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P R E F A C E
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Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda.

The present thesis contains five chapters. The two dimensional analogue of the

first half of results of Chapter 2 is published in the form of a paper in Acta Math-

ematica Hungarica, 128 (4) (2010), 328 − 343 (DOI: 10.1007/s10474-010-9202-y).

These results were first presented at the National Seminar on Analysis, Differen-

tial Equations and Applications held at the Department of Mathematics, Faculty

of Science, The Maharaja Sayajirao University of Baroda during January 30 – 31,

2009. The results of second half of this chapter are accepted for publication in Acta

Scientiarum Mathematicarum, János Bolyai Mathematical Institute, University of

Szeged, Szeged, Hungary. The first one fourth of results of Chapter 3 is published

in the form of a paper in the Journal of Inequalities in Pure and Applied Mathe-

matics, 9 (2) (2008), Article 44, 7 pp.. The second one fourth is published in the

form of a paper in Mathematics Today, 24 (2008), 47− 54. These results were also

presented at the Mathematics Meet – 2008, held at Department of Mathematics,

Gujarat University, Ahmedabad, during March 28 – 29, 2008. The first half of

results of Chapter 4 is published in the form of a paper in the Journal of Indian

Mathematical Society, 75 (1–4) (2008), 93− 104. These were first presented at the

73rd Annual Conference of the Indian Mathematical Society held at Department

of Mathematics, University of Pune, College of Engineering, Pune and Fergussion

College, Pune during December 27 – 30, 2007 for competition for paper presentation

in the section of Analysis and won the “V. M. Shah Prize for the Year 2007” for

presenting the best research paper in Analysis. The second half of results of Chapter

4 are accepted for publication in Kyoto Journal of Mathematics, Kyoto University,

Kyoto, Japan. These results were presented at 23rd Annual Meeting of Ramanujan

Mathematical Society organized by Department of Mathematics, Indian Institute of

Technology Kanpur, Kanpur during May 19 – 21, 2008. The rest of the results of

the present thesis are under communication for publication. Prof. Patadia has also

collaborated with me in some of the investigations [13].
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Chapter 1

Introduction and Preliminaries

1.1 Order of Magnitude of Fourier Coefficients

Let f be a Lebesgue integrable function on the circle group T (identified with an

interval of length 2π, say [0, 2π)) and let the series

∞∑
n=−∞

f̂(n)einx

denote its Fourier series where, for each integer n,

f̂(n) =
1

2π

∫ 2π

0

f(x)e−inx dx

denotes the nth Fourier coefficient of f . The fundamental property of Fourier coeffi-

cients of such a function f is the well known Riemann-Lebesgue lemma which states

that f̂(n) = o(1) as |n| → ∞ (see, for example, [9, 2.3.8]). However, in general,

there is no definite rate at which the Fourier coefficients tend to zero — even for

continuous functions on T (see, for example, [9, 2.3.9] or [3, Vol. I, p. 229]). In fact,

it is known that the Fourier coefficients can tend to zero as slow as possible — in

the sense that given a sequence {an} of positive numbers tending to zero, one can

find f ∈ L1(T) such that |f̂(n)| ≥ an, for all n (see, for example, [9, 7.4] or [3, Vol.

I, p. 229]). Therefore it is interesting to know for functions of which subspaces of

the space of integrable functions, there is some definite rate at which the Fourier

coefficients tend to zero. Let us discuss the development in this regard in the setting

of certain groups. Since the study in the case of circle group is classical and has
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motivated the study in the setting of other groups, we begin with the case of circle

group. We have carried out the study in the setting of other than the circle group

and we shall mention our work at the end of each case.

(A). In the case of the circle group T, the study of definite rate at which Fourier

coefficients tend to zero has been carried out intensively for functions of various

subspaces of L1(T). In fact, following results are well known in which I = [a, b] is

an interval and when I = [0, 2π], we drop writing I or write T.

Theorem 1.1.1 ([3, Vol. I, p. 38, (25.6) and p. 71, (21.5)]). f̂(n) = O(1/|n|α)

as |n| → ∞ for f ∈ Lipα(T), 0 < α ≤ 1, where Lipα(T) is the subspace of

C(T) ⊂ L1(T) of functions satisfying Lipschitz condition of order α over [0, 2π].

(Recall that a real-valued function f is in Lipα(T) if there exists a constant C such

that |f(x)− f(y)| ≤ C|x− y|α for all x, y ∈ T.)

Theorem 1.1.2 ([9, p. 33, Remark (4)]). f̂(n) = o(1/|n|) as |n| → ∞ for f ∈
AC(T), the subspace of C(T) ⊂ L1(T) of functions which are absolutely continuous

over [0, 2π]. (Recall that a real-valued function f is in AC(T) if for every ε > 0, there

is a δ > 0 such that
∑n

k=1 |f(bk)− f(ak)| < ε for every finite collection {(ak, bk)}nk=1

of non-overlapping subintervals of T with
∑n

k=1 |bk − ak| < δ.)

Theorem 1.1.3 ([9, p. 33, 2.3.6]). f̂(n) = O(1/|n|) as |n| → ∞ for f ∈ BV(T),

the subspace of L1(T) of functions of bounded variation over [0, 2π], that is,

BV(T) = {f : T→ R : V (f,T) <∞} , (1.1)

where

V (f ;T) = sup

{
n∑
k=1

|f(xk)− f(xk−1)|

}
,

in which the supremum is taken over all the partitions 0 = x0 < x1 < ... < xn = 2π

of [0, 2π].

Theorem 1.1.4 ([59]). f̂(n) = O
(
1/|n|1/p

)
as |n| → ∞ for f ∈ BV(p)(T), p ≥ 1,

the subspace of L1(T) of functions of bounded variation of order p ≥ 1 over [0, 2π],

that is,

BV(p)(T) = {f : T→ R : V (f, p,T) <∞} , (1.2)

2



where

Vp(f ;T) = sup


(

n∑
k=1

|f(xk)− f(xk−1)|p
)1/p

 ,

in which the supremum is taken over all the partitions 0 = x0 < x1 < ... < xn = 2π

of [0, 2π].

Note that BV(1) = BV. Note also that the class BV(p)(I) can be defined as in

(1.2) by replacing T by I. The class BV(p) was introduced by Wiener in 1924 [77].

This concept of bounded variation of order p ≥ 1 was subsequently generalized by

L. C. Young [78] in 1937 who introduced the following class φBV of functions of

φ-bounded variation.

Definition 1.1.5. Given a continuous function φ, defined on [0,∞) and strictly

increasing from 0 to∞, we say that f ∈ φBV(I) (that is, f is of φ-bounded variation

over I) if

Vφ(f ; I) = sup

{
n∑
k=1

φ(|f(xk)− f(xk−1)|)

}
<∞,

where the supremum is taken over all the partitions 0 = x0 < x1 < ... < xn = 2π of

[0, 2π].

Clearly, φ(u) = u gives the Jordan’s class BV(I) and φ(u) = up gives the Wiener’s

class BV(p)(I). It is customary to consider φ a convex function such that φ(0) =

0, φ(x)
x
→ 0 (x→ 0+), φ(x)

x
→∞ (x→∞); such a function is called an N -function

and is necessarily continuous and strictly increasing on [0,∞). For functions of

φBV(T), the following result is well known (which follows from [57, Corollary to

Theorem 1]).

Theorem 1.1.6. f̂(n) = O
(
φ−1

(
1
|n|

))
as |n| → ∞ for f ∈ φBV(T).

Another class, directly influenced by the study of the convergence problems in the

theory of Fourier series, namely the following class ΛBV of functions of Λ-bounded

variation appeared in Waterman’s paper [76] in 1972.

Definition 1.1.7. Given a sequence Λ = {λk}k∈N of non-decreasing positive num-

bers λk such that
∑∞

k=1
1
λk

diverges, we say that f ∈ ΛBV(I) (that is, f is of

Λ-bounded variation over I) if

VΛ(f, I) = sup
{Ik}

{∑
k

|f(bk)− f(ak)|
λk

}
<∞,
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where {Ik = [ak, bk]} is a sequence of non-overlapping subintervals of I.

Note that if λk ≡ 1, one gets from this the class BV(I) and if λk = k ∀k then

one gets the class HBV(I) of functions of harmonic bounded variation over I. For

functions of ΛBV(T), Schramm and Waterman [57] proved the following result.

Theorem 1.1.8. f̂(n) = O
(

1
/∑|n|

j=1
1
λj

)
as |n| → ∞ for f ∈ ΛBV(T).

Later, in 1980, Shiba [58] introduced the following class ΛBV(p) of functions of

p-Λ-bounded variation.

Definition 1.1.9. Given a sequence Λ as in Definition 1.1.7 and a real number p,

1 ≤ p <∞, we say that f ∈ ΛBV(p)(I) (that is, f is of p-Λ-bounded variation over

I) if

VpΛ(f ; I) = sup
{Ik}


(∑

k

|f(bk)− f(ak)|p

λk

)1/p
 <∞,

where {Ik} is as in Definition 1.1.7.

Note that if p = 1 one gets from this the class ΛBV(I); if λk ≡ 1, one gets the

class BV(p)(I); and if p = 1 as well as λk ≡ 1 then one gets the class BV(I). For

functions of ΛBV(p)(T), the following result is well known [57].

Theorem 1.1.10. f̂(n) = O

(
1

/(∑|n|
j=1

1
λj

)1/p
)

as |n| → ∞ for f ∈ ΛBV(p)(T).

The class φΛBV of functions of φ-Λ-bounded variation over I was introduced by

Schramm and Waterman [56] in 1982 as follows.

Definition 1.1.11. Given a function φ as in Definition 1.1.5 and a sequence Λ as

in Definition 1.1.7, we say that f ∈ φΛBV(I) (that is, f is of φ-Λ-bounded variation

over I) if

VφΛ(f ; I) = sup
{Ik}

{∑
k

φ(|f(bk)− f(ak)|)
λk

}
<∞,

where {Ik} is as in Definition 1.1.7.

Note that if φ(u) = up one gets from this the class ΛBV(p)(I). For functions of

φΛBV(T), Schramm and Waterman [57] proved the following result.

Theorem 1.1.12. f̂(n) = O
[
φ−1

(
1
/∑|n|

j=1
1
λj

)]
as |n| → ∞ for f ∈ φΛBV(T).

4



Further, considering the differences of order r ≥ 2, the class r-BV of the functions

of bounded rth variation is also one of the interesting generalizations of the Jordan

class. This is given as follows.

Definition 1.1.13. Given a positive integer r, we say that f ∈ r-BV(I) (that is, f

is of bounded rth variation over I) if

V (r)(f, I) = sup
n

{
n−r∑
i=0

|∆rf(xi)|

}
<∞,

where the supremum is taken over arbitrary (n + 1) points x0 < x1 < ... < xn in I

in an arithmetic progression,

∆f(xi) = f(xi+1)− f(xi)

and for k ≥ 2

∆kf(xi) = ∆k−1f(xi+1)−∆k−1f(xi)

so that

∆rf(xi) =
r∑

m=0

(−1)m
(
r

m

)
f(xi+r−m).

Clearly, BV(I) ⊂ r-BV(I) but BV(I) 6= r-BV(I). For example, it is well known

that everywhere continuous but nowhere differentiable function of Weierstrass [21],

given by

f(x) =
∞∑
n=1

b−n cos (bnx) , b an integer > 1,

satisfies the condition

|f(x+ h) + f(x− h)− 2f(x)| = O(|h|) as h→ 0

uniformly in x in I = [0, 2π] and therefore f ∈ 2-BV(I) [79]; however, f being a

nowhere differentiable function, f 6∈ BV(I).

Yet another generalization of the concept of a function of bounded variation is

due to Chanturia [5] who introduced the following class V(h) in 1974.

5



Definition 1.1.14. Given a non-decreasing concave downward function h(n) defined

on the set of positive integers, we say that f ∈ V(h)(I) if there is a constant C such

that

n∑
k=1

|f(bk)− f(ak)| ≤ C h(n), ∀n ∈ N,

for every sequence {Ik} as in Definition 1.1.5.

For functions of V[nα](T), the following result is well known [72, Theorem 3, p.

34].

Theorem 1.1.15. f̂(n) = O (1/|n|1−α) as |n| → ∞ for f ∈ V[nα](T).

Interestingly, many authors have generalized above results where in it is shown

that same rate of order of magnitude of Fourier coefficients holds even if these

hypotheses are satisfied only locally provided the Fourier series is lacunary with

certain gaps. For example, following results are known.

Theorem 1.1.16 (Noble [36] or [3, Vol. II, p. 269]). f̂(n) = O(1/|n|α) as |n| → ∞
for f ∈ Lipα(I) and f̂(n) = O(1/|n|) as |n| → ∞ for f ∈ BV(I) if the Fourier

series of f is lacunary of the form∑
k∈Z

f̂(nk)e
inkx (1.3)

where {nk}∞1 is a strictly increasing sequence of natural numbers satisfying the gap

condition

lim
k→∞

Nk

logNk

=∞ (1.4)

in which Nk = min{nk+1 − nk, nk − nk−1} and n−k = −nk for all k; and I is any

subinterval of [0, 2π].

Theorem 1.1.17 (Kennedy [27]). Noble’s Theorem 1.1.16 hold under the weaker

gap condition

(nk+1 − nk)→∞ as k →∞. (1.5)

Theorem 1.1.18 (Mazhar [32]). Noble’s second result in Theorem 1.1.16 holds if

we replace the condition ‘f ∈ BV(I)’ by the weaker condition ‘f ∈ r-BV(I)∩L2(I)’.

6



Theorem 1.1.19 (Tomić [65]). If f ∈ Lipα (0 < α < 1) and {nk} satisfies the

Hadamard lacunarity condition

lim inf
n→∞

nk+1

nk
> 1 (1.6)

then for the lacunary Fourier series (1.3) of f , we have

f̂(nk) = O
(
n−βk

)
, β = α/(2 + α). (1.7)

This result is related to earlier results of Noble [36] and Kennedy [27, 29].

Kennedy [28] then sharpened this estimation (1.7) and proved following result.

Theorem 1.1.20. Under the hypothesis of Theorem 1.1.19 we have

f̂(nk) = O(1) ((log nk)/nk)
α . (1.8)

Further, he posed the question whether one can possibly suppress the factor

(log nk)
α in (1.8). The affirmative answer was given by J. P. Kahane [26, p. 210],

M. Izumi and S. I. Izumi [25]. Tomić [64] then proved the following more general

result.

Theorem 1.1.21. If f has the Fourier series (1.3) with {nk} satisfying the Hadamard

lacunary condition (1.6) and

f(x0 ± t)− f(x0) = O(1)ω∗(t) as t→ +0, (1.9)

where ω∗(t) is a function such that

(a) ω∗(0) = 0, ω∗(t) > 0 as t→ +0,

(b) ω∗(t1) ≤ Aω∗(t2) as 0 < t1 < t2 → +0 and

(c) there exists α > 0 such that

ω∗(t1)t−α1 ≥ Bω∗(t2)t−α2 when 0 < t1 < t2

in which A and B are constants, then

f̂(nk) =

O(1)ω∗ (1/nk) if 0 < α < 1,

O(1)ω∗ (1/nk) log nk if α = 1.

7



Patadia [45, Theorem 1] further generalized above result of Tomić by considering

a more general lacunarity condition

min {nk+1 − nk, nk − nk−1} ≥ C F (nk), (1.10)

where F (nk) increases to ∞ as k → ∞, F (nk) ≤ nk for all k ∈ N and C > 0 is

a constant and by suppressing the factor log nk in case α = 1 (observe that with

F (nk) = nk this condition (1.10) gives rise to the Hadamard gap condition (1.6)).

In fact, he proved the following result.

Theorem 1.1.22. If f satisfies (1.9) and {nk} satisfies (1.10) then

f̂(nk) = O(1)ω∗(1/F (nk)).

This result also generalizes the result due to Chao [6, Theorem 1]. Patel and

Shah [49] generalized Mazhar’s Theorem 1.1.18 and proved the following result.

Theorem 1.1.23. Mazhar’s Theorem 1.1.18 holds if the gap condition (1.4) is re-

placed the weaker gap condition (1.5).

Patadia and Vyas [41] later proved the following result.

Theorem 1.1.24. If f ∈ L1[−π, π] possesses a lacunary Fourier series (1.3) with

small gaps

(nk+1 − nk) ≥ q ≥ 1, for k = 0, 1, 2, ..., (1.11)

and I is a subinterval of length |I| > 2π/q, then f ∈ ΛBV(p)(I) implies f̂(n) =

O

(
1

/(∑|n|
j=1

1
λj

)1/p
)

and f ∈ r-BV(I) ∩ L2(I) implies f̂(n) = O
(

1
|n|

)
.

Observing this vast study, in the case of circle group, of determination of the

definite rate at which the Fourier coefficients of functions of various subclasses of

integrable functions tend to zero, it is interesting to know about similar study carried

out in the setting of other groups. We describe the development in this regard in

the setting of m-dimensional torus Tm, m > 1, the Walsh group and the Vilenkin

group, along with the brief indication of what we have done in each setting, in the

following.

(B). In the case of the m-dimensional torus Tm, m > 1, again the Riemann-

Lebesgue lemma holds: f ∈ L1 (Tm) implies f̂(n) = o(1) (n = (n(1), ..., n(m))) as

8



|n| =
√
|n(1)|2 + ...+ |n(m)|2 →∞. Also, it is a fact that there is no definite rate at

which Fourier coefficients tend to zero; and the study of definite rate at which Fourier

coefficients tend to zero has been carried out for functions of certain subspaces of

L1 (Tm). Statements of some known results follows the following terminology and

definitions.

Let m be a positive integer, let Tm be the m-dimensional torus identified with

Q = [−π, π]m and let its dual be identified with Zm. The points (x1, ..., xm) of Q

and (n(1), ..., n(m)) of Zm are denoted by x and n respectively; n · x denotes the

scalar product given by n · x = n(1)x1 + ... + n(m)xm and |x| denotes the number√
|x1|2 + ...+ |xm|2. For f ∈ L1(Tm) its formal Fourier series is given by

f(x) ∼
∑
n∈Zm

f̂(n)ei(n·x), (1.12)

where f̂(n) denotes the nth Fourier coefficient of f(x) given by

f̂(n) =
1

(2π)m

∫
Q

f(x)e−i(n·x)dx. (1.13)

Let x0 = (x01, ..., x0m) denote an arbitrary point of Q, δ is any arbitrary real number

such that 0 < δ ≤ π and I = I(x0, δ) denote the m-dimensional subrectangle of Q

given by

I(x0, δ) = {x := (x1, ..., xm) ∈ Q : |xj − x0j| ≤ δ for j = 1, ...,m}. (1.14)

Definition 1.1.25. For α > 0, α = l + a with 0 < a ≤ 1 and l a non-negative

integer, we say that f ∈ Lip (α, I) (or, f satisfies Lipα condition on I) if f has

continuous partial derivatives

Dθf(x) =
∂θ1+...+θm

∂xθ11 ...∂x
θm
m

f(x) for θ1 + ...+ θm ≤ l,

and

sup
x,y∈I,
|x−y|≤δ

∣∣Dθf(x)−Dθf(y)
∣∣ = O (δa) whenever θ1 + ...+ θm = l.

In case 0 < α ≤ 1, we get l = 0, a = α; so that Dθf(x) ≡ D0f(x) which is taken to

be f(x); this is the case particularly when the dimension m is 1. When I = Q, we

simply write f ∈ Lipα.
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The following m-dimensional analogue of circle group result (Theorem 1.1.1)

appears to be known though we are unable to give precise reference.

Theorem 1.1.26. f ∈ Lipα implies f̂(n) = O (|n|−α) as |n| → ∞.

The following lacunary version of this result which is analogue of the correspond-

ing circle group result (first part of Theorem 1.1.16) due to Noble has been proved

in [44].

Theorem 1.1.27. Let α > 0 and f ∈ L1 (Tm) with f̂(n) = 0 for n ∈ Zm \E, where

E ⊂ Zm is given by E =
∏m

j=1 E
(j) in which

E(j) =
{
..., n

(j)
−2, n

(j)
−1, n

(j)
0 , n

(j)
1 , n

(j)
2 , ...

}
⊂ Z

with n
(j)
−k = −n(j)

k for k = 0, 1, 2, ... and with
{
n

(j)
k

}∞
k=1

strictly increasing such that

lim inf
k→∞

N
(j)
k

log n
(j)
k

= B(j) >
32e

δ
, (1.15)

where N
(j)
k = min

{
n

(j)
k+1 − n

(j)
k , n

(j)
k − n

(j)
k−1

}
. If ns =

(
n

(1)
s1 , ..., n

(m)
sm

)
denotes any

typical element of E then f ∈ Lip (α, I) implies f̂ (nk) = O
(
|nk|−α

)
.

Recently in 2002, considering the two dimensional torus, Móricz [33] has obtained

certain definite rate of order of magnitude of double Fourier coefficients of functions

of bounded variation in the sense of Vitali and Hardy and Krause and in 2004 Fülöp

and Móricz [10] have obtained such rate of multiple Fourier coefficients of functions

of bounded variation in the sense of Vitali and Hardy and Krause. To state these

results, we need the following definitions.

Definition 1.1.28. Let R be the rectangle R = [a1, b1] × ... × [am, bm] in Rm with

sides parallel to the cooordinate axes, that is,

R = {(x1, ..., xm) ∈ Rm : aj ≤ xj ≤ bj; j = 1, ...,m} ,

where −∞ < aj < bj < +∞ for each j. By a (finite) grid P of R we mean

P = P1 × ...× Pm, where

Pj : aj = x0
j < x1

j < ... < x
sj
j = bj, sj ≥ 1; j = 1, 2, ...,m.

10



Definition 1.1.29. Let f = f(x1, ..., xm) be a real or complex-valued function on

R. For any subrectangle R′ = [α1, β1] × ... × [αm, βm] of R with ai ≤ αi < βi ≤ bi

for all i = 1, 2, ...,m, we define ∆f(R′) as follows: When m = 2 we put

∆f(R′) := ∆f([α1, β1]× [α2, β2]) = f(β1, β2)− f(β1, α2)− f(α1, β2) + f(α1, α2);

for m = 3

∆f(R′) : = ∆f([α1, β1]× ...× [α3, β3])

= [f(β1, β2, β3)− f(β1, α2, β3)− f(α1, β2, β3) + f(α1, α2, β3)]

− [f(β1, β2, α3)− f(β1, α2, α3)− f(α1, β2, α3) + f(α1, α2, α3)]

= ∆[α3,β3]∆f([α1, β1]× [α2, β2]), say;

and successively for any m ≥ 3

∆f(R′) := ∆f([α1, β1]× ...× [αm, βm]) = ∆[αm,βm]∆f([α1, β1]× ...× [αm−1, βm−1]).

Definition 1.1.30. A function f is said to be of bounded variation over R (written

as f ∈ BVV(R)) in the sense of Vitali (the names of Lebesgue, Fréchet, and de la

Vallée Poussin are also indicated sometimes in the literature, see, for example [8]) if

V (f ;R), the total variation of f over R, is finite, where

V (f ;R) := sup
P

s1∑
i1=1

...
sm∑
im=1

∣∣∆f ([xi1−1
1 , xi11 ]× ...× [xim−1

m , ximm ]
)∣∣ , (1.16)

in which the supremum is extended over all grids P of R.

