(z) +

∞∑
n=1

J `n,H(z) [e`H(inθ) + (−1)n e`H(−inθ)]

= J `0,H(z) +
∞∑
n=1

J `2n,H(z) [e`H(2inθ) + (−1)2n e`H(−2inθ)]

+
∞∑
n=0

J `2n+1,H(z) [e`H((2n+ 1)iθ) + (−1)2n+1 e`H(−(2n+ 1)iθ)]

= J `0,H(z) + 2
∞∑
n=1

J `2n,H(z) cos`H 2nθ + 2i
∞∑
n=0

J `2n+1,H(z) sin`H(2n+ 1)θ.
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Finally from (6.7),

e`H

(z
2

(
e`H(iθ)− e`H(−iθ)

))
= e`H(iz sin`H θ) = cos`H(z sin`H θ) + i sin`H(z sin`H θ),

hence the result follows by comparison of the real and imaginary parts.

6.3.3 `-Analogue of Bessel’s inequality due to Cauchy

The inequality [59, p.16]

|Jn(z)| ≤
∣∣ z

2

∣∣n
n!

exp

(∣∣∣∣z2

4

∣∣∣∣)
due to Cauchy is known as Bessel’s inequality. In order to obtain its `-analogue,

the `-analogue of the inequality

(n+ r)!

n!
≥ (n+ 1)r

will be obtained first.

Lemma 6.26. If <(`) ≥ 0 and r ∈ N ∪ {0} then

((n+ r)!)`n+1

(n!)`n+1
≥ (n+ 1)r(`n+1). (6.49)

Proof. For r = 0, (6.49) is evident. For the remaining values of r, the principle of

mathematical induction is used.

For r = 1,

L.H.S. =
((n+ 1)!)`n+1

(n!)`n+1
= (n+ 1)`n+1 = R.H.S.

Suppose that (6.49) is true for r = some positive integer k that is,

((n+ k)!)`n+1

(n!)`n+1
≥ (n+ 1)k(`n+1) (6.50)

holds true. Then for r = k + 1, it suffice to prove

((n+ k + 1)!)`n+1

(n!)`n+1
≥ (n+ 1)(k+1)(`n+1).
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The left hand member

((n+ k + 1)!)`n+1

(n!)`n+1
= (n+ k + 1)`n+1 ((n+ k)!)`n+1

(n!)`n+1

≥ (n+ k + 1)`n+1 (n+ 1)k(`n+1)

≥ (n+ 1)`n+1 (n+ 1)k(`n+1)

= (n+ 1)(k+1)(`n+1)

whenever <(`) ≥ 0.

Using this, the `-Bessel’s inequality due to Cauchy is established in

Theorem 6.27. For `, n ∈ N ∪ {0},

∣∣J `n,H(z)
∣∣ ≤ ∣∣ z

2

∣∣n
(n!)`n+1

e`H

(∣∣∣∣z2

4

∣∣∣∣) . (6.51)

Proof. From the Definition 6.5 (of the `-HBF),

∣∣J `n,H(z)
∣∣ ≤ ∣∣∣z

2

∣∣∣n ∞∑
k=0

∣∣ z
2

∣∣2k
((n+ k)!)`n+`k+1 (k!)`k+1

. (6.52)

Since

1

((n+ k)!)`n+`k+1
≤ 1

((n+ k)!)`k (n!)`n+1 (n+ 1)k(`n+1)

in view of Lemma 6.26, (6.52) yields

∣∣J `n,H(z)
∣∣ ≤ ∣∣ z

2

∣∣n
(n!)`n+1

∞∑
k=0

∣∣ z
2

∣∣2k
((n+ k)!)`k (n+ 1)k(`n+1) (k!)`k+1

≤
∣∣ z

2

∣∣n
(n!)`n+1

∞∑
k=0

∣∣ z
2

∣∣2k
(k!)`k+1

=

∣∣ z
2

∣∣n
(n!)`n+1

e`H

(∣∣∣∣z2

4

∣∣∣∣) ,
when `, n ∈ N ∪ {0}.
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6.3.4 Addition formula

Theorem 6.28. For the `-HBF (cf. [59, Sec. 2.4, 2.5, p.30]),

J `n,H(z1 + z2) =
∞∑

m=−∞

J `m,H(z1) J `n−m,H(z2). (6.53)

Proof. On substituting z = z1 + z2 in the contour integral (6.26) and then using

the property (6.9), one obtains

J `n,H(z1 + z2) =
1

2πi

(0+)∫
u−n−1 e`H

(
(z1 + z2) (u− u−1)

2

)
du

=
1

2πi

(0+)∫
u−n−1 e`H

(z1

2
(u− u−1)

)
e`H

(z2

2
(u− u−1)

)
du

=
1

2πi

(0+)∫
u−n−1

∞∑
m=−∞

J `m,H(z1) um e`H

(z2

2
(u− u−1)

)
du

=
∞∑

m=−∞

J `m,H(z1)
1

2πi

(0+)∫
um−n−1 e`H

(z2

2
(u− u−1)

)
du.

Once again making an appeal to (6.26), one is led to (6.53).

Corollary 6.29. There holds the series relation:

J `n,H(2z) =
n∑

m=0

J `m,H(z) J `n−m,H(z) + 2
∞∑
m=1

(−1)m J `m,H(z) J `n+m,H(z). (6.54)

Proof. If z1 = z2 = z in (6.53) then

J `n,H(2z) =
∞∑

m=−∞

J `m,H(z) J `n−m,H(z)

=
−1∑

m=−∞

J `m,H(z) J `n−m,H(z) +
∞∑
m=0

J `m,H(z) J `n−m,H(z)

=
−1∑

m=−∞

J `m,H(z) J `n−m,H(z) +
n∑

m=0

J `m,H(z) J `n−m,H(z)

+
∞∑

m=n+1

J `m,H(z) J `n−m,H(z).
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This, in view of (6.15) gives

J `n,H(2z) =
n∑

m=0

J `m,H(z) J `n−m,H(z) +
∞∑
m=1

(−1)m J `m,H(z) J `n+m,H(z)

+
∞∑
m=1

(−1)m J `m,H(z) J `n+m,H(z)

=
n∑

m=0

J `m,H(z) J `n−m,H(z) + 2
∞∑
m=1

(−1)m J `m,H(z) J `n+m,H(z).


	6 The -H Bessel function
	6.1 Introduction
	6.2 Main results
	6.2.1 Generating function relation
	6.2.2 Differential equation
	6.2.3 The -HBF integral
	6.2.4 Schlfli's Integral analogue

	6.3 Other properties
	6.3.1 Differential recurrence relation
	6.3.2 -Analogue of Jacobi's expansion
	6.3.3 -Analogue of Bessel's inequality due to Cauchy
	6.3.4 Addition formula