As noted in [10], in casem ≥ 2, a function f in the class BVV(R) is not necessarily

measurable in the sense of Lebesgue. This is a consequence of the trivial fact that if

a function f = f(x1, ..., xm) does not depend on at least one of the x1, ..., xm, then

for any grid P , we have

∆f
(
[xi1−1

1 , xi11 ]× ...× [xim−1
m , ximm ]

)
= 0, ij = 1, ..., sj; j = 1, ...,m.

Consequently, the class BVV(R) contains functions for which the m-dimensional

Lebesgue integral over R fails to exist. The following notion of bounded variation

is motivated by this fact.
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Definition 1.1.31. In case m = 2, we say that a function f = f(x1, x2) is of bounded

variation over R := [a1, b1]× [a2, b2] in the sense of Hardy or sometimes Hardy and

Krause (see, for example, [8]), in symbol: f ∈ BVH(R), if it is in the class BVV(R)

and if the marginal functions f(x1, a2) and f(a1, x2) are of bounded variation on the

intervals I1 := [a1, b1] and I2 := [a2, b2], respectively in the ordinary sense.

In case m ≥ 3, the notion of bounded variation in the sense of Hardy over a

rectangle R can naturally be defined by the following recurrence: f ∈ BVH(R) if

f ∈ BVV(R) and each of the marginal functions f(x1, ..., ak, ..., xm) is in the class

BVH(R(ak)), where k = 1, ...,m and

R(ak) = {(x1, ..., xk−1, xk+1, ..., xm) ∈ Rm−1 : aj ≤ xj ≤ bj

for j = 1, ..., k − 1, k + 1, ...,m}. (1.17)

This definition can be equivalently reformulated as follows: f ∈ BVH(R) if and

only if f ∈ BVV(R) and for any choice of (1 ≤)j1 < ... < jn(≤ m), 1 ≤ n < m, the

function f(x1, ..., aj1 , ..., ajn , ..., xm) is in the class BVV(R(aj1 , ..., ajn)), where

R(aj1 , ..., ajn) := {(x`1 , ..., x`m−n) ∈ Rm−n : aj ≤ xj ≤ bj for j = `1, ..., `m−n}
(1.18)

in which {`1, ..., `m−n} is the complementary set of {j1, ..., jn} with respect to the

set {1, ...,m}.

Móricz [33] proved the following result.

Theorem 1.1.32. If f ∈ BVH(T2) then

f̂(n(1), n(2)) =


O
(

1
|n(1)n(2)|

)
if n(1)n(2) 6= 0

O
(

1
|n(1)|

)
if n(1) 6= 0, n(2) = 0

O
(

1
|n(2)|

)
if n(1) = 0, n(2) 6= 0.

Fülöp and Móricz [10] proved the following two results.

Theorem 1.1.33. If f ∈ BVV ([0, 2π]m) ∩ L1 (Tm) and (n(1), ..., n(m)) ∈ Zm is such

that n(j) 6= 0 for each j, then∣∣∣f̂(n(1), ..., n(m))
∣∣∣ ≤ V (f ; [0, 2π]m)

(2π)m
∏m

j=1 n
(j)

(1.19)

where V (f ; [0, 2π]m) is defined in (1.16).
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Theorem 1.1.34. If f ∈ BVH ([0, 2π]m) and (n(1), ..., n(m)) ∈ Zm is such that n(j) 6=
0 for j ∈ {j1, ..., jn}; (1 ≤ )j1 < ... < jn(≤ m) and n(j) = 0 for j ∈ {`1, ..., `m−n};
(1 ≤ )`1 < ... < `m−n(≤ m), where {`1, ..., `m−n} is the complementary set of

{j1, ..., jn} with respect to {1, ...,m}, then

∣∣∣f̂(n(1), ..., n(m))
∣∣∣ ≤ V

(
f̃ ; [0, 2π]n

)
(2π)n

∏m
j=1,n(j) 6=0 n

(j)

where

f̃ = f̃(xj1 , ..., xjn) = (2π)−m+n

∫
Tm−n

f(x1, ..., xm) dx`1 ...dx`m−n .

In Chapter 2, Section 2.1, we define the concept of bounded p-variation (p ≥ 1)

for a function of several variables in two different ways and study the order of

magnitude of trigonometric Fourier coefficients for functions of these classes. Our

results will generalize those of [33] and [10] (see Theorems 1.1.32, 1.1.33 and 1.1.34)

in the sense that for p = 1, our definitions will coincide with the definitions of

Vitali and Hardy and Krause and our results with those of [33] and [10], except for

the exact constant. In the same Chapter 2, in Section 2.2, carrying out the study

further, we will prove lacunary analogues of results obtained in Section 2.1.

(C). We now take up the case of Walsh and Vilenkin groups. First of all

observe that the Riemann-Lebesgue lemma is true for Fourier coefficients with re-

spect the characters of any compact abelian group G, because such characters form

a uniformly bounded orthonormal system on G [80, p. 45, (4.4)]. (It is interesting

to note here that the Riemann-Lebesgue lemma is not necessarily true in general for

any orthonormal system if it is not uniformly bounded, for example, it is not true

for Haar’s system [73, p. 16].) However, in general, there is no definite rate at which

these Fourier coefficients tend to zero. In fact, it is known that the Fourier coeffi-

cients can tend to zero as slow as possible — in the sense that given a sequence {an}
of positive numbers tending to zero, one can find integrable functions f on compact

abelian groups in general, including the Walsh and the Vilenkin group, such that

|f̂(n)| ≥ an, for all n (see, for example, [23, 32.47 (b)]). Therefore, in these cases

also, it is interesting to know for which subspaces of the space of integrable functions

on G, there is some definite rate at which the Fourier coefficients tend to zero.

We begin with giving preliminaries for the Walsh group. Let {ϕn} (n = 0, 1, 2, ...)

denote the complete orthonormal Walsh system [73], where the subscript denotes
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the number of zeros (that is, sign-changes) in the interior of the interval [0, 1]. For

a 1-periodic f in L1[0, 1] its Walsh Fourier series is given by

f(x) ∼
∞∑
n=0

f̂(n)ϕn(x), (1.20)

where the nth Walsh Fourier coefficient f̂(n) is given by

f̂(n) =

∫ 1

0

f(x)ϕn(x)dx (n = 0, 1, 2, ...). (1.21)

Let us also describe the Payley enumeration of Walsh functions [50]. Let {rn},
n = 0, 1, 2, ..., denote the class of Rademacher functions defined by

r0(x) = 1 (0 ≤ x < 1/2), r0(x) = −1 (1/2 ≤ x < 1),

r0(x+ 1) = r0(x), rn(x) = r0(2nx) (n = 1, 2, 3, ...).

The complete orthonormal Walsh system [73], say {wn}, n = 0, 1, 2, ..., as ordered

by Payley [50], is then given by

w0(x) ≡ 1, wn(x) = rn1(x)rn2(x) · · · rnk(x)

if n = 2n1 + 2n2 + · · · + 2nk , in which n1 > n2 > ... > nk ≥ 0. Observe that

w0 = ϕ0 and for each k ∈ N∪ {0}, the set {w2k , w2k+1, ..., w2k+1−1} is a permutation

of {ϕ2k , ϕ2k+1, ..., ϕ2k+1−1}. For the functions wn, degwn denotes the degree of wn

defined by : degw0 = 0 and degwn = n1 + 1, if wn is represented as the product

of Rademacher characters as in preceding lines. Accordingly, for each j ∈ N we

have w2j−1 = rj−1 and degw2j−1 = deg rj−1 = j. The degree of any real linear

combination of finitely many elements wn (n = 0, 1, 2, ...) (that is, a polynomial in

functions wn on [0, 1]) is the maximum of the degree of the elements wn appearing

in it.

In this case (setting of Walsh group), the study of certain definite rate of tending

to zero of Fourier coefficients for the functions of the subspace Lipα[0, 1] and func-

tions of the subspace BV[0, 1] of L1[0, 1] was carried out by N. J. Fine [11, Theorems

V and VI] and obtained following analogous results to the trigonometric case.

Theorem 1.1.35. If f ∈ Lipα[0, 1], 0 < α ≤ 1, then f̂(n) = O (1/nα).

Theorem 1.1.36. If f ∈ BV[0, 1] then |f̂(n)| = O (1/n).
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However, it appears that such a study for functions of generalized bounded vari-

ation is not yet carried out for the Walsh group. In Chapter 3, Section 3.1, we carry

out this study and prove Walsh group analogues of Theorems 1.1.4, 1.1.6, 1.1.8,

1.1.10 and 1.1.12. Carrying out the study further, in the following Section 3.2 of

this Chapter 3, we show that if the Walsh Fourier series is lacunary having small

gaps, then similar results for order of magnitude of Walsh Fourier coefficients holds

if function is assumed to be of generalized bounded variation only locally.

Finally, in this chapter in Sections 3.3 and 3.4, we consider multiple Walsh

Fourier coefficients and prove multidimensional analogues of our results of Sections

3.1 and 3.2.

(D). In Chapter 4, we consider the case of a Vilenkin group, that is, of a com-

pact metrizable 0-dimensional and abelian group. In fact, in 1947, N. Ja. Vilenkin

developed part of the Fourier Theory on these groups; the details of which are as

follows. Let G be a Vilenkin group. Then the dual group X of G is a discrete,

countable, torsion, abelian group [22, Theorems 24.15 and 24.26]. Vilenkin [68, Sec-

tions 1.1 and 1.2] proved the existence of a sequence {Xn} of finite subgroups of X

and of a sequence {ϕn} in X such that the following hold:

(i) X0 = {χ0}, where χ0 is the identity character on G.

(ii) X0 ⊂ X1 ⊂ X2 ⊂ ... .

(iii) For each n ≥ 1, the quotient group Xn/Xn−1 is of prime order pn.

(iv) X = ∪∞n=0Xn.

(v) ϕn ∈ Xn+1 \Xn for all n ≥ 0.

(v) ϕpn+1
n ∈ Xn for all n ≥ 0.

The group G is termed bounded , if

p0 = sup
i=1,2,...

pi <∞;

otherwise G is said to be unbounded. Further if pi = p0 for all i, where p0 is a fixed

prime, then G is known as primary . Using the ϕn’s, we can enumerate X as follows:

Let m0 = 1 and mn = Πn
i=1pi for n = 1, 2, ... . Then each k ∈ N can be uniquely

represented as k =
∑s

i=0 aimi, with 0 ≤ ai < pi+1 for 0 ≤ i ≤ s; and we define χk by

the formula χk = ϕa00 · · · · ·ϕass . Observe that χmn = ϕn for each n ≥ 0. For χ ∈ X
the degree of χ is defined by: deg χ0 = 0 and deg χk = s+ 1, if χk is written as the

product of ϕn’s as described in the preceding lines. Any complex linear combination
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of finitely many elements of X is called a Vilenkin polynomial on G, and the degree

of such a polynomial is the maximum of the degree of elements of X appearing in

the polynomial.

G =
∏∞

n=1 Zpn , {pn} — a sequence of prime numbers, is a standard example.

If pn = 2 for all n, X is the group of Walsh functions ψn, n = 0, 1, 2, ..., and

Xn = {ψ0, ψ1, ..., ψ2n−1} (using Payley enumeration [50]) described by N. J. Fine

[11]. If pn = p for all n, X is the group of generalized Walsh functions [7].

Let dx or m denote the normalized Haar measure on G. For f ∈ L1(G) the

Vilenkin Fourier series of f is defined as

S[f ](x) =
∞∑
n=0

f̂(n)χn(x), (1.22)

where the nth Vilenkin Fourier coefficient of f is given by

f̂(n) =

∫
G

f(x)χ̄n(x)dx. (1.23)

Observe that for each n, Xn = {χk : 0 ≤ k < mn}. Let Gn be the annihilator of

Xn, that is,

Gn = {x ∈ G : χ(x) = 1, χ ∈ Xn} = {x ∈ G : χk(x) = 1, 0 ≤ k < mn}.

Then obviously, we have the proper inclusions

G = G0 ⊃ G1 ⊃ G2 ⊃ ... ⊃ Gn ⊃ Gn+1 ⊃ ... ⊃ {0}, ∩∞n=0Gn = {0}, (1.24)

and the Gn’s form a fundamental system of neighborhoods of zero in G which are

compact, open and closed subgroups of G. Further, the index of Gn in G is mn, and

since the Haar measure is translation invariant with m(G) = 1, one has m(Gn) =

1/mn. The metric on G is then given by

d(x, y) = |x− y| for x, y ∈ G,

where |x| = 0 if x = 0, and |x| = 1/mn+1 if x ∈ Gn \Gn+1 for n = 0, 1, 2, ... .

In [68, Section 3.2] Vilenkin proved that for each n ≥ 0 there exists xn ∈ Gn\Gn+1

such that χmn(xn) = exp(2πi/pn+1) and observed that each x ∈ G has a unique

representation x =
∑∞

i=0 bixi, with 0 ≤ bi < pi+1 for all i ≥ 0. This representation
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of the elements ofG enables one to order them by means of the lexicographic ordering

of the corresponding sequence {bn} and one observes that for each n = 0, 1, 2, ... ,

Gn =

{
x ∈ G : x =

∞∑
i=0

bixi, b0 = · · · = bn−1 = 0

}
.

Consequently, each coset of Gn in G has a representation of the form z+Gn, where

z =
∑n−1

i=0 bixi for some choice of the bi with 0 ≤ bi < pi+1. These z, ordered

lexicographically, are denoted by {z(n)
α } (0 ≤ α < mn).

It may be noted that the choice of ϕn ∈ Xn+1 \Xn and of xn ∈ Gn \Gn+1 is not

uniquely determined by the groups X and G. In the following, it is assumed that a

particular choice has been made.

Note that the Riemann-Lebesgue lemma is true in this case also; and, like

trigonometric and Walsh Fourier series, it is well known that if f belongs to L1(G),

there is no definite rate at which the Fourier coefficients tend to zero; in fact, the

Vilenkin Fourier coefficients can tend to zero as slow as desired [23, 32.47 (b)]).

Analogous to the Jordan class BV on an interval, using the ordering of G as defined

above, Vilenkin [68] introduced the class BV(G) of functions of bounded variation

on a Vilenkin group G defined by

BV(G) =

{
f : G→ C : V (f ;G) = sup

n∑
i=1

|f(zi)− f(zi+1)| <∞

}
(1.25)

where the sup refers to all systems z1, z2, ..., zn+1 such that zk < zk+1; and studied

the definite rate of tending to zero of Vilenkin Fourier coefficients of functions of

this class — proving the following result [68, 3.22].

Theorem 1.1.37. If f ∈ BV(G) and mk ≤ n < mk+1 then |f̂(n)| ≤ V (f ;G)
mk

.

Later, considering the class Lip (α, p,G) of functions satisfying Lipschitz condi-

tion of order α, 0 < α ≤ 1, in the mean of order p, 1 ≤ p <∞, defined by

Lip (α, p,G) =
{
f ∈ Lp(G) : ω(p)(f, n) = O

(
m−αn

)}
(1.26)

where ω(p)(f, n) is the n-th integral modulus of continuity of order p for a function

f in Lp(G) is defined as

ω(p)(f, n) = sup{||Thf − f ||p : h ∈ Gn}; (Thf)(x) = f(x+ h), (1.27)

C. W. Onneweer carried out the study further in [40, Lemma 1] and proved the

following result.
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Theorem 1.1.38. If f ∈ Lip (α, p,G), 1 ≤ p <∞, 0 < α ≤ 1, then f̂(n) = O
(

1
nα

)
.

Later on, in [37, 38, 39], Onneweer and Waterman themselves introduced various

classes of generalized bounded fluctuation and studied the problem of convergence

of Vilenkin Fourier series of functions of these classes. However, it appears that for

functions of these classes, the problem of determination of the order of magnitude of

Fourier coefficients is not studied. In Chapter 4, Section 4.1, we carry out this study.

Further, in Section 4.2 of the same Chapter 4, we give the definitions of generalized

bounded fluctuation locally and study the order of magnitude of Vilenkin Fourier

coefficients of functions having lacunary Vilenkin Fourier series with small gaps.

1.2 Absolute Convergence

The study of absolute convergence of Fourier series is one of the most important

problems of Fourier Analysis and the problem has been studied intensively by many

researchers in the setting of circle group in particular and classical groups in general.

In the last Chapter 5, we study the absolute convergence of Vilenkin Fourier series.

Naturally our efforts is to prove, in Vilenkin group setting, analogues of some of the

known results of circle group. Therefore, let us first review, in (A), the results on

the absolute convergence of Fourier series in the circle group case and then in (B),

review the known results on the absolute convergence of Vilenkin Fourier series. At

the end, we shall indicate the work done by us.

(A). In the case of circle group if f ∈ AC and f ′ ∈ L2 (that is, if f is

“sufficiently good”), then the Fourier series of f is trivially absolutely convergent [3,

Chapter I, Section 26], that is, f ∈ A(1), where for 0 < β ≤ 2, A(β) is defined by

A(β) =

{
f ∈ L1[−π, π] :

∞∑
n=1

(|an|β + |bn|β) <∞ or
∞∑

n=−∞

|f̂(n)|β <∞

}
,

in which a0, a1, a2, ...; b1, b2, ... are the usual trigonometric Fourier coefficients of f

defined as

a0 =
1

2π

∫ 2π

0

f(x)dx, an =
1

π

∫ 2π

0

f(x) cosnxdx; bn =
1

π

∫ 2π

0

f(x) sinnxdx.

(1.28)
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Of course, the classical results of Bernstein “Lipα ⊂ A(1) for α > 1
2
” (for α = 1

2

not true) [3, Vol. II, p. 154] and Zygmund “BV∩Lipα ⊂ A(1) for α > 0” [3, Vol. II,

p. 161] are fundamental and historical. Bernstein and Zygmund later proved follow-

ing slight extended versions of these results, namely “if
∑∞

n=1 (ω(1/n, f)/
√
n) <∞

then f ∈ A(1)” and “if f ∈ BV and
∑∞

n=1

(√
ω(1/n, f)

/
n
)
< ∞ then f ∈ A(1)”,

where

ω

(
1

n
, f

)
= sup

{
|f(x+ h)− f(x)| : x ∈ [0, 2π], 0 < h ≤ 1

n

}
.

All these results are generalized in the following result by Szász [3, Vol. II, p. 155].

Theorem 1.2.1 (Szász). If ω(2)(δ, f) is the quadratic modulus of continuity of f(x),

that is,

ω(2)(δ, f) = sup
0≤h≤δ

{∫ π

−π
[f(x+ h)− f(x− h)]2dx

} 1
2

,

then
∞∑
n=1

ω(2)( 1
n
, f)

√
n

<∞ implies f ∈ A(1).

Refer [3, Vol. II, p. 155 - 156] for the equivalent result due to Stečhkin in terms

of E
(2)
n (f), the best approximation to f in L2 by trigonometric polynomials of degree

not higher than n. It may be noted that Stečhkin [3, Vol. II, p. 196] has proved

interesting extensions of these results providing sufficiency conditions in terms of

quadratic modulus of continuity or L2-best approximations to f by trigonometric

polynomials of degree not higher than n for function belong to A∗(1), where for

0 < β ≤ 1 and a sequence {nk} of positive integers,

A∗(β) =

{
f ∈ L1 :

∞∑
k=1

|f̂(nk)| <∞

}
.

Further, for lacunary Fourier series with various lacunary conditions, Patadia [45,

46, 47, 48] has proved interesting results showing that Szász and Stečhkin type suf-

ficiency conditions hold even if the hypothesis on the generating function is satisfied

only locally — the localness of hypothesis being dependent on the type of lacunarity

in the Fourier series.

Observe the Bernstein and Zygmund theorems stated above. They interestingly

illustrate that if function f is of bounded variation, then satisfying a Lipα condition

just for any α > 0 is sufficient for its Fourier series to converge absolutely — which
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otherwise requires it to satisfy Lipα condition for α > 1
2
. Similar is the impact

of function of bounded variation on the absolute convergence of its Fourier series

when one considers the hypothesis in terms of modulus of continuity — Bernstein, in

his result requires
∑∞

n=1 (ω(1/n, f)/
√
n) <∞ when f is not necessarily of bounded

variation, while Zygmund, in his result proves that just
∑∞

n=1

(√
ω(1/n, f)

/
n
)
<∞

is sufficient when f is of bounded variation. It is therefore interesting to know the

impact on the absolute convergence of Fourier series of f when f belongs to various

classes of functions of different generalized bounded variations.

After introducing various classes of functions of generalized bounded variations,

Waterman [76], Shiba [58], Chanturia [4] and Schramm and Waterman [56] have

proved following sufficiency conditions in terms of modulus of continuity for the

function to be in A(1) (in these results as well as in what follows, for any number p

such that 1 ≤ p ≤ ∞, we denote the conjugate of p by p′, so that 1/p+ 1/p′ = 1).

Theorem 1.2.2 (Waterman). If f ∈ C[−π, π] ∩ ΛBV[−π, π] and

∞∑
n=1

√
λnω(2π

n
, f)

n
<∞ then f ∈ A(1).

Theorem 1.2.3 (Shiba). If f ∈ ΛBV(p)[−π, π], 1 ≤ p < 2r, 1 < r <∞,

and
∞∑
n=1

λ
1/2r
n (ω(p+(2−p)r′)(π

n
, f))1−p/2r

n1−1/2r′
<∞ then f ∈ A(1).

Theorem 1.2.4 (Chanturia). If f ∈ V[nα][−π, π]
(
0 ≤ α < 1

2

)
and

∞∑
n=1

(ω( 1
n
, f))(1−2α)/(1−α)

n
<∞ then f ∈ A(1).

Theorem 1.2.5 (Schramm and Waterman). If f ∈ ΛBV(p)[−π, π], 1 ≤ p < 2r,

1 ≤ r <∞, and

∞∑
n=1

(∑n
k=1

1
λk

)−1/2r (
ω(p+(2−p)r′) (π

n
, f
))1−p/2r

n1/2
<∞ then f ∈ A(1).

Theorem 1.2.6 (Schramm and Waterman). If φ is ∆2, f ∈ φΛBV[−π, π],

1 ≤ p < 2r, 1 ≤ r <∞, and

∞∑
n=1

[
φ−1

((∑n
k=1

1
λk

)−1 (
ω(p+(2−p)r′) (π

n
, f
))2r−p

)]1/2r

n1/2
<∞ then f ∈ A(1).
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Later Patadia and Vyas [41, Theorems 1 to 4 and Theorem 6] studied sufficiency

conditions for the absolute convergence of Fourier series when it is lacunary having

small gaps and obtained the lacunary analogues of the above results. We need the

following definitions to state these results.

Definition 1.2.7. For p ≥ 1, the p-integral modulus continuity ω
(p)
r (δ, f, I) of f

over I of higher differences of order r ≥ 1 is defined by

ω(p)
r (δ, f, I) = sup

0≤h≤δ

∥∥∥∥∥
r∑

m=0

(
r

m

)
T(r−2m)hf

∥∥∥∥∥
p,I

,

where Thf(x) = f(x+ h) for all x and ‖(·)‖p,I = ‖(·)χI‖p in which χI is the charac-

teristic function of I and ‖(·)‖p denotes the Lp-norm. p = ∞ gives the modulus of

continuity ωr(δ, f, I). If r = 1, we omit writing r.

Theorem 1.2.8. Let f ∈ L1[−π, π] possess a lacunary Fourier series with small

gaps (1.11) and I, a subinterval of [−π, π] of length δ1 > 2π/q. If f ∈ L2(I) and

∞∑
n=1

[(
ω(2)
r (1/n, f, I)

)β
N(n)1−β/2n−1

]
<∞ (0 < β ≤ 2), (1.29)

then
∞∑

k=−∞

|f̂(nk)|β, (1.30)

where N(p) =
∑
|nk|≤p 1.

Theorem 1.2.9. Theorem 1.2.8 holds if (1.29) is replaced by

∞∑
k=1

[(
ω(2)
r (1/nk, f, I)

)β
/kβ/2

]
<∞. (1.31)

Theorem 1.2.10. Let f and I be as in Theorem 1.2.8. If f ∈ ΛBV(I) and

∞∑
T=1

[λnTω(1/nT , f, I)/TnT ]β/2 <∞, (1.32)

then (1.30) holds.

Theorem 1.2.11. Let f and I be as in Theorem 1.2.8. If f ∈ V[nα](I), 0 ≤ α < 1
2
,

and
∞∑
k=1

[
(ω(1/nk, f, I))β(1−2α)/(2(1−α))

(knk)β/2

]
<∞, (1.33)

then (1.30) holds.
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Theorem 1.2.12. Let f and I be as in Theorem 1.2.8. If f ∈ Lip (α, p, I)∩r-BV(I)

for 0 < α ≤ 1
2
, p > 2 and αp > 1, then its Fourier series converges absolutely, where

for any p ≥ 1, 0 < α ≤ 1 and a subinterval I of [−π, π] the class Lip (α, p, I) is

defined as

Lip (α, p, I) =
{
f ∈ L1 : ‖Thf − T−hf‖p,I = O(|h|α) as h→ 0

}
. (1.34)

Continuing the study further, Vyas proved the following theorems [70, Theorem

1.1 and 1.2], [71, Theorem 1.1].

Theorem 1.2.13. Let f and I be as in Theorem 1.2.8. If f ∈ ΛBV(I) and

∞∑
k=1

 ω( 1
nk
, f, I)

k
(∑nk

j=1
1
λj

)
β/2

<∞, (1.35)

then (1.30) holds.

Theorem 1.2.14. Let f and I be as in Theorem 1.2.8. If f ∈ ΛBV(p)(I), 1 ≤ p <

2r, 1 < r <∞ and

∞∑
k=1


(
ω((2−p)r′+p)

(
1
nk
, f, I

))2−p/r

k
(∑nk

j=1
1
λj

)1/r


β/2

<∞, (1.36)

then (1.30) holds.

Theorem 1.2.15. Let f and I be as in Theorem 1.2.8. If f ∈ ϕΛBV(I), 1 ≤ p < 2r,

1 ≤ r <∞ and

∞∑
k=1


ϕ−1


(
ω((2−p)r′+p)

(
1
nk
, f, I

))2r−p

∑nk
j=1

1
λj




1/r/
k


β/2

<∞, (1.37)

then (1.30) holds.

(B). Let us now review the results about absolute convergence of Fourier series

on Vilenkin groups. In the following, unless stated otherwise, we assume that G
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is a bounded Vilenkin group as described in Section 1.1 (D) and for β > 0 we shall

denote the set of all functions f in L1(G) for which
∑∞

n=0 |f̂(n)|β <∞ by A(β).

Vilenkin himself proved the following analogue of Bernstein’s Theorem concern-

ing absolute convergence [68, Theorem 5] for a primary group G.

Theorem 1.2.16. Lipα(G) ⊂ A(1) if α > 1
2

and G is primary, where for 0 < α ≤ 1,

Lipα(G) =
{
f : G→ C : ωn(f) = O

(
m−αn

)}
(1.38)

in which ωn(f) is the n-th modulus of continuity [39, Definition 2] of f given by

ωn(f) = sup{|(Thf − f)(x)| : x ∈ G, h ∈ Gn}. (1.39)

Continuing the study further, Onneweer [39] proved following interesting results.

Theorem 1.2.17. If f ∈ Lp(G), 1 ≤ p ≤ 2 and if f satisfies the condition

∞∑
n=0

(
mn−1∑
α=0

(
osc
(
f ; z(n)

α +Gn

))p)1/p

<∞,

then f ∈ A(1).

Corollary 1.2.18. If
∑∞

n=0m
1
2
n ωn(f) <∞ then f ∈ A(1).

Corollary 1.2.19. Lipα(G) ⊂ A(1) if α > 1
2
.

Corollary 1.2.20. GBF(p)(G) ∩ Lipα(G) ⊂ A(1) for 1 ≤ p < 2 and α > 0, where

GBF(p)(G) is defined as in Definition 4.1.4.

Observe that Corollary 1.2.20 is analogue of Zygmund’s theorem for trigonomet-

ric Fourier series. In order to obtain more precise information for functions belonging

to class Lipα(G), 0 < α ≤ 1
2
, than is given in Corollaries 1.2.19 and 1.2.20, one may

either consider a different form of bounded fluctuation or else one must consider

classes of functions different from A(1). In this connection Onneweer proved the

following result for functions of Λ-generalized bounded fluctuation (see Definition

4.1.5).

Corollary 1.2.21. If f ∈ Lipα(G) and if f ∈ ΛGBF(G) for some sequence Λ =

{λn} such that λmn = O
(
mβ
n

)
, with 0 ≤ β < α, then f ∈ A(1).
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Modifying the requirement that f ∈ A(1), Onneweer proved the following two

theorems. Theorem 1.2.22 is the analogue on G of a well-known theorem of Szász

[80, Chapter VI, (3.10)].

Theorem 1.2.22. If f ∈ Lipα(G), 0 < α ≤ 1, then for all β > 2/(2α+ 1) we have

f ∈ A(β).

Theorem 1.2.23. If f ∈ Lipα(G) for 0 < α ≤ 1, then
∑∞

n=0 n
−β|f̂(n)| < ∞ for

all β with β > 1
2
− α.

Onneweer has also given existential proofs of the following two theorems; Theo-

rem 1.2.25 says that Theorem 1.2.24 is best possible in some sense. Further, when

G is primary, he constructed functions satisfying conditions of these theorems and

hence proved Theorem 1.2.26.

Theorem 1.2.24. There exists an f ∈ Lip 1
2
(G) such that f 6∈ A(1).

Theorem 1.2.25. For each α, 1
2
≤ α < 1, and for each β, β < α, there exists a

function f ∈ Lip β(G) such that
∑∞

n=0 |f̂(n)|2/(1+2α) =∞.

Theorem 1.2.26. If G is a primary group, then for each α, 0 < α ≤ 1, there is a

function gα ∈ Lipα(G) such that gα 6∈ Lip γ(G) for any γ > α; also gα ∈ GBF(α−1).

Furthermore,
∑∞

n=0 |ĝα(n)|β = ∞, where β = 2/(2α + 1), and
∑∞

n=1 n
α− 1

2 |ĝα(n)| =
∞. In particular, if 0 < α ≤ 1

2
, then gα 6∈ A(1).

Onneweer continued study further and proved more results in his second paper

[40] for a bounded Vilenkin group G.

Theorem 1.2.27. Let 1 ≤ p ≤ 2 and 0 < β ≤ p′. If f ∈ Lp(G) and if

∞∑
n=0

(mn)(p′−β)/p′
(
ω(p)(f, n)

)β
<∞

then f ∈ A(β), ω(p)(f, n) being defined by (1.27).

Choosing β = 1 in Theorem 1.2.27 we obtain

Corollary 1.2.28. Let 1 ≤ p ≤ 2. If f ∈ Lp(G) and if
∑∞

n=0(mn)1/pω(p)(f, n) <∞,

then f ∈ A(1).
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The next corollary is the analogue on G of a well-known result of trigonometric

series due to Szász [62].

Corollary 1.2.29. Let 0 < α ≤ 1, 1 ≤ p ≤ 2 and β > p/(αp + p − 1). Then

Lip (α, p,G) ⊂ A(β), where Lip (α, p,G) is as defined in (1.26).

In case we choose β = 1 in Corollary 1.2.29 we obtain the following result.

Corollary 1.2.30. Let 1 ≤ p ≤ 2 and 1 < αp ≤ p. Then Lip (α, p,G) ⊂ A(1).

Onneweer has also proved that Corollaries 1.2.29 and 1.2.30 are best possible in

the following sense.

Theorem 1.2.31. Let 1 < p ≤ 2 and 0 < α ≤ 1. Then there exists a function in

Lip (α, p,G) which does not belong to A(p/(αp+ p− 1)). In particular, if 1 < p ≤ 2

and αp = 1, then there exists a function in Lip (α, p,G) whose Fourier series is not

absolutely convergent.

Onneweer also proved the following theorem.

Theorem 1.2.32. Let 1 < p ≤ 2 and 0 < α ≤ 1.

(a) If {cn} is a sequence for which
∑∞

n=1 |cnnα|p < ∞, then there exists an f in

Lip (α, p′, G) such that f̂(n) = cn for all n ∈ N.

(b) If f ∈ Lip (α, p,G) and if 0 < β < α, then
∑∞

n=1 |f̂(n)nβ|p′ <∞.

(c) There exists an f ∈ Lip (α, p,G) such that
∑∞

n=1 |f̂(n)nα|p′ =∞.

Vilenkin and Rubinštěin [67] proved the following theorem, which is an analogue

of a known theorem of Stečhkin [61].

Theorem 1.2.33. If f ∈ L2(G) then
∑∞

k=mn
|f̂(k)|2 ≤ 1

2

(
ω(2)(f, n)

)2
.

Quek and Yap [54] extended above results of Onneweer to general Vilenkin

groups. They have considered the class Lip (α, p,G) as in (1.26) and defined a

similar class of functions Lip (α, p,G) for an arbitrary Vilenkin group G, 0 < α ≤ 1

and 1 ≤ p <∞ as

Lip (α, p,G) =
{
f ∈ Lp(G) : ω(p)(f, n) = O

(
m−αn+1

)}
. (1.40)
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Clearly Lip (α, p,G) ⊂ Lip (α, p,G) for all Vilenkin groups G, but the two classes

need not be the same (see [54, Remark 5.9]). However, for bounded Vilenkin groups

G, obviously Lip (α, p,G) = Lip (α, p,G), and we shall use the notation Lip (α, p,G)

in this case.

Here we state results of Quek and Yap. In these results the notation ∆n denotes

the difference ∆n = Dmn+1 −Dmn where Dk denotes the Dirichlet kernel of order k

defined as Dk(x) =
∑k−1

i=0 χi(x), x ∈ G.

Theorem 1.2.34. Let 1 ≤ p ≤ 2 and 0 < β ≤ p′. If f ∈ L1(G) and

∞∑
n=0

(mn+1)(p′−β)/p′(‖∆n ∗ f‖p)β <∞,

then f ∈ A(β).

Lemma 1.2.35. If 1 ≤ p <∞ and if f ∈ Lp(G), then

‖Dmn ∗ f − f‖p ≤ ω(p)(f, n)

for n = 0, 1, 2, ... .

Corollary 1.2.36. Let 1 ≤ p ≤ 2 and 0 < β ≤ p′. If f ∈ Lp(G) and

∞∑
n=0

(mn+1)(p′−β)/p′(ω(p)(f, n))β <∞,

then f ∈ A(β).

Now Onneweer’s Theorem 1.2.27 for bounded Vilenkin groups becomes a special

case of Corollary 1.2.36 because if G is bounded, we can replace mn+1 by mn in

Corollary 1.2.36. If we take β = 1 in Theorem 1.2.34 and Corollary 1.2.36 we obtain

Corollary 1.2.37. For 1 ≤ p ≤ 2, we have

(a) if f ∈ L1(G) and
∑∞

n=0(mn+1)1/p‖∆n ∗ f‖p <∞, then f ∈ A(1); and

(b) if f ∈ Lp(G) and
∑∞

n=0(mn+1)1/pω(p)(f, n) <∞, then f ∈ A(1).

The next corollary is the extension of Onneweer result (Corollary 1.2.29) to

arbitrary Vilenkin groups.
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Corollary 1.2.38. Let 0 < α ≤ 1, 1 ≤ p ≤ 2 and β > p/(αp + p − 1). Then

Lip (α, p,G) ⊂ A(β).

If we take β = 1 in the preceding corollary we obtain

Corollary 1.2.39. Let 1 ≤ p ≤ 2 and 1 < αp ≤ p. Then Lip (α, p,G) ⊂ A(1).

As noted above, if G is bounded, then the number mn+1 in Corollary 1.2.36 can

be replaced by mn to obtain Onneweer’s Theorem 1.2.27. Quek and Yap’s following

theorem shows that Onneweer’s theorem holds only if G is bounded.

Theorem 1.2.40. Let G be an unbounded Vilenkin group. Let 1 ≤ p ≤ 2 and

0 < β < p′. Then there exists a function f ∈ Lp(G) such that

∞∑
n=0

(mn)(p′−β)/p′(ω(p)(f, n))β <∞,

but f 6∈ A(β).

Onneweer (see Corollary 1.2.28) showed that if G is bounded, 1 ≤ p ≤ 2, and if

f ∈ Lp(G) is such that
∑∞

n=0(mn)1/pω(p)(f, n) <∞, then f ∈ A(1). For unbounded

Vilenkin groups Quek and Yap proved the following (see Corollary 1.2.37 for a

positive result).

Corollary 1.2.41. Let G be an unbounded Vilenkin group and 1 ≤ p ≤ 2. Then

there exists f ∈ Lp(G) such that
∑∞

n=0(mn)1/pω(p)(f, n) <∞, but f 6∈ A(1).

Yoshikazu Uno [66] proved an analogue of trigonometric series result of Schramm

and Waterman [56].

Theorem 1.2.42. Let 1 ≤ r <∞ and 1 ≤ p < 2r. If f ∈ ΛGBF(p) satisfies

∞∑
n=0

(mn+1)
1
2

(
ω((2−p)r′+p)(f, n)

)1− p
2r(∑mn

j=1
1
λj

) 1
2r

<∞,

then f ∈ A(1), where the class ΛGBF(p) is defined as in Definition 4.1.12.

In Chapter 5, Section 5.1, we study the absolute convergence of Vilenkin Fourier

series for functions of various classes of generalized bounded fluctuations and obtain

a generalization of a result of Uno [66].
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An important trigonometric inequality essentially due to Wiener but later on

made precise by Ingham concerning the lacunary trigonometric sums f(x) =
∑
Ake

inkx,

where Ak’s are complex numbers, n−k = −nk and {nk} satisfies the small gap condi-

tion (1.11), says that if I is any subinterval of [−π, π] of length |I| = 2π(1 + δ)/q >

2π/q then
∑
|Ak|2 ≤ Aδ|I|−1

∫
I
|f |2, |Ak| ≤ Aδ|I|−1

∫
I
|f | wherein Aδ depends only

on δ. Such an inequality is proved in Chapter 5, Section 5.2, in the setting of the

totally disconnected compact abelian groups G. The inequality is then applied to

generalize the Bernstein, Szász and Stečhkin type results concerning the absolute

convergence of Fourier series on G.

Finally in the same Chapter 5, in Section 5.3, we prove small gap analogues of

our results of Section 5.1 when functions are of (generalized) bounded fluctuation

locally on certain cosets.
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Chapter 2

Multiple Trigonometric Fourier

Coefficients

2.1 Order of magnitude of multiple trigonometric

Fourier coefficients of functions of bounded p-

variation

For a function of two variables several definitions of bounded variation are given and

various properties are studied (see, for example, [24, 1]). F. Móricz [33] studied the

order of magnitude of double Fourier coefficients with the help of Riemann-Stieltjes

integral of functions of two variables and V. Fülöp and F. Móricz [10] studied the

order of magnitude of multiple Fourier coefficients of functions of bounded variation

in the sense of Vitali and Hardy & Krause (see [8]) in a straightforward way without

using Riemann-Stieltjes integral (see Theorems 1.1.32, 1.1.33 and 1.1.34). Here we

define the concept of bounded p-variation (p ≥ 1) for a function of several variables in

two different ways as follows and study the order of magnitude of Fourier coefficients

for functions of these classes. Our results generalize those of [33] and [10] in the

sense that for p = 1, our definitions coincides with the definitions of Vitali and

Hardy & Krause and our results with those of [33] and [10], except for the exact

constant. Results of this section are published in the form of a paper in [17] (see

also MR2670992).

Definition 2.1.1. Let R be the rectangle as in Definition 1.1.28. By a (finite)
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partition of R we mean the a set {R1, ..., Rn}, in which Ri’s are pairwise disjoint

(no two have common interior) subrectangles of R having their sides (faces) parallel

to the standard coordinate hyperplanes and whose union is R.

Definition 2.1.2. For p ≥ 1 we say that f is of bounded p-variation over R (written

as f ∈ BVV
(p)(R)) if Vp(f ;R), the total p-variation of f over R, is finite, where

Vp(f ;R) := sup

{
n∑
i=1

|∆f(Ri)|p
}1/p

, (2.1)

in which the supremum is taken over all partitions {R1, ..., Rn} of R and ∆f(Ri)’s

are defined as in Definition 1.1.29.

Remark 2.1.3. Note that for p = 1 our definition is equivalent to that of Defi-

nition 1.1.30 of Vitali (see, for example, [8, 10]). This is because if we take any

grid P of R (see Definition 1.1.28), then it will give a partition of R in terms of

disjoint union of subrectangles of R and so the corresponding sum does not ex-

ceed V1(f ;R). Conversely, if {R1, ..., Rn} is any partition of R, by inserting (hyper)

planes parallel to the standard coordinate hyperplanes (if necessary) in some rect-

angles from R1, ..., Rn, we can form a grid P of R and by triangle inequality the sum∑n
i=1 |∆f(Ri)| does not exceed the corresponding sum for the grid P and hence it

does not exceed V (f ;R) (see (1.16)).

As noted by Fülöp and F. Móricz [10, p. 96], in this case also, when m ≥ 2,

a function f in the class BVV
(p)(R) is not necessarily measurable in the sense of

Lebesgue. This is a consequence of the simple fact that if a function f = f(x1, ..., xm)

does not depend on at least one of the x1, ..., xm, then for any subrectangle R′ of

R we have ∆f(R′) = 0, so that Vp(f ;R) = 0. Consequently, the class BVV
(p)(R)

contains functions for which the m-dimensional Lebesgue integral over R fails to

exist. The following definition is motivated by this fact.

Definition 2.1.4. In case m = 2, we say that a function f = f(x1, x2) is of bounded

p-variation over R := [a1, b1]× [a2, b2], in symbol: f ∈ BVH
(p)(R), if it is in the class

BVV
(p)(R) and if the marginal functions f(x1, a2) and f(a1, x2) are of bounded p-

variation on the intervals I1 := [a1, b1] and I2 := [a2, b2], respectively in the sense of

Wiener [77].

In case m ≥ 3, the notion of bounded p-variation over a rectangle R can naturally

be defined by the following recurrence: f ∈ BVH
(p)(R) if f ∈ BVV

(p)(R) and each
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of the marginal functions f(x1, ..., ak, ..., xm) is in the class BVH
(p)(R(ak)), where

k = 1, ...,m and R(ak) is as in (1.17).

This definition can be equivalently reformulated as follows: f ∈ BVH
(p)(R) if and

only if f ∈ BVV
(p)(R) and for any choice of (1 ≤)j1 < ... < jn(≤ m), 1 ≤ n < m, the

function f(x1, ..., aj1 , ..., ajn , ..., xm) is in BVV
(p)(R(aj1 , ..., ajn)), where R(aj1 , ..., ajn)

is as in (1.18).

Remark 2.1.5. As argued in Remark 2.1.3, when p = 1 our Definition 2.1.4 is

equivalent to the Definition 1.1.31 given by Hardy and Krause (see, for example,

[8, 10]).

First we state and prove certain lemmas which we require to prove our main

theorems (Theorems 2.1.13 and 2.1.14).

Lemma 2.1.6. If f ∈ BVH
(p)(R) then f is bounded over R.

Proof. Observe that when m = 2, for any (x1, x2) ∈ R = I1 × I2 we have

|f(x1, x2)|p = |{f(x1, x2)− f(x1, a2)− f(a1, x2) + f(a1, a2)}
+ {f(x1, a2)− f(a1, a2)}+ {f(a1, x2)− f(a1, a2)}+ f(a1, a2)|p

≤ 4p{|f(x1, x2)− f(x1, a2)− f(a1, x2) + f(a1, a2)|p

+ |f(x1, a2)− f(a1, a2)|p + |f(a1, x2)− f(a1, a2)|p + |f(a1, a2)|p}
≤ 4p{(Vp(f ;R))p + (Vp(f(·, a2); I1))p + (Vp(f(a1, ·); I2))p + |f(a1, a2)|p}.

Similarly when m ≥ 2, for any x ∈ R = [a1, b1]× ...× [am, bm] we have

|f(x)|p ≤ 2mp
{

(Vp(f ;R))p

+
m−1∑
n=1

∑
1≤j1<...<jn≤m

(Vp(f(·, ..., aj1 , ..., ajn , ..., ·);R(aj1 , ..., ajn)))p + |f(a)|p
}
.

This completes the proof.

Lemma 2.1.7. If f ∈ BVH
(p)(R) then for any arbitrary fixed values cj1 ∈ [aj1 , bj1 ],

..., cjn ∈ [ajn , bjn ], (1 ≤)j1 < ... < jn(≤ m), and 1 ≤ n < m, the function

f(·, ..., cj1 , ..., cjn , ..., ·) is in BVH
(p)(R(aj1 , ..., ajn)) and that

(Vp(f(·, ..., cj1 , ..., cjn , ..., ·);R(aj1 , ..., ajn)))p ≤ 2np
{

(Vp(f ;R))p

+
n∑
k=1

∑
s1<...<sk,

s1,...,sk∈{j1,...,jn}

(Vp(f(·, ..., as1 , ..., ask , ..., ·);R(as1 , ..., ask)))
p

}
.
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Proof. First we will prove the lemma for m = 2. We must show that for any

a2 < c2 ≤ b2 and a1 < c1 ≤ b1 we have

(Vp(f(·, c2); I1))p ≤ 2p{(Vp(f ;R))p + (Vp(f(·, a2); I1))p};

(Vp(f(c1, ·); I2))p ≤ 2p{(Vp(f ;R))p + (Vp(f(a1, ·); I2))p}.

Fix a2 < c2 ≤ b2. Then for any partition a1 = x0
1, x

1
1, ..., x

n
1 = b1 of I1 we have

n∑
i=1

|f(xi1, c2)− f(xi−1
1 , c2)|p

=
n∑
i=1

|{f(xi1, c2)− f(xi1, a2)− f(xi−1
1 , c2) + f(xi−1

1 , a2)}+ {f(xi1, a2)− f(xi−1
1 , a2)}|p

≤ 2p
{ n∑

i=1

|f(xi1, c2)− f(xi1, a2)− f(xi−1
1 , c2) + f(xi−1

1 , a2)|p

+
n∑
i=1

|f(xi1, a2)− f(xi−1
1 , a2)|p

}
≤ 2p{(Vp(f ;R))p + (Vp(f(·, a2); I1))p}.

Taking supremum over all partitions of I1 we get

(Vp(f(·, c2); I1))p ≤ 2p{(Vp(f ;R))p + (Vp(f(·, a2); I1))p}.

Similarly for a1 < c1 ≤ b1 we have

(Vp(f(c1, ·); I2))p ≤ 2p{(Vp(f ;R))p + (Vp(f(a1, ·); I2))p}.

Now we will show the lemma for m = 3. By symmetry in the variables x1, x2, x3, it

is enough to show the following:

(i) For any a3 < c3 ≤ b3

(Vp(f(·, ·, c3);R(a3)))p ≤ 2p{(Vp(f ;R))p + (Vp(f(·, ·, a3);R(a3)))p}.

(ii) For any a2 < c2 ≤ b2 and a3 < c3 ≤ b3

(Vp(f(·, c2, c3);R(a2, a3)))p ≤ 22p{(Vp(f ;R))p+(Vp(f(·, a2, ·);R(a2)))p

+(Vp(f(·, ·, a3);R(a3)))p + (Vp(f(·, a2, a3);R(a2, a3)))p}.
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To prove (i), consider a partition {Ri}si=1 of R(a3). Then {Ri × [a3, c3]}si=1 is a

collection of disjoint subrectangles of R. Therefore
s∑
i=1

|∆f(·, ·, c3)(Ri)|p =
s∑
i=1

|∆f(Ri × [a3, c3]) + ∆f(·, ·, a3)(Ri)|p

≤ 2p
{ s∑

i=1

|∆f(Ri × [a3, c3])|p +
s∑
i=1

|∆f(·, ·, a3)(Ri)|p
}

≤ 2p{(Vp(f ;R))p + (Vp(f(·, ·, a3);R(a3)))p}.

Taking supremum over all partitions of R(a3) we get (i).

Next, to prove (ii), consider a partition {a1 = x0
1, x

1
1, ..., x

s
1 = b1} of R(a2, a3).

Then
s∑
i=1

|f(xi1, c2, c3)− f(xi−1
1 , c2, c3)|p

=
s∑
i=1

|∆f([xi−1
1 , xi1]× [a2, c2]× [a3, c3]) + ∆f(·, a2, ·)([xi−1

1 , xi1]× [a3, c3])

+ ∆f(·, ·, a3)([xi−1
1 , xi1]× [a2, c2]) + {f(xi1, a2, a3)− f(xi−1

1 , a2, a3)}|p

≤ 4p
s∑
i=1

{
|∆f([xi−1

1 , xi1]× [a2, c2]× [a3, c3])|p + |∆f(·, a2, ·)([xi−1
1 , xi1]× [a3, c3])|p

+ |∆f(·, ·, a3)([xi−1
1 , xi1]× [a2, c2])|p + |f(xi1, a2, a3)− f(xi−1

1 , a2, a3)|p
}

≤ 4p{(Vp(f ;R))p + (Vp(f(·, a2, ·);R(a2)))p + (Vp(f(·, ·, a3);R(a3)))p

+ (Vp(f(·, a2, a3);R(a2, a3)))p}.

This proves the lemma for m = 3. A similar argument proves the lemma for any

m.

Lemma 2.1.8. Let f ∈ BVV
(p)(R), where R = [a1, b1]×...×[am, bm]. Let {R1, ..., Rn}

be a partition of R. Then f ∈ BVV
(p)(Ri) for each i = 1, ..., n, and that

n∑
i=1

(Vp(f ;Ri))
p ≤ (Vp(f ;R))p.

Proof. Let {Rij : j = 1, ...,mi} be any partition of Ri, for each i = 1, ..., n. Then

{Rij : j = 1, ...,mi; i = 1, ..., n} is clearly a partition of R and since f ∈ BVV
(p)(R),

n∑
i=1

mi∑
j=1

|∆f(Rij)|p ≤ (Vp(f ;R))p.
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Taking supremum over all partitions {R1j : j = 1, ...,m1} of R1 (keeping the parti-

tions of R2, ..., Rn fixed) we get

(Vp(f ;R1))p +
n∑
i=2

mi∑
j=1

|∆f(Rij)|p ≤ (Vp(f ;R))p.

Similarly taking supremum over all partitions of R2 (keeping the partitions of

R3, ..., Rn fixed), and continuing in this way for R3, ..., Rn we get the lemma.

For the proofs of Lemmas 2.1.9, 2.1.10 and 2.1.11, for functions of bounded

variation refer [1, p. 721-722]. We prove the results for functions of bounded p-

variation.

Lemma 2.1.9. Let f ∈ BVV
(p)(R), where R = [a1, b1] × [a2, b2]. Suppose f(x, ȳ)

(respectively f(x̄, y)) has no discontinuities of second kind for any fixed ȳ ∈ [a2, b2]

(respectively x̄ ∈ [a1, b1]). If f(x, ȳ) (respectively f(x̄, y)) for some ȳ (respectively

x̄) has only a denumerable number of discontinuities in x (respectively y), the dis-

continuities in x (respectively y) of f(x, y) are located on a denumerable number of

parallels to the y-axis (respectively x-axis).

Proof. Let E = {(x, y) ∈ R : f has a discontinuity in x} and Eȳ = {(x̄, ȳ) ∈ R :

f(x, ȳ) is discontinuous at x̄}. Then Eȳ ⊂ E and by our assumption Eȳ is denumer-

able.

If possible suppose there is a non-denumerable set S of vertical lines each con-

taining at least one point of E. Since Eȳ is denumerable, clearly only a denumerable

subset of S made up wholly of points of Eȳ. Let the remaining lines of S constitute

the subset S1; then each line of S1 contains at least one point of E and no point of

Eȳ, and S1 is non-denumerable. On each line of S1 (which lie interior to R) choose

a point of E; at this point the saltus of f in x is positive and hence its pth power.

This non-denumerable set of pth powers of saltuses contains a subset whose elements

are the terms of a divergent series. Thus there is a sequence {(xi, yi)}∞i=1 of distinct

points in E, which lie interior to R and on different lines in S1, such that

∞∑
i=1

spi =∞,

where si = the saltus in x at (xi, yi) = |f(xi+, yi)− f(xi−, yi)|. By the definition of

f(xi+, yi) and f(xi−, yi), for every εi = si
4

there is a δi > 0 such that

xi − δi < x < xi ⇒ |f(x, yi)− f(xi−, yi)| < εi
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and

xi < x < xi + δi ⇒ |f(x, yi)− f(xi+, yi)| < εi.

Since the point (xi, ȳ) lies on a line in S1, f(x, ȳ) is continuous at xi for each i.

Thus, for each i, there is a δ′i > 0 such that

|x− xi| < δ′i ⇒ |f(x, ȳ)− f(xi, ȳ)| < εi
2
.

Put δ′′i = min{δi, δ′i} and choose x′i, x
′′
i such that xi − δ′′i < x′i < xi, xi < x′′i <

xi+ δ′′i for each i and the intervals {[x′i, x′′i ]}∞i=1 are pairwise disjoint. Then by above

inequalities we have

|f(x′i, yi)− f(xi−, yi)| < εi, |f(x′′i , yi)− f(xi+, yi)| < εi;

and

|f(x′i, ȳ)− f(xi, ȳ)| < εi
2
, |f(x′′i , ȳ)− f(xi, ȳ)| < εi

2
.

Therefore

|f(x′′i , yi)− f(x′i, yi)|
= |f(x′′i , yi)− f(xi+, yi) + f(xi+, yi)− f(xi−, yi) + f(xi−, yi)− f(x′i, yi)|
≥ |f(xi+, yi)− f(xi−, yi)| − |f(x′′i , yi)− f(xi+, yi) + f(xi−, yi)− f(x′i, yi)|
≥ 4εi − 2εi = 2εi

and

|f(x′′i , ȳ)− f(x′i, ȳ)| ≤ |f(x′′i , ȳ)− f(xi, ȳ)|+ |f(xi, ȳ)− f(x′i, ȳ)| < εi
2

+
εi
2

= εi.

Hence

|f(x′′i , yi)− f(x′i, yi)− f(x′′i , ȳ) + f(x′i, ȳ)|
≥ |f(x′′i , yi)− f(x′i, yi)| − |f(x′′i , ȳ)− f(x′i, ȳ)|
≥ 2εi − εi = εi.

Thus if Ri denotes the rectangle with vertices (x′′i , yi), (x′i, yi), (x′′i , ȳ) and (x′i, ȳ) for

each i, then
∞∑
i=1

|∆f(Ri)|p ≥
∞∑
i=1

εpi =
1

4p

∞∑
i=1

spi =∞.

This shows that Vp(f ;R) =∞; from this contradiction lemma follows.
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Lemma 2.1.10. Let f ∈ BVV
(p)(R), where R = [a1, b1] × [a2, b2]. Then the set

of all points (x̄, ȳ) ∈ R for which f(x, y) is discontinuous at (x̄, ȳ), but f(x, ȳ) is

continuous at x̄ and f(x̄, y) is continuous at ȳ, is denumerable.

Proof. Let (x̄, ȳ) be such a discontinuity. Then there exists ε > 0 such that for every

δ > 0 there is a point, say, (x′, y′) (depending on δ) such that√
(x′ − x̄)2 + (y′ − ȳ)2 < δ but |f(x′, y′)− f(x̄, ȳ)| ≥ ε. (2.2)

Also, by the continuity of f(·, ȳ) and f(x̄, ·) at x̄ and ȳ respectively, ∃ δ > 0 3

|x− x̄| < δ ⇒ |f(x, ȳ)− f(x̄, ȳ)| < ε

4
and |y − ȳ| < δ ⇒ |f(x̄, y)− f(x̄, ȳ)| < ε

4
.

For this δ, as above, there is a point (x′, y′) such that (2.2) holds. Since√
(x′ − x̄)2 + (y′ − ȳ)2 ≥ |x′ − x̄| and

√
(x′ − x̄)2 + (y′ − ȳ)2 ≥ |y′ − ȳ|

we get

|f(x′, ȳ)− f(x̄, ȳ)| < ε

4
, |f(x̄, y′)− f(x̄, ȳ)| < ε

4
;

which shows that

|f(x′, ȳ) + f(x̄, y′)− 2f(x̄, ȳ)| < ε

2
.

Thus for the rectangle R′ with sides parallel to the axes and whose two vertices are

(x̄, ȳ) and (x′, y′), we have

|∆f(R′)|p = |f(x′, y′)− f(x′, ȳ)− f(x̄, y′) + f(x̄, ȳ)|p

≥ (|f(x′, y′)− f(x̄, ȳ)| − |f(x′, ȳ) + f(x̄, y′)− 2f(x̄, ȳ)|)p

>

(
ε− ε

2

)p
=

(
ε

2

)p
.

The assumption that the set of such discontinuities is non-denumerable then leads

to a contradiction just as in the case of Lemma 2.1.9.

Lemma 2.1.11. Let f ∈ BVH
(p)(R), where R = [a1, b1]× [a2, b2]. Then the discon-

tinuities of f(x, y) are located on a countable number of parallels to the axes.

Proof. Since f ∈ BVH
(p)(R), f ∈ BVV

(p)(R) and the marginal functions f(x, a2) and

f(a1, y) are of bounded p-variation on I1 and I2 respectively. Thus f(x, a2) has a

denumerable number of discontinuities in x and f(a1, y) has a denumerable number

of discontinuities in y. So, in view of Lemma 2.1.9, the discontinuities in x or y of

f(x, y) are located on a countable number of parallels to the coordinate axes. Now

the lemma follows from Lemma 2.1.10.
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Lemma 2.1.12. Let f ∈ BVH
(p)(R), where R = [a1, b1] × ... × [am, bm]. Then the

discontinuities of f are located on a countable number of (m − 1)-dimensional hy-

perplanes parallel to some of the coordinate hyperplanes.

Proof. We will prove the lemma by using induction on m. In view of Lemma 2.1.11,

it is true for m = 2. Suppose it is true when m is replaced by m− 1. As f ∈
BVH

(p)(R), the marginal function f(x1, ..., ak, ..., xm) is in the class BVH
(p)(R(ak))

for each k = 1, ...,m. By induction hypothesis, for each k, the discontinuities of

f(x1, ..., ak, ..., xm) are located on a countable number of (m − 2)-dimensional hy-

perplanes of R(ak) parallel to some of the coordinate hyperplanes. Thus, arguing as

in the proof of Lemma 2.1.9, we can see that the discontinuities of f(x1, ..., xn) in

(x1, ..., xk−1, xk+1, ..., xm) are located on a denumerable number of (m−2)-dimensional

planes of R(ak) parallel to some of the coordinate hyperplanes, for all k = 1, ...,m.

Since each such plane is clearly embedded in an (m − 1)-dimensional hyperplane

in R parallel to some of the coordinate hyperplanes, such discontinuities of f are

located on a countable number of (m− 1)-dimensional hyperplanes parallel to some

of the coordinate hyperplanes in R.

Further, as f ∈ BVV
(p)(R), as arguing in Lemma 2.1.10, here we can see

that the set of all points (x̄1, ..., x̄m) ∈ R for which f(x1, ..., xm) is discontinu-

ous at (x̄1, ..., x̄m) but each marginal function f(x1, ..., x̄k, ..., xm) is continuous at

(x̄1, ..., x̄k−1, x̄k+1, ..., x̄m), is denumerable. Thus the lemma follows.

Theorem 2.1.13. Let f : Rm → C be 2π-periodic in each variable. If f belongs to

BVV
(p)([0, 2π]m)∩Lp(Tm) (p ≥ 1) and n = (n(1), ..., n(m)) ∈ Zm is such that n(j) 6= 0

for each j, then

f̂(n) = O

(
1

|
∏m

j=1 n
(j)|1/p

)
.

Proof. For the sake of simplicity in writing, we carry out the proof for m = 2, and

we write (x, y) and (k, `) in place of (x1, x2) and (n(1), n(2)) respectively.

Let n = (k, `) ∈ Z2 be such that k 6= 0, ` 6= 0. Then the functions e−ikx and

e−i`y are periodic functions of periods 2π
|k| and 2π

|`| respectively. Thus by putting

ar = r · 2π

|k|
(r = 0, 1, ..., |k|); bs = s · 2π

|`|
(s = 0, 1, ..., |`|)

we get∫ ar

ar−1

e−ikxdx = 0 (r = 1, 2, ..., |k|);
∫ bs

bs−1

e−i`ydy = 0 (s = 1, 2, ..., |`|). (2.3)
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In view of Fubini’s theorem and (2.3), we have∫ ar

ar−1

∫ bs

bs−1

f(x, bs−1))e−ikxe−i`ydxdy =

∫ ar

ar−1

f(x, bs−1)

[ ∫ bs

bs−1

e−i`ydy

]
e−ikxdx = 0,

∫ ar

ar−1

∫ bs

bs−1

f(ar−1, y)e−ikxe−i`ydxdy =

∫ bs

bs−1

f(ar−1, y)

[ ∫ ar

ar−1

e−ikxdx

]
e−i`ydy = 0

and∫ ar

ar−1

∫ bs

bs−1

f(ar−1, bs−1)e−ikxe−i`ydxdy = f(ar−1, bs−1)

∫ ar

ar−1

e−ikxdx

∫ bs

bs−1

e−i`ydy = 0

for all r = 1, ..., |k| and s = 1, ..., |`|. Define three functions f1, f2, f3 on T2 by

setting

f1(x, y) = f(x, bs−1) (0 ≤ x < 2π; bs−1 ≤ y < bs) for s = 1, ..., |`|;

f2(x, y) = f(ar−1, y) (ar−1 ≤ x < ar; 0 ≤ y < 2π) for r = 1, ..., |k|;

and

f3(x, y) = f(ar−1, bs−1) (ar−1 ≤ x < ar; bs−1 ≤ y < bs)

for r = 1, ..., |k|; s = 1, ..., |`|. Since f ∈ BVV
(p)([0, 2π]2) ∩ Lp(T2), each fi ∈

BVV
(p)([0, 2π]2) ∩ Lp(T2) and hence f − f1 − f2 + f3 ∈ BVV

(p)([0, 2π]2) ∩ Lp(T2).

Further in view of Fubini’s theorem and above relations we have∫ 2π

0

∫ 2π

0

f1(x, y)e−ikxe−i`ydxdy =

∫ 2π

0

[ |`|∑
s=1

∫ bs

bs−1

f(x, bs−1)e−i`ydy

]
e−ikxdx

= 0,

∫ 2π

0

∫ 2π

0

f2(x, y)e−ikxe−i`ydxdy =

∫ 2π

0

[ |k|∑
r=1

∫ ar

ar−1

f(ar−1, y)e−ikxdx

]
e−i`ydy

= 0

and∫ 2π

0

∫ 2π

0

f3(x, y)e−ikxe−i`ydxdy =

|k|∑
r=1

|`|∑
s=1

∫ ar

ar−1

∫ bs

bs−1

f(ar−1, bs−1)e−ikxe−i`ydxdy

= 0.
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Using these equations in the definition of f̂(n) we get

(2π)2|f̂(n)| =
∣∣∣∣ ∫ 2π

0

∫ 2π

0

f(x, y)e−ikxe−i`ydxdy

∣∣∣∣
=

∣∣∣∣ ∫ 2π

0

∫ 2π

0

[f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)]e−ikxe−i`ydxdy

∣∣∣∣
≤
∫ 2π

0

∫ 2π

0

|f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)|dxdy

≤
(∫ 2π

0

∫ 2π

0

|f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)|pdxdy
)1/p

(2π)2/q,

in view of the Hölder’s inequality (when p > 1) since f − f1 − f2 + f3 ∈ Lp(T2),

where q is such that 1/p+ 1/q = 1. Observe that when p = 1, we don’t use Hölder’s

inequality and in that case we consider the inequality except last step. In any case,

it follows that

(2π)2|f̂(n)|p

≤
∫ 2π

0

∫ 2π

0

|f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)|pdxdy

=

|k|∑
r=1

|`|∑
s=1

∫ ar

ar−1

∫ bs

bs−1

|f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)|pdxdy

=

|k|∑
r=1

|`|∑
s=1

∫ ar

ar−1

∫ bs

bs−1

|f(x, y)− f(x, bs−1)− f(ar−1, y) + f(ar−1, bs−1)|pdxdy

≤
|k|∑
r=1

|`|∑
s=1

(Vp(f ; [ar−1, ar]× [bs−1, bs]))
p(ar − ar−1)(bs − bs−1)

≤ (2π)2

|k`|
(Vp(f ; [0, 2π]2))p,

in view of Lemma 2.1.8. Thus we get

|f̂(n)| ≤ Vp(f ; [0, 2π]2)

|k`|1/p
. (2.4)

This completes the proof.

Theorem 2.1.14. Let f : Rm → C be 2π-periodic in each variable. If f belongs to

BVH
(p)([0, 2π]m) (p ≥ 1) then for any 0 6= n = (n(1), ..., n(m)) ∈ Zm,

f̂(n) = O

(
1

|
∏m

j=1,n(j) 6=0 n
(j)|1/p

)
.
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Proof. Here also we will carry out the proof for m = 2 and use notations as in the

proof of Theorem 2.1.13. Since f ∈ BVH
(p)([0, 2π]2), in view of Lemma 2.1.11 (use

Lemma 2.1.12 for general case), the discontinuities of f lie on countable number of

parallels to the axes and hence f is measurable over T2 in the sense of Lebesgue.

Further, by Lemma 2.1.6, f is bounded over [0, 2π]2 and hence f ∈ Lp(T2). As

BVH
(p)([0, 2π]2) ⊂ BVV

(p)([0, 2π]2), f ∈ Lp(T2) ∩ BVV
(p)([0, 2π]2). Therefore if

n = (k, `) ∈ Z2 is such that k 6= 0, ` 6= 0, by Theorem 2.1.13,

f̂(n) = O

(
1

|k`|1/p

)
.

Next, let n = (k, `) ∈ Z2 be such that k 6= 0, ` = 0 and let ar’s and f2 be as defined

in the proof of Theorem 2.1.13. Then we have∫ 2π

0

∫ 2π

0

f2(x, y)e−ikxdxdy =

∫ 2π

0

( |k|∑
r=1

f(ar−1, y)

[ ∫ ar

ar−1

e−ikxdx

])
dy = 0,

in view of Fubini’s theorem and (2.3); and,

(2π)2|f̂(n)| =
∣∣∣∣ ∫ 2π

0

∫ 2π

0

[f(x, y)− f2(x, y)]e−ikxdxdy

∣∣∣∣
≤
(∫ 2π

0

∫ 2π

0

|f(x, y)− f2(x, y)|pdxdy
)1/p

(2π)2/q,

in view of Hölder’s inequality as in the proof of Theorem 2.1.13. Therefore

(2π)2|f̂(n)|p ≤
∫ 2π

0

[ |k|∑
r=1

∫ ar

ar−1

|f(x, y)− f(ar−1, y)|pdx
]
dy

≤
∫ 2π

0

[ |k|∑
r=1

(Vp(f(·, y); [ar−1, ar]))
p(ar − ar−1)

]
dy

≤ 2π

|k|

∫ 2π

0

(Vp(f(·, y); [0, 2π]))pdy

≤ 2π

|k|

∫ 2π

0

2p[(Vp(f ; [0, 2π]2))p + (Vp(f(·, 0); [0, 2π]))p]dy

=
(2π)22p[(Vp(f ; [0, 2π]2))p + (Vp(f(·, 0); [0, 2π]))p]

|k|
,
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in view of Lemma 2.1.8 (for a function of one variable) and Lemma 2.1.7. Thus we

have

f̂(n) = f̂(k, 0) = O

(
1

|k|1/p

)
. (2.5)

The case k = 0, ` 6= 0, is similar to the above case and in this case we get

f̂(0, `) = O

(
1

|`|1/p

)
. (2.6)

This completes the proof.

Remark 2.1.15. (2.4), (2.5) and (2.6) with p = 1 give the results of Móricz [33]

and Fülöp and Móricz [10, for n = 2], except for the exact constant in their case.

Thus, as far as the order of magnitude is concerned, our theorems generalize their

results.

2.2 Order of magnitude of multiple trigonometric

Fourier coefficients of lacunary series of func-

tions of bounded p-variation

In Section 2.1, we have defined the notion of bounded p-variation (p ≥ 1) for a

function from a rectangle [a1, b1]× ...× [am, bm] to C and studied the order of mag-

nitude of Fourier coefficients of such functions from [0, 2π]m to C. J. R. Patadia [44,

Theorem 3] studied the order of magnitude of Fourier coefficients of functions in

L1(Tm) having lacunary Fourier series with certain gaps and which satisfy Lipschitz

condition locally (that is, on certain smaller subsets of [0, 2π]m). Here we study the

order of magnitude of Fourier coefficients of functions in L1(Tm) having same type

of lacunary Fourier series and are of bounded p-variation and prove result analogous

to our earlier result (see Theorem 2.1.14). Results of this section are accepted for

publication in the form of a paper in Acta. Sci. Math. (Szeged) [18].

Let x0 = (x01, ..., x0m) denote an arbitrary point of Q, δ any arbitrary real

number such that 0 < δ ≤ π and I = I(x0, δ) denote them-dimensional subrectangle

of Q defined by (1.14).

Given a subset E ⊂ Zm, a function f ∈ L1(Tm) is said to be E-spectral (or, said

to have spectrum E) if and only if f̂(n) = 0 for all n in Zm \ E. In what follows,
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we consider a set E ⊂ Zm described in the following way: For each j = 1, 2, ...,m

consider sets E(j) = {..., n(j)
−2, n

(j)
−1, n

(j)
0 , n

(j)
1 , n

(j)
2 , ...} ⊂ Z with n

(j)
−k = −n(j)

k for k =

0, 1, 2, ... and with {n(j)
k }∞k=1 strictly increasing such that

lim inf
k→∞

N
(j)
k

lnn
(j)
k

= B(j) >
8πe

δ
, (2.7)

where N
(j)
k = min

{
n

(j)
k+1 − n

(j)
k , n

(j)
k − n

(j)
k−1

}
; and then put E =

∏m
j=1E

(j). ns =

(n
(1)
s1 , n

(2)
s2 , ..., n

(m)
sm ) denotes the typical element of E. When m = 1, E will be taken

to be E(1) with upper suffix in n
(1)
k ’s and N

(1)
k ’s omitted.

We need the following lemmas. Lemma 2.2.1 follows from a result due to Noble

[36], or [3, Vol. II, p. 270] and Lemma 2.2.2 is its m-dimensional analogue by

Patadia [44].

Lemma 2.2.1. Let 0 < δ ≤ π. Then for sufficiently large n there exists a trigono-

metric polynomial Tn(x) of degree ≤ n, with constant term 1, such that

(a) |Tn(x)| ≤ A1δ
−1 for all x ∈ [−π, π],

(b) |Tn(x)| ≤ A2 exp(−nδ/(8πe)) for all x such that δ ≤ |x| ≤ π,

where A1 and A2 are absolute constants.

Lemma 2.2.2. Let 0 < δ ≤ π. Then for n = (n(1), ..., n(m)) such that each n(j) is

sufficiently large, there exists a trigonometric polynomial

Tn(x) =
∑

|k(j)|≤n(j)
j=1,...,m

cke
i(k·x),

with constant term 1, such that

(a) |Tn(x)| ≤ A1δ
−m for all x ∈ Q,

(b) |Tn(x)| ≤ A2 exp(−δ(1 · n)/(8πe)) for all x ∈ Q \ I(0, δ),

where 1 = (1, ..., 1) and A1, A2 are constants depending only on m.

The main theorem of this section is the following (in the proof C denotes a

positive constant which may not have the same value at all places where it appear).
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Theorem 2.2.3. Let E ⊂ Zm be described as above and f : Rm → C be 2π-periodic

in each variable. If f ∈ BVH
(p)(I) (I = I(x0, δ), p ≥ 1), f is E-spectral and

nk = (n
(1)
k1
, ..., n

(m)
km

) ∈ Zm is such that |n(j)
kj
| is sufficiently large for each j, then

f̂(nk) = O

 1∣∣∣∏m
j=1 n

(j)
kj

∣∣∣1/p
 .

Proof. We may assume without loss of generality that x0 = 0. For, suppose the the-

orem is true when x0 = 0 and consider the function g(x) = f(x + x0) = (Tx0f)(x).

Then

x ∈ I(0, δ)⇔ |xj| ≤ δ ∀j ⇔ |xi + x0j − x0j| ≤ δ ∀j ⇔ x + x0 ∈ I(x0, δ).

Since f ∈ BVH
(p)(I(x0, δ)), it follows that g ∈ BVH

(p)(I(0, δ)). Also,

g = Tx0f ⇒ ĝ(n) = ei(n·x0)f̂(n) ∀n ∈ Zm.

Since f is E-spectral, so is g and as the theorem is true when x0 = 0, ĝ(nk) =

O(1/|
∏m

j=1 n
(j)
kj
|1/p). It follows now that f̂(nk) = O(1/|

∏m
j=1 n

(j)
kj
|1/p) in view of

|ei(n·x0)| = 1.

For the sake of simplicity in writing, now onwards, we carry out the proof for

m = 2, and we write (x, y) in place of (x1, x2). Since f ∈ BVH
(p)([0, 2π]2), in view

of Lemma 2.1.11, the discontinuities of f lie on countable number of parallels to

the axes and hence f is measurable over T2 in the sense of Lebesgue. Further, by

Lemma 2.1.6, f is bounded over [0, 2π]2 and hence f ∈ Lp(T2). As BVH
(p)([0, 2π]2) ⊂

BVV
(p)([0, 2π]2), f ∈ Lp(T2) ∩ BVV

(p)([0, 2π]2).

For a given nk = (n
(1)
k1
, n

(2)
k2

), we take Mk = (M
(1)
k1
,M

(2)
k2

), where for each j = 1, 2,

M
(j)
kj

= min{N (j)
kj
− 1, |n(j)

kj
|1/2}. In view of the symmetry of the set E(j) and (2.7)

we have

lim inf
|kj |→∞

N
(j)
kj
− 1

ln |n(j)
kj
|

= lim inf
|kj |→∞

N
(j)
kj

ln |n(j)
kj
|

= B(j) >
8πe

δ
,

for each j = 1, 2. Thus there is a positive integer K0 such that (N
(j)
kj
−1)/(ln |n(j)

kj
|) >

(8πe/δ) for all kj ≥ K0 and each j = 1, 2. Since

lim
kj→∞

|n(j)
kj
|1/2

ln |n(j)
kj
|

=∞
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for each j, there is a K1 ∈ N such that (|n(j)
kj
|1/2)/(ln |n(j)

kj
|) > (8πe/δ) for all kj ≥ K1

and each j = 1, 2. Taking K2 = max{K0, K1} we see that

M
(j)
kj

>

(
8πe

δ

)
ln |n(j)

kj
| (2.8)

for all kj ≥ K2 and each j = 1, 2. Thus for nk such that each |n(j)
kj
| is sufficiently

large (2.8) holds.

Now consider the trigonometric polynomial TMk
(x) satisfying conditions of Lemma

2.2.2 corresponding to this Mk and δ. Since f is E-spectral, the choice of Mk and

TMk
(x) gives us

f̂(nk) =
1

(2π)2

∫
Q

f(x)TMk
(x)e−i(nk·x)dx

=
1

(2π)2

(∫
I(0,δ)

+

∫
Q\I(0,δ)

)
f(x)TMk

(x)e−i(nk·x)dx

= I1 + I2, say. (2.9)

Now

|I2| =
1

(2π)2

∣∣∣∣∫
Q\I(0,δ)

f(x)TMk
(x)e−i(nk·x)dx

∣∣∣∣
≤ 1

(2π)2
A2e

(−δ(1·Mk)/(8πe))

∫
Q\I(0,δ)

|f(x)|dx

≤ 1

(2π)2
A2e

(−δ(1·Mk)/(8πe))||f ||1. (2.10)

In view of (2.8), for each j = 1, 2, we have

− δ

8πe
·M (j)

kj
< − δ

8πe
· 8πe

δ
· ln |n(j)

kj
| = − ln |n(j)

kj
|,

and therefore

e−
δ

8πe
(1·Mk) = e−

δ
8πe

(M
(1)
k1

+M
(2)
k2

) < e− ln |n(1)
k1
|e− ln |n(2)

k2
| =

1

|n(1)
k1
n

(2)
k2
|
.

Using this in (2.10) we get

I2 = O

(
1

|n(1)
k1
n

(2)
k2
|

)
. (2.11)
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Now we estimate I1. Again, for simplicity, we put n
(1)
k1

= u and n
(2)
k2

= v. Then there

are unique non-negative integers α and β such that

α
2π

|u|
≤ δ < (α + 1)

2π

|u|
; β

2π

|v|
≤ δ < (β + 1)

2π

|v|
.

Therefore

0 ≤ δ − α 2π

|u|
<

2π

|u|
; 0 ≤ δ − β 2π

|v|
<

2π

|v|
. (2.12)

Since 0 < α 2π
|u| , β

2π
|v| ≤ δ, say, J =

[
−α 2π

|u| , α
2π
|u|

]
×
[
−β 2π

|v| , β
2π
|v|

]
⊂ I(0, δ). Therefore

we can write I1 as

I1 =
1

(2π)2

∫
I(0,δ)

(fTMk
) (x)e−i(nk·x)dx

=
1

(2π)2

(∫
J

+

∫
I(0,δ)\J

)
(fTMk

) (x)e−i(nk·x)dx

= I11 + I12, say. (2.13)

Next we estimate I11. Note that e−iux and e−ivy are periodic functions of periods 2π
|u|

and 2π
|v| respectively. Thus by putting

ar = r
2π

|u|
(r = −α,−α + 1, ..., α); bs = s

2π

|v|
(s = −β,−β + 1, ..., β)

we get ∫ ar

ar−1

e−iuxdx = 0 (r = −α + 1,−α + 2, ..., α) (2.14)

and ∫ bs

bs−1

e−ivydy = 0 (s = −β + 1,−β + 2, ..., β). (2.15)

Define three functions f1, f2, f3 on J by setting

f1(x, y) = (fTMk
)(x, bs−1) (a−α ≤ x < aα; bs−1 ≤ y < bs)

for s = −β + 1,−β + 2, ..., β;

f2(x, y) = (fTMk
)(ar−1, y) (ar−1 ≤ x < ar; b−β ≤ y < bβ)

for r = −α + 1,−α + 2, ..., α; and

f3(x, y) = (fTMk
)(ar−1, bs−1) (ar−1 ≤ x < ar; bs−1 ≤ y < bs)
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for r = −α + 1,−α + 2, ..., α; s = −β + 1,−β + 2, ..., β.

Since f ∈ BVH
(p)(I(0, δ)), J ⊂ I(0, δ) and TMk

is a trigonometric polynomial,

each fi ∈ BVH
(p)(J) and hence (fTMk

− f1− f2 + f3) ∈ BVH
(p)(J) ⊂ Lp(J). Further

in view of Fubini’s theorem and the relations (2.14) and (2.15) we have∫
J

f1(x)e−i(nk·x)dx =

∫ aα

a−α

∫ bβ

b−β

f1(x, y)e−iuxe−ivydxdy

=

∫ aα

a−α

[
β∑

s=−β+1

(fTMk
)(x, bs−1)

∫ bs

bs−1

e−ivydy

]
e−iuxdx = 0,

∫
J

f2(x)e−i(nk·x)dx =

∫ aα

a−α

∫ bβ

b−β

f2(x, y)e−iuxe−ivydxdy

=

∫ bβ

b−β

[
α∑

r=−α+1

(fTMk
)(ar−1, y)

∫ ar

ar−1

e−iuxdx

]
e−ivydy = 0

and ∫
J

f3(x)e−i(nk·x)dx =

∫ aα

a−α

∫ bβ

b−β

f3(x, y)e−iuxe−ivydxdy

=
α∑

r=−α+1

β∑
s=−β+1

(fTMk
)(ar−1, bs−1)

[∫ ar

ar−1

e−iuxdx

] [∫ bs

bs−1

e−ivydy

]
= 0.

Using these equations in the expressions for I11 we get

(2π)2|I11| =
∣∣∣∣∫
J

(fTMk
)(x)e−i(nk·x)dx

∣∣∣∣
=

∣∣∣∣∣
∫ aα

a−α

∫ bβ

b−β

(fTMk
− f1 − f2 + f3)(x, y)e−iuxe−ivydxdy

∣∣∣∣∣
≤
∫ aα

a−α

∫ bβ

b−β

|(fTMk
− f1 − f2 + f3)(x, y)|dxdy

≤

(∫ aα

a−α

∫ bβ

b−β

|(fTMk
− f1 − f2 + f3)(x, y)|pdxdy

)1/p

(2aα · 2bβ)1/q

≤

(∫ aα

a−α

∫ bβ

b−β

|(fTMk
− f1 − f2 + f3)(x, y)|pdxdy

)1/p (
4δ2
)1/q

,
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in view of the Hölder’s inequality (when p > 1) since (fTMk
− f1− f2 + f3) ∈ Lp(J),

where q is such that 1/p+ 1/q = 1. Observe that when p = 1, we don’t use Hölder’s

inequality and in that case we consider the inequality except last two steps.

In any case, it follows that

|I11|p ≤ C

∫ aα

a−α

∫ bβ

b−β

|(fTMk
− f1 − f2 + f3)(x, y)|pdxdy

= C
α∑

r=−α+1

β∑
s=−β+1

∫ ar

ar−1

∫ bs

bs−1

|(fTMk
− f1 − f2 + f3)(x, y)|pdxdy

= C
α∑

r=−α+1

β∑
s=−β+1

∫ ar

ar−1

∫ bs

bs−1

|(fTMk
)(x, y)− (fTMk

)(x, bs−1)

− (fTMk
)(ar−1, y) + (fTMk

)(ar−1, bs−1)|pdxdy

≤ C
α∑

r=−α+1

β∑
s=−β+1

(Vp(fTMk
; [ar−1, ar]× [bs−1, bs]))

p (ar − ar−1)(bs − bs−1)

≤ C
(2π)2

|uv|
(Vp(fTMk

; J))p

≤ C
(2π)2

|uv|
(Vp(fTMk

; I(0, δ)))p,

in view of Lemma 2.1.8. Thus we get

I11 = O

(
1

|uv|1/p

)
. (2.16)

Finally, we have

I12 = I121 + I122 + I123 + I124 + I125 + I126 + I127 + I128, (2.17)

where I121, ..., I128 are integrals of the function (1/(2π)2) (fTMk
)(x)e−i(nk·x) over the

rectangles [−δ, a−α]× [−δ, b−β], [−δ, a−α]× [bβ, δ], [aα, δ]× [−δ, b−β], [aα, δ]× [bβ, δ],

[a−α, aα] × [−δ, b−β], [a−α, aα] × [bβ, δ], [−δ, a−α] × [b−β, bβ] and [aα, δ] × [b−β, bβ]

respectively.

Since f ∈ BVH
(p)(I(0, δ)), it is bounded on I(0, δ) and as TMk

is a trigonometric

polynomial, there is a constant M ≥ 0 such that |(fTMk
)(x)| ≤M for all x ∈ I(0, δ).
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Therefore we have

|I121| ≤
M

(2π)2

∫ a−α

−δ

∫ b−β

−δ
dxdy

=
M

(2π)2
(a−α + δ)(b−β + δ)

≤ M

(2π)2

(
2π

|u|

)(
2π

|v|

)
,

showing that I121 = O
(

1
|uv|

)
.

Similarly, we have I122, I123, I124 = O
(

1
|uv|

)
.

To estimate I125, we define a function h on [a−α, aα] × [−δ, b−β] = J ′, say, by

setting

h(x, y) = (fTMk
)(ar−1, y) (ar−1 ≤ x < ar; −δ ≤ y < b−β)

for r = −α + 1,−α + 2, ..., α. Since f ∈ BVH
(p)(I(0, δ)), J ′ ⊂ I(0, δ) and TMk

is a

trigonometric polynomial, h ∈ BVH
(p) (J ′) and hence (fTMk

− h) ∈ BVH
(p) (J ′) ⊂

Lp (J ′). Further in view of Fubini’s theorem and (2.14) we have∫ aα

a−α

∫ b−β

−δ
h(x, y)e−iuxe−ivydxdy

=
α∑

r=−α+1

∫ ar

ar−1

∫ b−β

−δ
h(x, y)e−iuxe−ivydxdy

=
α∑

r=−α+1

∫ b−β

−δ

[
(fTMk

)(ar−1, y)

{∫ ar

ar−1

e−iuxdx

}
e−ivy

]
dy = 0.

Thus

(2π)2|I125| =
∣∣∣∣∫ aα

a−α

∫ b−β

−δ
(fTMk

)(x, y)e−iuxe−ivydxdy

∣∣∣∣
=

∣∣∣∣∫ aα

a−α

∫ b−β

−δ
(fTMk

− h)(x, y)e−iuxe−ivydxdy

∣∣∣∣
≤
(∫ aα

a−α

∫ b−β

−δ
|(fTMk

− h)(x, y)|pdxdy
)1/p

(2aα(b−β + δ))1/q

≤
(∫ aα

a−α

∫ b−β

−δ
|(fTMk

− h)(x, y)|pdxdy
)1/p (

2δ2
)1/q

in view of Hölder’s inequality as in the case of the estimate of I11.
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Therefore

|I125|p ≤ C

∫ aα

a−α

∫ b−β

−δ
|(fTMk

− h)(x, y)|pdxdy

= C

∫ b−β

−δ

[
α∑

r=−α+1

∫ ar

ar−1

|(fTMk
)(x, y)− (fTMk

)(ar−1, y)|pdx

]
dy

≤ C

∫ b−β

−δ

[
α∑

r=−α+1

(Vp((fTMk
)(·, y); [ar−1, ar]))

p (ar − ar−1)

]
dy

≤ C
2π

|u|

∫ b−β

−δ
(Vp((fTMk

)(·, y); [a−α, aα]))p dy

≤ C
2π

|u|

∫ b−β

−δ
2p[(Vp((fTMk

); [a−α, aα]× [−δ, b−β]))p

+ (Vp((fTMk
)(·,−δ); [a−α, aα]))p]dy

= C
1

|u|
(b−β + δ) ≤ C

(
1

|uv|

)
,

in view of Lemma 2.1.8 (for a function of one variable) and Lemma 2.1.7. Thus we

have

I125 = O

(
1

|uv|1/p

)
.

Similar arguments shows that

I126, I127, I128 = O

(
1

|uv|1/p

)
.

Using estimates of I121, ..., I128 in (2.17) and observing that 1
|uv| ≤

1
|uv|1/p we obtain

I12 = O

(
1

|uv|1/p

)
. (2.18)

The proof of theorem is now completed in view of (2.9), (2.11), (2.13), (2.16) and

(2.18).

Remark 2.2.4. This theorem gives lacunary analogue of our earlier result (see

Theorem 2.1.14) for any p ≥ 1 and hence that of the results of Móricz [33] and

Fülöp and Móricz [10, for n = 2] for p = 1, except for the exact constant in their

case.
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Chapter 3

Walsh Fourier Coefficients

3.1 Order of magnitude of Walsh Fourier coef-

ficients of functions of generalized bounded

variation

It appears that while the study of the order of magnitude of the trigonometric

Fourier coefficients for the functions of various classes of functions of generalized

bounded variation such as BV(p) (p ≥ 1) [77], φBV [78], ΛBV [76], ΛBV(p) (p ≥ 1)

[58], φΛBV [56] etc. (refer also pages 2 to 6 for definitions of these classes) has been

carried out, such a study for the Walsh Fourier coefficients has not yet been done.

The only results available are due to N. J. Fine [11], who proved Theorems 1.1.35

and 1.1.36, where, in proving Theorem 1.1.36 he used second mean value theorem.

In this section we carry out this study. Interestingly, here no use of the second mean

value theorem is made. For the classes BV(p) and φBV, Taibleson-like technique

[63] for Walsh Fourier coefficients is developed. However, for the classes ΛBV(p) and

φΛBV this technique seems to be not working and hence classical technique [57] is

applied. In the case of ΛBV, it is also shown that the result is best possible in a

certain sense. Results of this section are published in the form of a paper in [13]

(see also MR2417326).

Theorem 3.1.1. For p ≥ 1, if f ∈ BV(p)[0, 1] then f̂(n) = O(1/(n
1
p )).

Proof. Let n ∈ N. Let k ∈ N ∪ {0} be such that 2k ≤ n < 2k+1 and put ai = (i/2k)

for i = 0, 1, 2, 3, ..., 2k. Since ϕn takes the value 1 on one half of each of the intervals

50



(ai−1, ai) and the value −1 on the other half, we have∫ ai

ai−1

ϕn(x)dx = 0, for all i = 1, 2, 3, ..., 2k.

Define a step function g by g(x) = f(ai−1) on [ai−1, ai), i = 1, 2, 3, ..., 2k. Then

∫ 1

0

g(x)ϕn(x)dx =
2k∑
i=1

f(ai−1)

∫ ai

ai−1

ϕn(x)dx = 0.

Therefore,

|f̂(n)| =
∣∣∣∣ ∫ 1

0

[f(x)− g(x)]ϕn(x)dx

∣∣∣∣
≤
∫ 1

0

|f(x)− g(x)|dx (3.1)

≤ ||f − g||p||1||q

=

 2k∑
i=1

∫ ai

ai−1

|f(x)− f(ai−1)|pdx

 1
p

,

by Hölder’s inequality as f, g ∈ BV(p)[0, 1] and BV(p)[0, 1] ⊂ Lp[0, 1]. Hence,

|f̂(n)|p ≤
2k∑
i=1

∫ ai

ai−1

|f(x)− f(ai−1)|pdx

≤
2k∑
i=1

∫ ai

ai−1

(Vp(f ; [ai−1, ai]))
pdx

=
2k∑
i=1

(Vp(f ; [ai−1, ai]))
p

(
1

2k

)
≤
(

1

2k

)
(Vp(f ; [0, 1]))p

≤
(

2

n

)
(Vp(f ; [0, 1]))p,

which completes the proof.

Remark 3.1.2. Theorem 3.1.1 with p = 1 gives Theorem 1.1.36 of Fine [11, Theo-

rem VI].
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Theorem 3.1.3. If f ∈ φBV[0, 1] then f̂(n) = O(φ−1(1/n)).

Proof. Let c > 0. Using Jensen’s inequality and proceeding as in Theorem 3.1.1, we

get

φ

(
c

∫ 1

0

|f(x)− g(x)|dx
)
≤
∫ 1

0

φ(c|f(x)− g(x)|)dx

=
2k∑
i=1

∫ ai

ai−1

φ(c|f(x)− f(ai−1)|)dx

≤
2k∑
i=1

∫ ai

ai−1

Vφ(cf ; [ai−1, ai])dx

=
2k∑
i=1

Vφ(cf ; [ai−1, ai])

(
1

2k

)
≤
(

2

n

)
Vφ(cf ; [0, 1]).

Since φ is convex and φ(0) = 0, for sufficiently small c ∈ (0, 1), Vφ(cf ; [0, 1]) < 1/2.

This completes the proof in view of (3.1).

Remark 3.1.4. If φ(x) = xp, p ≥ 1, then the class φBV coincides with the class

BV(p) and Theorem 3.1.3 with Theorem 3.1.1.

Remark 3.1.5. Note that in the proof of Theorems 3.1.1 and 3.1.3, we have used

the fact that if a = a0 < a1 < ... < an = b, then

n∑
i=1

(Vp(f ; [ai−1, ai]))
p ≤ (Vp(f ; [a, b]))p

and
n∑
i=1

Vφ(f ; [ai−1, ai]) ≤ Vφ(f ; [a, b]),

for any n ≥ 2 (see [35, 1.17, p. 15]). Such inequalities for functions of the class

ΛBV(p) (p ≥ 1) (resp., φΛBV), which contains BV(p) (resp., φBV) properly, do not

hold true.

In fact, the following proposition shows that the validity of such inequality for

the class ΛBV(p) (resp., φΛBV) virtually reduces the class to BV(p) (resp., φBV) and

hence we prove Theorem 3.1.9 and Theorem 3.1.10 applying a technique different

from Taibleson-like technique [63] which we have applied in proving Theorem 3.1.1

and Theorem 3.1.3.
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Proposition 3.1.6. Let f ∈ φΛBV[a, b]. If there is a constant C such that

n∑
i=1

VφΛ(f ; [ai−1, ai]) ≤ CVφΛ(f ; [a, b])),

for any sequence of points {ai}ni=0 with a = a0 < a1 < ... < an = b, then f ∈
φBV[a, b].

Proof. For any partition a = x0 < x1 < ... < xn = b of [a, b], we have

n∑
i=1

φ(|f(xi)− f(xi−1)|) = λ1

n∑
i=1

φ(|f(xi)− f(xi−1)|)
λ1

≤ λ1

n∑
i=1

VφΛ(f ; [xi−1, xi])

≤ λ1CVφΛ(f ; [a, b]),

which shows that f ∈ φBV[a, b].

Remark 3.1.7. φ(x) = xp (p ≥ 1) in this proposition will give analogous result for

ΛBV(p).

To prove Theorem 3.1.9 and Theorem 3.1.10, we need the following lemma.

Lemma 3.1.8. For any n ∈ N, |f̂(n)| ≤ ωp(1/n; f), where ωp(δ; f) (δ > 0, p ≥ 1)

denotes the integral modulus of continuity of order p of f given by

ωp(δ; f) = sup
|h|≤δ

(∫ 1

0

|f(x+ h)− f(x)|pdx
)1/p

.

Proof. The inequality [11, Theorem IV, p. 382] |f̂(n)| ≤ ω1(1/n; f) and the fact

that ω1(1/n; f) ≤ ωp(1/n; f) for p ≥ 1 immediately proves the lemma.

Theorem 3.1.9. If 1−periodic f ∈ ΛBV(p)[0, 1] (p ≥ 1) then

f̂(n) = O

(
1

/( n∑
j=1

1

λj

) 1
p
)
.
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Proof. For any n ∈ N, put θn =
∑n

j=1 1/λj. Let f ∈ ΛBV(p)[0, 1]. For 0 < h ≤ 1/n,

put k = [1/h]. Then for a given x ∈ R all the points x + jh, j = 0, 1, ..., k lies in

the interval [x, x+ 1] of length 1 and∫ 1

0

|f(x)− f(x+ h)|pdx =

∫ 1

0

|fj(x)|pdx, j = 1, 2, ..., k,

where fj(x) = f(x+ (j − 1)h)− f(x+ jh), for all j = 1, 2, ..., k. Since the left hand

side of this equation is independent of j, multiplying both sides by 1/(λjθk) and

summing over j = 1, 2, ..., k, we get∫ 1

0

|f(x)− f(x+ h)|pdx ≤
(

1

θk

)∫ 1

0

k∑
j=1

(
|fj(x)|p

λj

)
dx

≤ (VpΛ(f ; [0, 1]))p

θk

≤ (VpΛ(f ; [0, 1]))p

θn
,

because {λj} is non-decreasing and 0 < h ≤ 1/n. The case −1/n ≤ h < 0 is similar

and using Lemma 3.1.8 we get

|f̂(n)|p ≤ (ωp(1/n; f))p ≤ (VpΛ(f ; [0, 1]))p

θn
.

This completes the proof.

Theorem 3.1.10. If 1−periodic f ∈ φΛBV[0, 1] then

f̂(n) = O

(
φ−1

(
1

/( n∑
j=1

1

λj

)))
.

Proof. Let f ∈ φΛBV[0, 1]. Then for h, k and fj(x) as in the proof of Theorem

3.1.9 and for c > 0 by Jensen’s inequality,

φ

(
c

∫ 1

0

|f(x)− f(x+ h)|)dx
)
≤
∫ 1

0

φ(c|f(x)− f(x+ h)|)dx

=

∫ 1

0

φ(c|fj(x)|)dx, j = 1, 2, ..., k.
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Multiplying both sides by 1/(λjθk) and summing over j = 1, 2, ..., k, we get

φ

(
c

∫ 1

0

|f(x)− f(x+ h)|)dx
)
≤
(

1

θk

)∫ 1

0

k∑
j=1

(
φ(c|fj(x)|)

λj

)
dx

≤ VφΛ(cf ; [0, 1])

θk

≤ V,φΛ(cf ; [0, 1])

θn
.

Since φ is convex and φ(0) = 0, φ(αx) ≤ αφ(x), for 0 < α < 1. So we may choose c

sufficiently small so that VφΛ(cf ; [0, 1]) ≤ 1. But then we have∫ 1

0

|f(x)− f(x+ h)|)dx ≤ 1

c
φ−1

(
1

θn

)
.

Thus it follows in view of Lemma 3.1.8 that

|f̂(n)| ≤ ω1(1/n; f) ≤ 1

c
φ−1

(
1

θn

)
,

which completes the proof.

Following theorem shows that Theorem 3.1.9 with p = 1 is best possible in a

certain sense.

Theorem 3.1.11. If ΓBV[0, 1] ⊇ ΛBV[0, 1] properly, then there exists f ∈ ΓBV[0, 1]

such that

f̂(n) 6= O

(
1

/( n∑
j=1

1

λj

))
.

Proof. It is known [52] that if ΓBV contains ΛBV properly with Γ = {γn} then

θn 6= O(ρn), where in ρn =
∑n

j=1
1
γj

for each n. Also, if c0 = 0, cn+1 = 1 and

c1 < c2 < ... < cn denote all the n points of (0, 1) where the function ϕn changes its

sign in (0, 1), n0 ∈ N is such that ρn ≥ 1
2

for all n ≥ n0 and E = {n ∈ N : n ≥ n0 is

even}, then for each n ∈ E, for the function

fn =
n+1∑
k=1

(−1)k−1

4ρn
χ[ck−1,ck)

extended 1-periodically on R,

VΓ(fn, [0, 1]) =
n+1∑
k=1

|fn(ck)− fn(ck−1)|
γk

=
n∑
k=1

1

γk
· 1

2ρn
=

1

2
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because

fn(cn+1) = fn(1) = fn(0) =
1

4ρn
= fn(cn)

as ϕn ≡ 1 on [c0, c1). Hence ||fn|| = 1
4ρn

+ 1
2
≤ 1 for each n ∈ E in the Banach space

ΓBV[0, 1] with ||f || = |f(0)|+ VΓ(f, [0, 1]). Observe that for f ∈ ΓBV[0, 1]

||f ||1 ≤
∫ 1

0

(
|f(x)− f(0)|

γ1

γ1 + |f(0)|
)
dx ≤ C||f ||, C = max{1, γ1},

and hence, for each n ∈ N the linear map Tn : ΓBV[0, 1] → R defined by Tn(f) =

θnf̂(n) is bounded as

|Tn(f)| = θn|f̂(n)| ≤ θn||f ||1 ≤ θnC||f ||, ∀f ∈ ΓBV[0, 1].

Next, for each n ∈ E since fn · ϕn = 1
4ρn

on [0, 1) , we see that

Tn(fn) = θnf̂n(n) = θn

∫ 1

0

fn(x)ϕn(x)dx =
1

4

(
θn
ρn

)
6= O(1)

and hence

sup{||Tn|| : n ∈ N} ≥ sup{||Tn|| : n ∈ E} ≥ sup{|Tn(fn)| : n ∈ E} =∞.

Therefore, an application of the Banach-Steinhaus theorem gives an f ∈ ΓBV[0, 1]

such that sup{|Tn(f)| : n ∈ N} = ∞. It follows that θnf̂(n) = Tn(f) 6= O(1) and

hence the theorem is proved.

3.2 Order of magnitude of Walsh Fourier coeffi-

cients of series with small gaps for functions

of generalized bounded variation

In Section 3.1 we have studied the order of magnitude of Walsh Fourier coefficients of

the functions of various classes of generalized bounded variation. Here we continue

this study further and obtain the analogous results for the lacunary Walsh Fourier

series with small gaps. Interestingly, here also we use the technique which we have

developed in Section 3.1 and prove the corresponding results. We also use the results

for non-lacunary Walsh Fourier series to prove the results for lacunary Walsh Fourier

series in an elegant way. The results of this section are published in [15].
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Definition 3.2.1. Let {nk}∞k=1 be an increasing sequence of positive integers. A

function f ∈ L1[0, 1] is said to have a lacunary Walsh Fourier series with small gaps

if its Walsh Fourier coefficients f̂(n) vanish for n 6= nk, k ∈ N, where {nk} satisfies

the small gap condition (1.11) or, in particular, more stringent small gap condition

(1.5).

Theorem 3.2.2. Let a 1-periodic f ∈ L1[0, 1] possess a lacunary Walsh Fourier

series
∞∑
k=1

f̂(nk)ϕnk(x) (3.2)

with small gaps (1.11) and I = [0, 2−N) be an interval of length |I| = 2−N ≥ 1/q.

Then f ∈ BV(p)(I) (p ≥ 1) implies f̂(nk) = O(1/(nk)
1
p ).

Proof. Consider the polynomail PN(x) (this is essentially the same polynomial as

considered by Patadia (see [43, p. 20]) defined as follows: If N = 0, put PN ≡ 1 and

if N ∈ N then put PN(x) =
∏N−1

k=0 (1 + rk(x)). Then

x ∈ I = [0, 2−N)⇒ 1 + rk(x) = 1 + ϕ2k(x) = 1 + 1 = 2, ∀k = 0, 1, ..., N − 1

⇒ PN(x) = 2N .

On the other hand, if x ∈ [0, 1) \ I then exactly one of the following holds:

x ∈ [1/2, 1), x ∈ [1/22, 1/2), ..., x ∈ [1/2N , 1/2N−1).

Thus at least one of the following holds:

r0(x) = −1, r1(x) = −1, ..., rN−1(x) = −1.

This shows that at least one of 1 + rk(x) is 0 and hence PN(x) = 0. We claim that

if k ∈ N is such that f̂(nk) 6= 0 then

(fPN) (̂nk) = f̂(nk) (k = 1, 2, 3, ...). (3.3)

Let k ∈ N be such that f̂(nk) 6= 0. Then

(fPN) (̂nk) =

∫ 1

0

f(x)PN(x)ϕnk(x)dx

= f̂(nk) +
N−1∑
i=0

f̂(riϕnk) +
N−1∑
i,j=0

f̂(rirjϕnk) + ...+ f̂(r0r1...rN−1ϕnk). (3.4)
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By our assumption the first term in the right hand side of (3.4) is nonzero. The

characters appearing in the other terms in right hand side of (3.4) are of the form

ϕϕnk wherein ϕ is such that deg ϕ is positive and ≤ N . In view of the Payley

ordering of Walsh characters, for each j ∈ N there are totally 2j−1 characters of

degree j, namely ϕ2j−1 ≡ rj−1, ϕ2j−1+1 ≡ rj−1ϕ1, ϕ2j−1+2 ≡ rj−1ϕ2, ..., ϕ2j−1 ≡
rj−1ϕ2j−1−1 ≡ rj−1rj−2...r1r0. Consequently, total number of characters of positive

degree ≤ N is given by 20 + 21 + 22 + ...+ 2N−1 = 2N −1; they are from ϕ1 to ϕ2N−1.

It follows that when ϕnk is multipied by any character of positive degree ≤ N the

resulting character ϕm is such that

nk < m ≤ nk + 2N − 1 < nk + 2N ≤ nk + q ≤ nk+1,

since the lacunary Walsh Fourier series (3.2) of f has gaps (1.11) with q ≥ 2N . Since

f̂(nk) 6= 0, all the terms of the right hand side of (3.4) vanish except the first. This

means that (3.3) holds.

Let k be large enough and m ∈ N∪{0} be such that f̂(nk) 6= 0, 2m ≤ nk < 2m+1

and m > N. Then

f̂(nk) = (fPN) (̂nk) = 2N
∫ 1/2N

0

f(x)ϕnk(x)dx, (3.5)

since PN = 2N on I = [0, 2−N) and PN = 0 on [0, 1) \ I. Put ai = (i/2m) for

i = 0, 1, 2, 3, ..., 2m. Then, since 2m ≤ nk < 2m+1, ϕnk takes the value 1 on one half

of each of the intervals (ai−1, ai) and the value −1 on the other half. Therefore we

have ∫ ai

ai−1

ϕnk(x)dx = 0, for all i = 1, 2, 3, ..., 2m. (3.6)

Define a step function g by g(x) = f(ai−1) on [ai−1, ai), i = 1, 2, 3, ..., 2m−N . Then

in view of (3.6) we have

∫ 1/2N

0

g(x)ϕnk(x)dx =
2m−N∑
i=1

f(ai−1)

∫ ai

ai−1

ϕnk(x)dx = 0.

Thus in view of (3.5) we have

|f̂(nk)| = 2N

∣∣∣∣∣
∫ 1/2N

0

[f(x)− g(x)]ϕnk(x)dx

∣∣∣∣∣ ≤ 2N
∫ 1/2N

0

|f(x)− g(x)|dx. (3.7)
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Therefore

|f̂(nk)| ≤ 2N ||f − g||p,I ||1||q,I = 2N/p

2m−N∑
i=1

∫ ai

ai−1

|f(x)− f(ai−1)|pdx

 1
p

,

by Hölder’s inequality as f, g ∈ BV(p)(I) and BV(p)(I) ⊂ Lp(I). Hence,

|f̂(nk)|p ≤ 2N
2m−N∑
i=1

∫ ai

ai−1

|f(x)− f(ai−1)|pdx

≤ 2N
2m−N∑
i=1

∫ ai

ai−1

(Vp(f ; [ai−1, ai]))
pdx

= 2N
2m−N∑
i=1

(Vp(f ; [ai−1, ai]))
p

(
1

2m

)
≤
(

2N

2m

)
(Vp(f ; I))p

≤
(

2 · 2N

nk

)
(Vp(f ; I))p,

which completes the proof.

Theorem 3.2.3. Let f and I be as in Theorem 3.2.2. Then f ∈ φBV(I) implies

f̂(nk) = O(φ−1(1/nk)).

Proof. Proceeding as in the proof of Theorem 3.2.2 we get (3.7). For c > 0 using

Jensen’s inequality, we have

φ

(
2Nc

∫ 1/2N

0

|f(x)− g(x)|dx

)
≤ 2N

∫ 1/2N

0

φ(c|f(x)− g(x)|)dx

= 2N
2m−N∑
i=1

∫ ai

ai−1

φ(c|f(x)− f(ai−1)|)dx

≤ 2N
2m−N∑
i=1

∫ ai

ai−1

Vφ(cf ; [ai−1, ai])dx

= 2N
2m−N∑
i=1

Vφ(cf ; [ai−1, ai])

(
1

2m

)
≤ 2N

(
2

nk

)
Vφ(cf ; I).

59



Since φ is convex and φ(0) = 0, for sufficiently small c ∈ (0, 1), Vφ(cf ; I) ≤ 1/2N+1.

This completes the proof in view of (3.7).

Remark 3.2.4. If φ(x) = xp, p ≥ 1, then the class φBV(I) coincides with the class

BV(p)(I) and Theorem 3.2.3 with Theorem 3.2.2.

Theorem 3.2.5. Let f and I be as in Theorem 3.2.2. Then f ∈ ΛBV(p)(I) (p ≥ 1)

implies

f̂(nk) = O

(
1

/( nk∑
j=1

1

λj

) 1
p
)
.

Proof. Proceeding as in the proof of Theorem 3.2.2 we get (3.6). Define h on [0, 1)

by h = f on I = [0, 1/2N), h(x) = f(1/2N), ∀x ∈ [1/2N , 1); and extend h, 1-

periodically on R. We claim that h ∈ ΛBV(p)[0, 1]. Let {In} be a sequence of

non-overlapping intervals in [0, 1] and consider the sum S =
∑

n |h(In)|p/λn where

h(In) = h(bn) − h(an) if In = [an, bn]. If In ⊂ [1/2N , 1) then by definition of

h, h(In) = 0. Thus, S =
∑

k |h(Ink)|p/λnk , where no Ink is contained in [1/2N , 1).

Since the sequence {In} is non-overlapping, there can be at most one interval, say, Inj
which intersects (1/2N , 1). If Inj = [a, b], let I ′nj = Inj∩[0, 1/2N ], I ′′nj = Inj∩[1/2N , b].

Then again by the definition of h, h(I ′′nj) = 0 and hence h(Inj) = h(I ′nj) + h(I ′′nj) =

h(I ′nj). Thus

S =
∑
k, k 6=j

|h(Ink)|p

λnk
+
|h(I ′nj)|

p

λnj
.

Also, in {In}, there can be at most one interval, say, Int of the form [c, 1] where

c ∈ (1/2N , 1]. But then

S =
∑
k

k 6=j, k 6=t

|h(Ink)|p

λnk
+
|h(I ′nj)|

p

λnj
+
|h(1)− h(c)|p

λnt

=
∑
k

k 6=j, k 6=t

|f(Ink)|p

λnk
+
|f(I ′nj)|

p

λnj
+
|f(0)− f(1/2N)|p

λnt

≤ VpΛ(f ; I) +
|f(0)− f(1/2N)|p

λ1

.

It follows that VpΛ(h; [0, 1]) ≤ VpΛ(f ; I)+(|f(0)− f(1/2N)|p/λ1). Since f ∈ ΛBV(p)(I),

we have h ∈ ΛBV(p)[0, 1] and hence by Theorem 3.1.9

ĥ(n) = O(1/(θn)
1
p ), (3.8)
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where θn =
∑n

j=1 1/λj, ∀n ∈ N. But

ĥ(nk) =

∫ 1

0

h(x)ϕnk(x)dx

=

∫ 1/2N

0

f(x)ϕnk(x)dx+ f(1/2N)

∫ 1

1/2N
ϕnk(x)dx

=

∫ 1/2N

0

f(x)ϕnk(x)dx+ f(1/2N)
2m∑

i=2m−N+1

∫ ai

ai−1

ϕnk(x)dx

=

∫ 1/2N

0

f(x)ϕnk(x)dx,

in view of (3.6). Thus by (3.5) and (3.8), f̂(nk) = 2N ĥ(nk) = O(1/(θnk)
1
p ) and

hence the theorem is proved.

Theorem 3.2.6. Let f and I be as in Theorem 3.2.2. Then f ∈ φΛBV(I) implies

f̂(nk) = O

(
φ−1

(
1

/( nk∑
j=1

1

λj

)))
.

Proof. Proceeding as in the proof of Theorem 3.2.2 we get (3.6). Now if f ∈
φΛBV(I), we can see, in a similar way, that the function h considered in the proof

of Theorem 3.2.5 is in φΛBV[0, 1]. Thus by Theorem 3.1.10, ĥ(n) = O(φ−1(1/θn))

and hence in view of (3.5),

f̂(nk) = 2N ĥ(nk) = O(φ−1(1/θnk)).

This completes the proof.

3.3 Order of magnitude of multiple Walsh Fourier

coefficients of functions of bounded p-variation

In 1949, N. J. Fine [11] proved using the second mean value theorem that if f

is of bounded variation on [0, 1] and if f̂(n) denotes its (one dimensional) Walsh

Fourier coefficient, then f̂(n) = O( 1
n
), for all n 6= 0. In Section 3.1 we have studied

the order of magnitude of Walsh Fourier coefficients of functions of various classes

of generalized bounded variation and extended the result of Fine to these classes.
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Further in Section 2.1, we have defined the notion of bounded p-variation (p ≥ 1)

for a complex-valued function on the rectangle [a1, b1] × ... × [am, bm] (m being

a positive integer) and studied the order of magnitude of trigonometric Fourier

coefficients of such functions on [0, 2π]m. Here we study the order of magnitude of

Walsh Fourier coefficients for a function of bounded p-variation from [0, 1]m to C
and obtain analogous results. For m = 1, our new results give our earlier result

(see Theorem 3.1.1). Also, for p = 1, our results give the Walsh analogue of the

results of Móricz [33] and Fülöp and Móricz [10] (see Theorems 1.1.32, 1.1.33 and

1.1.34), except possibly for the exact constant in their case. Multiple Walsh Fourier

coefficient is defined as follows (refer, for example, [12]).

Definition 3.3.1. For a periodic f = f(x1, ..., xm) with period 1 in each variable

and Lebesgue integrable over the m-dimensional torus Im := [0, 1)m, in symbol

f ∈ L1(Im), its formal Walsh Fourier series is given by

f(x1, ..., xm) ∼
∑

(n(1),...,n(m))∈(Z+)m

f̂(n(1), ..., n(m))wn(1)(x1)...wn(m)(xm)

where f̂(n(1), ..., n(m)) ≡ f̂(n) is the nth multiple Walsh Fourier coefficient of f

defined by

f̂(n) =

∫
Im
f(x1, ..., xm)wn(1)(x1)...wn(m)(xm)dx1...dxm. (3.9)

Theorem 3.3.2. Let f : Rm → C be 1-periodic in each variable. If f belongs to

BVV
(p)([0, 1]m) ∩ Lp(Im) (p ≥ 1) and n = (n(1), ..., n(m)) ∈ Nm, then

f̂(n) = O

 1(∏m
j=1 n

(j)
)1/p

 .

Proof. For the sake of simplicity in writing, we carry out the proof for m = 2, and

we write (x, y) and (k, `) in place of (x1, x2) and (n(1), n(2)) respectively.

Let n = (k, `) ∈ N2. Let s, t ∈ Z+ be such that 2s ≤ k < 2s+1 and 2t ≤ ` < 2t+1.

For each i = 0, 1, 2, 3, ..., 2s and j = 0, 1, 2, 3, ..., 2t put ai = (i/2s), bj = (j/2t).

Then by definition of Walsh functions, ϕk takes the value 1 on one half of each of

the intervals (ai−1, ai) and the value −1 on the other half, and hence∫ ai

ai−1

ϕk(x)dx = 0, (i = 1, 2, 3, ..., 2s). (3.10)
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Similarly, the function ϕ` takes the value 1 on one half of each of the intervals

(bj−1, bj) and the value −1 on the other half, and hence∫ bj

bj−1

ϕ`(y)dy = 0, (j = 1, 2, 3, ..., 2t). (3.11)

Define three functions f1, f2, f3 on I2 by setting

f1(x, y) = f(ai−1, y) (ai−1 ≤ x < ai; 0 ≤ y < 1) for i = 1, 2, 3, ..., 2s;

f2(x, y) = f(x, bj−1) (0 ≤ x < 1; bj−1 ≤ y < bj) for j = 1, 2, 3, ..., 2t;

and

f3(x, y) = f(ai−1, bj−1) (ai−1 ≤ x < ai; bj−1 ≤ y < bj)

for i = 1, 2, 3, ..., 2s; j = 1, 2, 3, ..., 2t. Then in view of Fubini’s theorem and relations

(3.10) and (3.11) we have∫ 1

0

∫ 1

0

f1(x, y)ϕk(x)ϕ`(y)dxdy =

∫ 1

0

[
2s∑
i=1

f(ai−1, y)

∫ ai

ai−1

ϕk(x)dx

]
ϕ`(y)dy = 0,

∫ 1

0

∫ 1

0

f2(x, y)ϕk(x)ϕ`(y)dxdy =

∫ 1

0

[
2t∑
j=1

f(x, bj−1)

∫ bj

bj−1

ϕ`(y)dy

]
ϕk(x)dx = 0

and ∫ 1

0

∫ 1

0

f3(x, y)ϕk(x)ϕ`(y)dxdy

=
2s∑
i=1

2t∑
j=1

f(ai−1, bj−1)

[ ∫ ai

ai−1

ϕk(x)dx

][∫ bj

bj−1

ϕ`(y)dy

]
= 0.

Using these equations in the definition of f̂(n) (see (3.9)) we get

|f̂(n)| =
∣∣∣∣∫ 1

0

∫ 1

0

f(x, y)ϕk(x)ϕ`(y)dxdy

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫ 1

0

[f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)]ϕk(x)ϕ`(y)dxdy

∣∣∣∣
≤
∫ 1

0

∫ 1

0

|f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)|dxdy

≤
(∫ 1

0

∫ 1

0

|f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)|pdxdy
)1/p

(1)2/q,
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in view of the Hölder’s inequality (when p > 1) since f − f1 − f2 + f3 ∈ Lp(I2),

where q is such that 1/p+ 1/q = 1. Observe that when p = 1, we don’t use Hölder’s

inequality and in that case we consider the inequality except last step. In any case,

it follows that

|f̂(n)|p ≤
∫ 1

0

∫ 1

0

|f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)|pdxdy

=
2s∑
i=1

2t∑
j=1

∫ ai

ai−1

∫ bj

bj−1

|f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)|pdxdy

=
2s∑
i=1

2t∑
j=1

∫ ai

ai−1

∫ bj

bj−1

|f(x, y)− f(ai−1, y)− f(x, bj−1) + f(ai−1, bj−1)|pdxdy

≤
2s∑
i=1

2t∑
j=1

(Vp(f ; [ai−1, ai]× [bj−1, bj]))
p(ai − ai−1)(bj − bj−1)

≤ 1

2s2t
(Vp(f ; [0, 1]2))p ≤ 22

k`
(Vp(f ; [0, 1]2))p,

in view of Lemma 2.1.8. Thus we get

|f̂(n)| ≤ 41/p · Vp(f ; [0, 1]2)

(k`)1/p
. (3.12)

This completes the proof.

Theorem 3.3.3. Let f : Rm → C be 1-periodic in each variable. If f belongs to

BVH
(p)([0, 1]m) (p ≥ 1) then for any 0 6= n = (n(1), ..., n(m)) ∈ (Z+)m,

f̂(n) = O

 1(∏m
j=1,n(j) 6=0 n

(j)
)1/p

 .

Proof. Here also we will carry out the proof for m = 2 and use notations as in the

proof of Theorem 3.3.2. Since f ∈ BVH
(p)([0, 1]2), in view of Lemma 2.1.11 (use

Lemma 2.1.12 for general case), the discontinuities of f lie on countable number of

parallels to the axes and hence f is measurable over I2 in the sense of Lebesgue.

Further, by Lemma 2.1.6, f is bounded over [0, 1]2 and hence f ∈ Lp(I2). As

BVH
(p)([0, 1]2) ⊂ BVV

(p)([0, 1]2), f ∈ Lp(I2) ∩ BVV
(p)([0, 1]2). Therefore if n =

(k, `) ∈ N2, by Theorem 3.3.2,

f̂(n) = O

(
1

(k`)1/p

)
.
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Next, let n = (k, `) ∈ (Z+)2 be such that k 6= 0, ` = 0 and let ai’s and f1 be as

defined in the proof of Theorem 3.3.2. Then we have∫ 1

0

∫ 1

0

f1(x, y)ϕk(x)dxdy =

∫ 1

0

(
2s∑
i=1

f(ai−1, y)

[∫ ai

ai−1

ϕk(x)dx

])
dy = 0,

in view of Fubini’s theorem and (3.10); and,

|f̂(n)| =
∣∣∣∣∫ 1

0

∫ 1

0

[f(x, y)− f1(x, y)]ϕk(x)dxdy

∣∣∣∣
≤
(∫ 1

0

∫ 1

0

|f(x, y)− f1(x, y)|pdxdy
)1/p

(1)2/q,

in view of Hölder’s inequality as in the proof of Theorem 3.3.2. Therefore

|f̂(n)|p ≤
∫ 1

0

[ 2s∑
i=1

∫ ai

ai−1

|f(x, y)− f(ai−1, y)|pdx
]
dy

≤
∫ 1

0

[ 2s∑
i=1

(Vp(f(·, y); [ai−1, ai]))
p(ai − ai−1)

]
dy

≤ 1

2s

∫ 1

0

(Vp(f(·, y); [0, 1]))pdy

≤ 2

k

∫ 1

0

2p[(Vp(f ; [0, 1]2))p + (Vp(f(·, 0); [0, 1]))p]dy

=
2p+1[(Vp(f ; [0, 1]2))p + (Vp(f(·, 0); [0, 1]))p]

k
,

in view of Lemma 2.1.8 (for a function of one variable) and Lemma 2.1.7. Thus we

have

f̂(n) = f̂(k, 0) = O

(
1

k1/p

)
. (3.13)

The case k = 0, ` 6= 0, is similar to the above case and in this case we get

f̂(0, `) = O

(
1

`1/p

)
. (3.14)

This completes the proof.
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Remark 3.3.4. Theorem 3.3.2 or Theorem 3.3.3 with m = 1 gives our earlier result

(see Theorem 3.1.1). (3.12), (3.13) and (3.14) with p = 1 give Walsh analogues of

the results of Móricz [33] (see Theorem 1.1.32) and Fülöp and Móricz [10, for n = 2]

(see Theorem 1.1.34), except possibly for the exact constant in their case.

3.4 Order of magnitude of multiple Walsh Fourier

coefficients of series with small gaps for func-

tions of bounded p-variation

In 1949, N. J. Fine [11] proved using the second mean value theorem that if f

is of bounded variation on [0, 1] and if f̂(n) denotes its (one dimensional) Walsh

Fourier coefficient, then f̂(n) = O( 1
n
), for all n 6= 0. In Section 3.1 we have studied

the order of magnitude of Walsh Fourier coefficients of functions of various classes

of generalized bounded variation and extended the result of Fine to these classes.

The small gap analogue of results of Section 3.1 is given in Section 3.2. Further in

Section 2.1, we have defined the notion of bounded p-variation (p ≥ 1) for a function

from a rectangle [a1, b1]× ...× [am, bm] to C and studied the order of magnitude of

trigonometric Fourier coefficients of such functions from [0, 2π]m to C. We have also

studied the order of magnitude of trigonometric Fourier coefficients of functions from

[0, 2π]m to C having lacunary Fourier series with certain gaps and are of bounded

p-variation only locally in Section 2.2. In Section 3.3 we have studied the order

of magnitude of Walsh Fourier coefficients for a function of bounded p-variation

from [0, 1]m to C having non-lacunary Fourier series. Here we study the order of

magnitude of Walsh Fourier coefficients of functions from [0, 1]m to C which are of

bounded p-variation locally and having lacunary Walsh Fourier series having small

gaps. Our new result generalizes and gives lacunary analogue of our earlier result

(Theorem 3.3.2). For m = 1, our new result give our earlier result (Theorem 3.1.1).

Given a subset E ⊂ (Z+)
m

, a function f ∈ L1(Im) is said to be E-spectral (or,

said to have spectrum E) if and only if f̂(n) = 0 for all n in (Z+)
m \ E. In what

follows, we consider a set E ⊂ (Z+)
m

described in the following way: For each

j = 1, 2, ...,m consider sets E(j) = {n(j)
0 , n

(j)
1 , n

(j)
2 , ...} ⊂ Z+ with {n(j)

k }∞k=1 strictly
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increasing for each j and satisfying the small gap conditions

(n
(j)
k+1 − n

(j)
k ) ≥ q ≥ 1, (k = 1, 2, ...; j = 1, 2, ...,m); (3.15)

and then put E =
∏m

j=1 E
(j). ns = (n

(1)
s1 , n

(2)
s2 , ..., n

(m)
sm ) denotes the typical element of

E. When m = 1, E will be taken to be E(1) with the superscript in n
(1)
k ’s omitted.

Theorem 3.4.1. Let E ⊂ (Z+)
m

be described as above and f : Rm → C be 1-

periodic in each variable. If f ∈ BVV
(p)(I) ∩ Lp(I) (p ≥ 1), where I is the rectangle

I = [0, 2−N1 ] × ... × [0, 2−Nm ] in which 2−Nj ≥ 1/q for each j; f is E-spectral and

nk = (n
(1)
k1
, ..., n

(m)
km

) ∈ (Z+)
m

is such that n
(j)
kj

is sufficiently large for each j, then

f̂(nk) = O

(
1

|
∏m

j=1 n
(j)
kj
|1/p

)
.

Proof. For the sake of simplicity in writing, we carry out the proof for m = 2. For

each j = 1, 2, consider the polynomial PNj(xj) defined as follows: If Nj = 0, put

PNj ≡ 1 and if Nj ∈ N then put PNj(xj) =
∏Nj−1

i=0 (1 + ri(xj)). Then as in the proof

of Theorem 3.2.2, we have

PNj(xj) =

2Nj if xj ∈ [0, 2−Nj),

0 if xj ∈ [0, 1) \ [0, 2−Nj).

Consider N = (N1, N2) and put PN(x1, x2) = PN1(x1)PN2(x2). Then by the above

property of PNj (j = 1, 2), we have

PN(x1, x2) =

2N1+N2 if (x1, x2) ∈ I,

0 if (x1, x2) ∈ I2 \ I.
(3.16)

We claim that if nk = (n
(1)
k1
, n

(2)
k2

) ∈ (Z+)2 is such that f̂(nk) 6= 0 then (fPN) (̂nk) =

f̂(nk). In fact, writing (x, y) in place of (x1, x2), we have

(fPN) (̂nk) =

∫
I2
f(x, y)PN1(x)PN2(y)ϕ

n
(1)
k1

(x)ϕ
n
(2)
k2

(y)dxdy

=

∫
I2
f(x, y)

(
N1−1∏
i=0

(1 + ri(x))

)(
N2−1∏
j=0

(1 + rj(y))

)
ϕ
n
(1)
k1

(x)ϕ
n
(2)
k2

(y)dxdy

= f̂(nk) +

N1−1∑
i=0

f̂(riϕnk
) +

N2−1∑
j=0

f̂(rjϕnk
) +

N1−1∑
i,j=0

f̂(rirjϕnk
) +

N2−1∑
i,j=0

f̂(rirjϕnk
)

+

N1−1∑
i=0

N2−1∑
j=0

f̂(rirjϕnk
) + ...+ f̂(r0...rN1−1r0...rN2−1ϕnk

). (3.17)
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By our assumption the first term in the right hand side of (3.17) is nonzero. The

characters appearing in the other terms in the right hand side of (3.17) are of the

form (ϕϕ
n
(1)
k1

)(ψϕ
n
(2)
k2

) where ϕ is (a function of x alone) such that deg ϕ ≤ N1 and

ψ is (a function of y alone) such that deg ψ ≤ N2 and the degree of at least one of

ϕ and ψ is nonzero. In view of the Payley ordering of Walsh characters, for each

j ∈ N there are totally 2j−1 characters of degree j, namely ϕ2j−1 ≡ rj−1, ϕ2j−1+1 ≡
rj−1ϕ1, ϕ

2j−1+2 ≡ rj−1ϕ2, ..., ϕ2j−1 ≡ rj−1ϕ2j−1−1 ≡ rj−1rj−2 · · ·r1r0. Consequently,

total number of characters of positive degree ≤ N is given by 20+21+22+...+2N−1 =

2N − 1; they are from ϕ1 to ϕ2N−1. It follows that when ϕ
n
(j)
kj

is multiplied by any

character of positive degree ≤ Nj the resulting character ϕmj is such that

n
(j)
kj
< mj ≤ n

(j)
kj

+ 2Nj − 1 < n
(j)
kj

+ 2Nj ≤ n
(j)
kj

+ q ≤ n
(j)
kj+1,

in view of (3.15) and the fact that q ≥ 2Nj . Since either deg ϕ > 0 or deg ψ > 0,

either m1 /∈ E1 or m2 /∈ E2. Therefore (m1,m2) /∈ E. Since f is E-spectral,

f̂

(
(ϕϕ

n
(1)
k1

)(ψϕ
n
(2)
k2

)

)
= f̂(ϕm1ϕm2) ≡ f̂(m1,m2) = 0. Thus all the terms of the

right hand side of (3.17) vanish except the first. This means that

(fPN) (̂nk) = f̂(nk) if f̂(nk) 6= 0. (3.18)

Now, let nk = (n
(1)
k1
, n

(2)
k2

) be such that n
(j)
kj

are large enough with f̂(nk) 6= 0 and

let mj ∈ N be such that 2mj ≤ n
(j)
kj
< 2mj+1 with mj > Nj for each j = 1, 2. For

simplicity in notation, let us write k, `, s and t for n
(1)
k1

, n
(2)
k2

, m1 and m2 respectively.

Then 2s ≤ k < 2s+1, 2t ≤ ` < 2t+1 and in view of (3.18) and (3.16) we have

f̂(nk) = (fPN) (̂nk) = 2N1+N2

∫ 2−N2

0

∫ 2−N1

0

f(x, y)ϕk(x)ϕ`(y)dxdy. (3.19)

Putting ai = (i/2s) for each i = 0, 1, 2, 3, ..., 2s and bj = (j/2t) for each j =

0, 1, 2, 3, ..., 2t, as in the proof of Theorem 3.3.2, we get (3.10) and (3.11).

Next, define three functions f1, f2, f3 on I = [0, 2−N1)× [0, 2−N2) by setting

f1(x, y) = f(ai−1, y) (ai−1 ≤ x < ai; 0 ≤ y < 2−N2) for i = 1, 2, 3, ..., 2s−N1 ;

f2(x, y) = f(x, bj−1) (0 ≤ x < 2−N1 ; bj−1 ≤ y < bj) for j = 1, 2, 3, ..., 2t−N2 ;

and

f3(x, y) = f(ai−1, bj−1) (ai−1 ≤ x < ai; bj−1 ≤ y < bj)
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for i = 1, 2, 3, ..., 2s−N1 ; j = 1, 2, 3, ..., 2t−N2 .

Then in view of Fubini’s theorem and relations (3.10) and (3.11) we have∫ 2−N2

0

∫ 2−N1

0

f1(x, y)ϕk(x)ϕ`(y)dxdy

=

∫ 2−N2

0

2s−N1∑
i=1

f(ai−1, y)

∫ ai

ai−1

ϕk(x)dx

ϕ`(y)dy = 0,

∫ 2−N2

0

∫ 2−N1

0

f2(x, y)ϕk(x)ϕ`(y)dxdy

=

∫ 2−N1

0

2t−N2∑
j=1

f(x, bj−1)

∫ bj

bj−1

ϕ`(y)dy

ϕk(x)dx = 0

and∫ 2−N2

0

∫ 2−N1

0

f3(x, y)ϕk(x)ϕ`(y)dxdy

=
2s−N1∑
i=1

2t−N2∑
j=1

f(ai−1, bj−1)

[∫ ai

ai−1

ϕk(x)dx

][∫ bj

bj−1

ϕ`(y)dy

]
= 0.

Using these equations in (3.19) we get

|f̂(nk)| = 2N1+N2

∣∣∣∣∣
∫ 2−N2

0

∫ 2−N1

0

f(x, y)ϕk(x)ϕ`(y)dxdy

∣∣∣∣∣
= 2N1+N2

∣∣∣∣∣
∫ 2−N2

0

∫ 2−N1

0

(f − f1 − f2 + f3)(x, y)ϕk(x)ϕ`(y)dxdy

∣∣∣∣∣
≤ 2N1+N2

∫ 2−N2

0

∫ 2−N1

0

|(f − f1 − f2 + f3)(x, y)|dxdy

≤ 2N1+N2

(∫ 2−N2

0

∫ 2−N1

0

|(f − f1 − f2 + f3)(x, y)|pdxdy

)1/p (
2−(N1+N2)

)1/q
,

in view of the Hölder’s inequality (when p > 1) since f − f1 − f2 + f3 ∈ Lp(I),

where q is such that 1/p+ 1/q = 1. Observe that when p = 1, we don’t use Hölder’s

inequality and in that case we consider the inequality except last step.
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In any case, it follows that

|f̂(nk)|p ≤ 2N1+N2

∫ 2−N2

0

∫ 2−N1

0

|f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)|pdxdy

= 2N1+N2

2s−N1∑
i=1

2t−N2∑
j=1

∫ bj

bj−1

∫ ai

ai−1

|f(x, y)− f1(x, y)− f2(x, y) + f3(x, y)|pdxdy

= 2N1+N2

2s−N1∑
i=1

2t−N2∑
j=1

∫ bj

bj−1

∫ ai

ai−1

|f(x, y)− f(ai−1, y)− f(x, bj−1) + f(ai−1, bj−1)|pdxdy

≤ 2N1+N2

2s−N1∑
i=1

2t−N2∑
j=1

(Vp(f ; [ai−1, ai]× [bj−1, bj]))
p(ai − ai−1)(bj − bj−1)

≤ 2N1+N2

2s2t
(Vp(f ; I))p ≤ 2N1+N2+2

k`
(Vp(f ; I))p,

in view of Lemma 2.1.8. Thus we get

|f̂(nk)| ≤ 2(N1+N2+2)/p · Vp(f ; I)

(k`)1/p
. (3.20)

This completes the proof.

Remark 3.4.2. Theorem 3.4.1 gives lacunary analogue of our earlier result Theorem

3.3.2. Since BVH
(p)(I) ⊂ BVV

(p)(I)∩Lp(I) (in view of Lemma 2.1.12), Theorem 3.4.1

is true if we replace the assumption “f ∈ BVV
(p)(I) ∩ Lp(I)” by “f ∈ BVH

(p)(I)”.

In that case it gives lacunary analogue of our earlier result Theorem 3.3.3 and

simultaneously Walsh analogue of our earlier result Theorem 2.2.3.
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Chapter 4

Vilenkin Fourier Coefficients

4.1 Order of magnitude of Vilenkin Fourier co-

efficients of functions of generalized bounded

fluctuation

Onneweer and Waterman introduced various classes of functions of bounded fluctua-

tion and studied the convergence problems for functions of these classes [37, 38, 39].

However, it appears that the order of magnitude of Vilenkin Fourier coefficients

for functions of such classes has not yet been studied. The only results available,

in this case, seems to be Theorems 1.1.37 and 1.1.38 for functions of the classes

BV(G) and Lip (α, p,G) respectively. In this section, we carry out this study for

non-lacunary Vilenkin Fourier series. Results of this section are published in [16]

(see also MR2662990).

First we give definitions of various classes of functions of bounded and generalized

bounded fluctuation on a Vilenkin group G (see Chapter 1, Section 1.1 (D) for

terminology) as below. In these definitions f denotes a complex-valued function

defined on G.

Definition 4.1.1. For H ⊂ G, we define the oscilation of f on H by

osc(f ;H) = sup{|f(x1)− f(x2)| : x1, x2 ∈ H}.

Onneweer and Waterman [38, Definitions 4, 5] generalized the concept of bounded

variation (see (1.25) for definition of class BV(G)) in two ways as follows.
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Definition 4.1.2. The function f is said to be of bounded fluctuation (f ∈ BF) if

the total fluctuation of f on G, given by

F (f ;G) = sup

{
N∑
n=1

osc (f ; In)

}

is finite, where the supremum is taken over all finite disjoint collections {I1, I2, ..., IN},
in which each In is a coset of some Gm(n) and ∪Nn=1In = G.

Definition 4.1.3. The function f is said to be of generalized bounded fluctuation

(f ∈ GBF) if the total generalized fluctuation of f on G, given by

GF (f ;G) = sup
n

{
mn−1∑
α=0

osc
(
f ; z(n)

α +Gn

)}
is finite.

Further, they have observed that for continuous functions f on G, f ∈ BV

implies f ∈ BF and f ∈ BF implies f ∈ GBF. They have also shown that the

function f defined on G = Z∞2 as

f(x) =


1
n

if x ∈ z(n)
2n−2 +Gn (n odd),

0 if x ∈ z(n)
2n−2 +Gn (n even),

0 if x = (1, 1, ...),

is continuous and of generalized bounded fluctuation but not of bounded fluctuation

on G.

Later, Onneweer extended the notion of generalized bounded fluctuation to p-

generalized bounded fluctuation [39, Definition 4] as follows.

Definition 4.1.4. Let p ≥ 1 be a real number. The function f is said to be of

p-generalized bounded fluctuation (f ∈ GBF(p)) if the total generalized p-fluctuation

of f on G, given by

GFp(f ;G) = sup
n


(
mn−1∑
α=0

(
osc
(
f ; z(n)

α +Gn

))p)1/p


is finite.
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In [39, Definition 5] Onneweer defined the following class of functions of Λ-

generalized bounded fluctuation.

Definition 4.1.5. Let Λ be a sequence as in Definition 1.1.7. The function f is

said to be of Λ-generalized bounded fluctuation (f ∈ ΛGBF) if the total generalized

Λ-fluctuation of f on G, given by

ΛGF (f ;G) = sup
n


mn−1∑
α=0

osc
(
f ; z

(n)
α +Gn

)
λα+1


is finite.

Here we give following definition.

Definition 4.1.6. Let p ≥ 1 be a real number. The function f is said to be of

p-bounded fluctuation (f ∈ BF(p)) if the total p-fluctuation of f on G, given by

Fp(f ;G) = sup


(

N∑
n=1

(osc(f ; In))p

)1/p


is finite, where the supremum is considered as in Definition 4.1.2.

Onneweer and Waterman have defined the following class of functions of φ-

bounded fluctuation [37, Definition 3].

Definition 4.1.7. Let φ be a function as in Definition 1.1.5. The function f is said

to be of φ-bounded fluctuation (f ∈ φBF(G)) if the total φ-fluctuation of f on G,

given by

Fφ(f ;G) = sup

{
N∑
n=1

φ(osc(f ; In))

}
is finite, where the supremum is considered as in Definition 4.1.2.

Onneweer and Waterman have defined the following class of functions of Λ-

bounded fluctuation [37, Definition 2].

Definition 4.1.8. Let Λ be a sequence as in Definition 1.1.7. The function f is

said to be of Λ-bounded fluctuation (f ∈ ΛBF) if the total Λ-fluctuation of f on G,

given by

FΛ(f ;G) = sup

{
∞∑
n=1

osc(f ; In)

λn

}
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is finite, where the supremum is taken over all sequences {In} of disjoint cosets in

G.

Here we define the class ΛBF(p) of functions of p-Λ-bounded fluctuation and the

class φΛBF of functions φ-Λ-bounded fluctuation as follows.

Definition 4.1.9. Let p ≥ 1 be a real number and Λ be a sequence as in Definition

1.1.7. The function f is said to be of p-Λ-bounded fluctuation (f ∈ ΛBF(p)) if the

total p-Λ-fluctuation of f on G, given by

FpΛ(f ;G) = sup


(
∞∑
n=1

(osc(f ; In))p

λn

)1/p


is finite, where the supremum is taken over all sequences {In} of disjoint cosets in

G.

Definition 4.1.10. Let φ be a function as in Definition 1.1.5 and Λ be a sequence

as in Definition 1.1.7. The function f is said to be of φ-Λ-bounded fluctuation

(f ∈ φΛBF) if the total φ-Λ-fluctuation of f on G, given by

FφΛ(f ;G) = sup

{
∞∑
n=1

φ(osc(f ; In))

λn

}

is finite, where the supremum is taken over all sequences {In} of disjoint cosets in

G.

Onneweer and Waterman have defined the following class of functions of φ-

generalized bounded fluctuation [38, Definition 6].

Definition 4.1.11. Let φ be a function as in Definition 1.1.5. The function f is said

to be of φ-generalized bounded fluctuation (f ∈ φGBF(G)) if the total generalized

φ-fluctuation of f on G, given by

GFφ(f ;G) = sup
n

{
mn−1∑
α=0

φ(osc(f ; z(n)
α +Gn))

}
is finite.

Uno [66] defined the concept of p-Λ-generalized bounded fluctuation which is

defined as follows.
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Definition 4.1.12. The function f is said to be of p-Λ-generalized bounded fluc-

tuation (f ∈ ΛGBF(p)) if the total generalized p-Λ-fluctuation of f on G, given

by

GFpΛ(f ;G) = sup
n

sup
α

mn−1∑
j=0

(
osc(f ; z

(n)
α +Gn)

)p
λj+1

1/p

is finite, where supα denotes that the supremum taken over all permutations of the

set {0, 1, ...,mn − 1}.

Here we define the concept of φ-Λ-generalized bounded fluctuation as follows.

Definition 4.1.13. Let φ be a function as in Definition 1.1.5 and Λ be a sequence

as in Definition 1.1.7. The function f is said to be of φ-Λ-generalized bounded

fluctuation (f ∈ φΛGBF) if the total generalized φ-Λ-fluctuation of f on G, given

by

GFφΛ(f ;G) = sup
n

sup
α

{
mn−1∑
j=0

φ(osc(f ; z
(n)
α +Gn))

λj+1

}
is finite, where supα has the same meaning as in Definition 4.1.12.

We observe that if p = 1, BF(p) = BF, ΛBF(p) = ΛBF and GBF(p) = GBF; if

λn ≡ 1, ΛBF(p) = BF(p); and if φ(x) = xp, then φBF = BF(p), φΛBF = ΛBF(p),

φGBF = GBF(p) and φΛGBF = ΛGBF(p). Also from the definitions it is clear that

BF ⊂ GBF, BF(p) ⊂ GBF(p), ΛBF(p) ⊂ ΛGBF(p), φBF ⊂ φGBF, φΛBF ⊂ φΛGBF.

Further if λn = n,∀n ∈ N, then ΛBF = HBF— the class of functions of harmonic

bounded fluctuation, etc.

Theorem 4.1.14. If f ∈ GBF(p) then f̂(n) = O(1/(mk)
1/p), where mk ≤ n < mk+1.

Proof. Since n ≥ mk and the Haar measure is translation invariant, it follows (see,

for example, [51, p. 114, Eq. (15)]) that∫
z
(k)
α +Gk

χn(x)dx = 0

for all α = 0, 1, ...,mk − 1; and hence∫
z
(k)
α +Gk

χ̄n(x)dx = 0, (α = 0, 1, ...,mk − 1).
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If we now define a step function g on G by g(x) = f(z
(k)
α ) on z

(k)
α + Gk, α =

0, 1, ...,mk − 1, then∫
G

g(x)χ̄n(x)dx =

mk−1∑
α=0

f(z(k)
α )

∫
z
(k)
α +Gk

χ̄n(x)dx = 0.

Therefore

|f̂(n)| =
∣∣∣∣ ∫

G

[f(x)− g(x)]χ̄n(x)dx

∣∣∣∣ ≤ ∫
G

|f(x)− g(x)|dx (4.1)

and hence

|f̂(n)| ≤ ||f − g||p||1||q =

(mk−1∑
α=0

∫
z
(k)
α +Gk

|f(x)− f(z(k)
α )|pdx

) 1
p

,

by Hölder’s inequality as f, g ∈ GBF(p) and GBF(p) ⊂ Lp. Thus

|f̂(n)|p ≤
mk−1∑
α=0

∫
z
(k)
α +Gk

|f(x)− f(z(k)
α )|pdx (4.2)

≤
mk−1∑
α=0

∫
z
(k)
α +Gk

(osc(f ; z(k)
α +Gk))

pdx

=

mk−1∑
α=0

(osc(f ; z(k)
α +Gk))

p 1

mk

≤ 1

mk

(GFp(f ;G))p.

This completes the proof.

Corollary 4.1.15. If G is bounded, then f ∈ GBF(p) implies f̂(n) = O(1/n1/p).

Proof. Since G is a bounded Vilenkin group, there exists p0 such that pk ≤ p0 for

all k. Hence mk+1 = mk · pk+1 ≤ mk · p0 and therefore, from mk ≤ n < mk+1 one

gets 1/mk ≤ p0/n, completing the proof.

Remark 4.1.16. Since BF(p) ⊂ GBF(p), Theorem 4.1.14 and Corollary 4.1.15 ob-

viously holds true for functions in BF(p) also.

Theorem 4.1.17. If f ∈ φGBF then f̂(n) = O(φ−1(1/mk)), where mk ≤ n < mk+1.
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Proof. Proceeding as in the proof of Theorem 4.1.14 we get (4.1). Now, by Jensen’s

inequality, for c > 0

φ

(
c

∫
G

|f(x)− g(x)|dx
)
≤
∫
G

φ(c|f(x)− g(x)|)dx

=

mk−1∑
α=0

∫
z
(k)
α +Gk

φ(c|f(x)− f(z(k)
α )|)dx

≤
mk−1∑
α=0

∫
z
(k)
α +Gk

φ(osc(cf ; z(k)
α +Gk))dx

=

mk−1∑
α=0

φ(osc(cf ; z(k)
α +Gk))

1

mk

.

Therefore we have

φ

(
c

∫
G

|f(x)− g(x)|dx
)
≤ 1

mk

GFφ(cf ;G). (4.3)

Since φ is convex and φ(0) = 0, we have φ(ax) ≤ aφ(x) for 0 < a < 1 and for all

x ≥ 0. Therefore, choosing c in (0, 1) so small that GFφ(cf ;G) ≤ 1, one gets

|f̂(n)| ≤
∫
G

|f(x)− g(x)|dx ≤ 1

c
φ−1(1/mk)

in view of (4.3) and (4.1). This completes the proof.

Corollary 4.1.18. If G is bounded, then f ∈ φGBF implies f̂(n) = O(φ−1( 1
n
)).

Proof. As in the proof of Corollary 4.1.15 we have 1/mk ≤ p0/n, so by (4.3)

φ

(
c

∫
G

|f(x)− g(x)|dx
)
≤ p0

n
GFφ(cf ;G).

Now choosing c ∈ (0, 1) small enough so that p0 ·GFφ(cf ;G) ≤ 1, we get

|f̂(n)| ≤
∫
G

|f(x)− g(x)|dx ≤ 1

c
φ−1

(
1

n

)
,

in view of (4.3) and (4.1). This completes the proof.

Remark 4.1.19. Since φBF ⊂ φGBF, Theorem 4.1.17 and Corollary 4.1.18 hold

for functions in φBF also.
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To prove Theorems 4.1.21 and 4.1.24, the following lemma due to Schramm and

Waterman [56] is needed.

Lemma 4.1.20. If a1 ≥ a2 ≥ ... ≥ an > 0,
∑n

i=1 ai = 1 and b1 ≥ b2 ≥ ... ≥ bn, then

n∑
i=1

bi ≤ n

n∑
i=1

aibi.

Theorem 4.1.21. If f ∈ ΛGBF(p) then

f̂(n) = O

1

/(
mk∑
j=1

1

λj

)1/p
 ,

where mk ≤ n < mk+1.

Proof. Since ΛGBF(p) ⊂ Lp, proceeding as in the proof of Theorem 4.1.14 we get

(4.2). Let αi, i = 0, 1, ...,mk − 1, denote a rearrangement of 0, 1, ...,mk − 1 such

that {bi}mk−1
i=0 is non-increasing, where

bi =

∫
z
(k)
αi

+Gk

|f(x)− f(αi)
(k))|dx

for all i. For each n ∈ N put θn =
∑n

j=1
1
λj

=
∑n−1

i=0
1

λi+1
and for each i = 0, 1, ...,mk−

1 put ai = 1/(λi+1θmk). Then {ai}mk−1
i=0 is non-increasing and

∑mk−1
i=0 ai = 1. There-

fore by Lemma 4.1.20 we have

mk−1∑
α=0

∫
z
(k)
α +Gk

|f(x)− f(z(k)
α )|pdx =

mk−1∑
i=0

bi

≤ mk

mk−1∑
i=0

aibi

=
mk

θmk

mk−1∑
i=0

∫
z
(k)
αi

+Gk

(
|f(x)− f(z

(k)
αi )|p

λi+1

)
dx

≤ mk

θmk

mk−1∑
i=0

∫
z
(k)
αi

+Gk

(
(osc(f ; z

(k)
αi +Gk))

p

λi+1

)
dx

≤ mk

θmk

mk−1∑
i=0

(osc(f ; z
(k)
αi +Gk))

p

λi+1

· 1

mk

≤ (GFpΛ(f ;G))p

θmk
,

and hence the theorem is proved in view of (4.2).
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Corollary 4.1.22. If G is bounded, then f ∈ ΛGBF(p) implies

f̂(n) = O

1

/(
n∑
j=1

1

λj

)1/p
 .

Proof. Since G is a bounded Vilenkin group, there exists p0 such that pk ≤ p0

for all k. Since mk ≤ n < mk+1 and {λn} is increasing we have θn < θmk+1
≤

p0 · θmk so that 1/(θmk)
1/p = O(1/(θn)1/p). Thus by Theorem 4.1.21 we have f̂(n) =

O(1/(θmk))
1/p = O(1/(θ

1/p
n )) and hence the corollary is proved.

Remark 4.1.23. Since ΛBF(p) ⊂ ΛGBF(p), Theorem 4.1.21 and Corollary 4.1.22

hold for functions in ΛBF(p) also. In fact, in [16], we have proved the results the

functions of the class ΛBF(p) only and we have now observed that the same proof

works for functions of the class ΛGBF(p).

Theorem 4.1.24. If f ∈ φΛGBF then

f̂(n) = O

(
φ−1

(
1

/ mk∑
j=1

1

λj

))
,

where mk ≤ n < mk+1.

Proof. Let c > 0. Taking now bi =
∫
z
(k)
αi

+Gk
φ(c|f(x) − f(αi)

(k))|)dx for all i, and

proceeding as in Theorem 4.1.21, one gets by Jensen’s inequality and Lemma 4.1.20,

φ

(
c

∫
G

|f(x)− g(x)|dx
)
≤
∫
G

φ(c|f(x)− g(x)|)dx

=

mk−1∑
i=0

bi

≤ mk

mk−1∑
i=0

aibi

=
mk

θmk

mk−1∑
i=0

∫
z
(k)
αi

+Gk

(
φ(c|f(x)− f(z

(k)
αi )|)

λi+1

)
dx

≤ mk

θmk

mk−1∑
i=0

∫
z
(k)
αi

+Gk

(
φ(osc(cf ; z

(k)
αi +Gk))

λi+1

)
dx

=
mk

θmk

mk−1∑
i=0

φ(osc(cf ; z
(k)
αi +Gk))

λi+1

· 1

mk

.
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Therefore we have

φ

(
c

∫
G

|f(x)− g(x)|dx
)
≤ GFφΛ(cf ;G))

θmk
. (4.4)

Choose c ∈ (0, 1) so small that GFφΛ(cf ;G)) ≤ 1. Then by (4.4)∫
G

|f(x)− g(x)|dx ≤ 1

c
φ−1

(
1

θmk

)
,

and hence the theorem is proved in view of (4.1).

Corollary 4.1.25. If G is bounded, then f ∈ φΛGBF implies

f̂(n) = O

(
φ−1

(
1

/ n∑
j=1

1

λj

))
.

Proof. SinceG is bounded as in the proof of Corollary 4.1.22, we have 1/θmk ≤ p0/θn,

so by (4.4)

φ

(
c

∫
G

|f(x)− g(x)|dx
)
≤ p0

θn
FφΛ(cf ;G).

Now choosing c ∈ (0, 1) small enough such that p0 · FφΛ(cf ;G) ≤ 1, we get∫
G

|f(x)− g(x)|dx ≤ 1

c
φ−1

(
1

θn

)
,

and hence the corollary is proved in view of (4.1).

Remark 4.1.26. Since φΛBF ⊂ φΛGBF, Theorem 4.1.24 and Corollary 4.1.25 hold

for functions in φΛBF also. In fact, in [16], we have proved the results the functions

of the class φΛBF only and we have now observed that the same proof works for

functions of the class φΛGBF(p).

4.2 Order of magnitude of Vilenkin Fourier coef-

ficients of series with small gaps for functions

of generalized bounded fluctuation

In Section 4.1 we have studied the order of magnitude of Vilenkin Fourier coefficients

of functions of certain classes of functions of bounded and generalized bounded fluc-

tuation on a Vilenkin group G introduced by Onneweer and Waterman [37, 38, 39].
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Here we define these concepts locally and study the order of magnitude of Vilenkin

Fourier coefficients of functions of these classes, when the Vilenkin Fourier series

is lacunary having small gaps and prove the Vilenkin group analogue (Corollary

4.2.10, below) of the results of Patadia and Vyas [41, Theorem 5]. As in the case of

trigonometric Fourier series [41], here also we give an interconnection between the

‘type of lacunarity’ in Vilenkin Fourier series and the ‘localness’ of the hypothesis to

be satisfied by the generic functions, which allow us to interpolate results concern-

ing order of magnitude of Fourier coefficients of lacunary and non-lacunary Vilenkin

Fourier series. Results of this section are accepted for publication in the form of a

paper in Kyoto Journal of Mathematics [14].

Let G and X be as in Section 1.1 (D). Then we observe that for l, N ∈ N if

l > N then Gl ⊂ GN and therefore

Gl =

{
x ∈ G : x =

∞∑
i=l

bixi

}
=

{
x ∈ GN : x =

∞∑
i=N

bixi, bN = · · · = bl−1 = 0

}
.

Thus each coset of Gl in GN has a representation of the form z + Gl, where z =∑l−1
i=N bixi for some choice of the bi with 0 ≤ bi < pi+1. These (ml/mN) = pN+1pN+2 ·

· ·pl = L (say) cosets of Gl in GN are precisely the cosets z
(l)
α +Gl, α = 0, 1, ..., L−1,

of Gl in G in that order. Also observe that for a given y0 =
∑∞

i=0 cixi in G and

N ∈ N, the coset y0 +GN given by

y0 +GN =

{
x =

∞∑
i=0

bixi ∈ G : bi = ci, i = 0, 1, ..., N − 1

}
contains y0 and is of Haar measure 1/mN . Since GN is the disjoint union of the

cosets z
(l)
α +Gl, α = 0, 1, ..., L− 1, for l > N , the coset y0 +GN is the disjoint union

of the cosets y0 + z
(l)
α +Gl, α = 0, 1, ..., L− 1.

Definition 4.2.1. Let {nk}∞k=1 be an increasing sequence of positive integers. A

function f ∈ L1(G) is said to have a lacunary Vilenkin Fourier series with small

gaps if its Vilenkin Fourier coefficients f̂(n) vanish for n 6= nk, k ∈ N, where {nk}
satisfies the small gap condition (1.11) or, in particular, a more stringent small gap

condition (1.5).

We define various classes of functions of bounded fluctuation over a coset of G

as follows. In these definitions φ is a function as in Definition 1.1.5, Λ a sequence

as in Definition 1.1.7 and f a complex-valued function defined on G.
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Definition 4.2.2. We say f is of φ-bounded fluctuation over y0 +GN (f ∈ φBF(y0 +

GN)) if the total φ-fluctuation of f on y0 +GN given by

Fφ(f ; y0 +GN) = sup

{
T∑
t=1

φ(osc(f ; It))

}

is finite, where the supremum is taken over all finite disjoint collections {I1, I2, ..., IT}
in which each It is a coset of some Gm(t) and ∪Tt=1It = y0 +GN .

Definition 4.2.3. We say f is of φ-Λ-bounded fluctuation over y0 + GN (f ∈
φΛBF(y0 +GN)) if the total φ-Λ-fluctuation of f on y0 +GN given by

FφΛ(f ; y0 +GN) = sup
{In}

{∑
n

φ (osc(f ; In))

λn

}

is finite, where the supremum is taken over all sequences {In} of disjoint cosets in

y0 +GN .

Definition 4.2.4. We say f is of φ-generalized bounded fluctuation over y0 + GN

(f ∈ φGBF(y0 + GN)) if the total generalized φ-fluctuation of f on y0 + GN given

by

GFφ(f ; y0 +GN) = sup
l≥N

ml/mN−1∑
α=0

φ
(
osc
(
f ; y0 + z(l)

α +Gl

))
is finite.

Definition 4.2.5. We say f is of φ-Λ-generalized bounded fluctuation over y0 +GN

(f ∈ φΛGBF(y0 + GN)) if the total generalized φ-Λ-fluctuation of f on y0 + GN ,

given by

GFφΛ(f ; y0 +GN) = sup
l≥N

sup
α

mn/mN−1∑
j=0

φ(osc(f ; y0 + z
(l)
α +GN))

λj+1

is finite, where supα denotes the supremum taken over all permutations of the set

{0, 1, ...,mn − 1}.

We observe that if λn ≡ 1, φΛBF = φBF. If φ(x) = xp (p ≥ 1) then φBF

(respectively, φGBF, φΛGBF) is denoted as BF(p) (respectively, GBF(p), ΛGBF(p))

and functions of this class are called functions of p-bounded fluctuation (respectively,

p-generalized bounded fluctuation, p-Λ-generalized bounded fluctuation). Also when
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p = 1, the class BF(p) (respectively, GBF(p)) is denoted as BF (respectively, GBF)

and functions of this class are called functions of bounded fluctuation (respectively,

generalized bounded fluctuation). Further, from Definitions 4.2.2 and 4.2.4, it is clear

that φBF ⊂ φGBF and from Definitions 4.2.3 and 4.2.5, it is clear that φΛBF ⊂
φΛGBF .

When y0 +GN = G, our Definitions 4.2.2, 4.2.3, 4.2.4 and 4.2.5 are same as the

Definitions 4.1.7, 4.1.10, 4.1.11 and 4.1.13 respectively.

Theorem 4.2.6. Let f ∈ L1(G) possess a lacunary Vilenkin Fourier series

∞∑
k=1

f̂(nk)χnk(x) (4.5)

with small gaps (1.11) and I = y0+GN be the coset with Haar measure 1/mN ≥ 1/q.

Then f ∈ φGBF(I) implies f̂(nk) = O(φ−1(1/ml)), where ml ≤ nk < ml+1. If, in

addition, G is bounded then f̂(nk) = O(φ−1(1/nk)).

Proof. We may assume without loss of generality that x0 = 0; for, otherwise one

works with g = Ty0f ∈ φGBF(GN) whose Fourier series also has gaps (1.11). Then

I = GN and if we consider the polynomial PN(x) [42, Lemma 4] defined by

PN(x) =
N−1∏
k=0

(1 + ϕk(x) + ϕ2
k(x) + · · ·+ ϕpk−1

k (x))

= 1 +
N−1∑
i=0

ϕi(x) +
N−1∑

i,j=0,i 6=j

pi−1∑
l=1

pj−1∑
m=1

ϕli(x) · ϕmj (x) + · · ·+
(N−1∏

i=0

ϕpi−1
i (x)

)
having constant term 1 and with degree ≤ N then

PN(x) =

mN if x ∈ I,

0 if x ∈ G \ I.
(4.6)

Note that if k ∈ N is such that f̂(nk) 6= 0 then (f · PN )̂ (nk) = f̂(nk). In fact,

(f · PN )̂ (nk) =

∫
G

f(x)PN(x)χ̄nk(x)dx

= f̂(nk) +
N−1∑
i=0

f̂(ϕ̄iχnk) +
N−1∑

i,j=0,i 6=j

pi−1∑
l=1

pj−1∑
m=1

f̂(ϕ̄liϕ̄
m
j χnk) + ...+ f̂

(N−1∏
i=0

ϕ̄pi−1
i χnk

)
.

(4.7)
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The characters appearing in the right hand side of (4.7) are of the form χχnk wherein

χ is such that deg χ is positive and ≤ N . Observe that for each j ∈ N there are

totally mj−1(pj − 1) = mj −mj−1 characters of degree j, namely χiϕ
aj−1

j−1 ; 0 ≤ i <

mj−1; 1 ≤ aj−1 ≤ pj−1 and they constitute Xj−Xj−1. Consequently, total number

of characters of positive degree ≤ N is given by

(m1 −m0) + (m2 −m1) + · · ·+ (mN −mN−1) = mN − 1;

they are from χ1 to χmN−1 and they constitute ∪mNj=1(Xj−Xj−1). It follows that when

χnk is multiplied by any character of positive degree ≤ N the resulting character

χm is such that

nk < m ≤ nk +mN − 1 < nk +mN ≤ nk + q ≤ nk+1,

because the lacunary Vilenkin Fourier series (4.5) of f has gaps (1.11) with q ≥ mN .

Since f̂(nk) 6= 0, all the terms of the right hand side of (4.7) vanish except the first.

Now Let k be large enough and l ∈ N ∪ {0} be such that f̂(nk) 6= 0,ml ≤ nk <

ml+1 and l > N . Then, in view of (4.6)

f̂(nk) = (fPN )̂ (nk) = mN

∫
GN

f(x)χ̄nk(x)dx. (4.8)

Since nk ≥ ml and the Haar measure is translation invariant, it follows (see, for

example, [51, p. 114, Eq. (15)]) that∫
z
(l)
α +Gl

χnk(x)dx = 0

for all α = 0, 1, ...,ml − 1; and hence∫
z
(l)
α +Gl

χ̄nk(x)dx = 0, (α = 0, 1, ...,ml − 1).

Now, put L = ml
mN

= (pN+1pN+2 · · · pl) and define a step function g on GN by

g(x) = f(z
(l)
α ) for x in z

(l)
α +Gl, α = 0, 1, ..., L− 1. Then∫

GN

g(x)χ̄nk(x)dx =
L−1∑
α=0

f(z(l)
α )

∫
z
(l)
α +Gl

χ̄nk(x)dx = 0.

Therefore in view of (4.8) we have

|f̂(nk)| =
∣∣∣∣mN

∫
GN

[f(x)− g(x)]χ̄nk(x)dx

∣∣∣∣ ≤ mN

∫
GN

|f(x)− g(x)|dx. (4.9)
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Now, by Jensen’s inequality, for c > 0

φ

(
mN · c ·

∫
GN

|f(x)− g(x)|dx
)
≤ mN

∫
GN

φ(c|f(x)− g(x)|)dx

= mN

L−1∑
α=0

∫
z
(k)
α +Gl

φ(c|f(x)− f(z(l)
α )|)dx. (4.10)

Therefore

φ

(
mN · c ·

∫
GN

|f(x)− g(x)|dx
)
≤ mN

L−1∑
α=0

∫
z
(l)
α +Gl

φ
(
osc
(
cf ; z(l)

α +Gl

))
dx

= mN

L−1∑
α=0

φ
(
osc
(
cf ; z(l)

α +Gl

)) 1

ml

,

and hence

φ

(
mN · c ·

∫
GN

|f(x)− g(x)|dx
)
≤
(
mN

ml

)
GFφ(cf ; I). (4.11)

Since φ is convex and φ(0) = 0, we have φ(ax) ≤ aφ(x) for 0 < a < 1 and for all

x ≥ 0. Therefore, choosing c in (0, 1) so small that (mN ·GFφ(cf ; I)) ≤ 1, one gets

|f̂(nk)| ≤ mN

∫
GN

|f(x)− g(x)|dx ≤
(

mN

mN · c

)
φ−1

(
1

ml

)
in view of (4.11) and (4.9). This shows that f̂(nk) = O (φ−1(1/ml)).

Finally, if G is bounded, there is a positive integer p0 such that pl ≤ p0 for all l.

Thus nk < ml+1 = ml · pl+1 ≤ ml · p0, which shows that 1
ml
≤ p0

nk
and hence (4.11)

gives

φ

(
mN · c ·

∫
GN

|f(x)− g(x)|dx
)
≤
(
p0 ·mN

nk

)
GFφ(cf ; I). (4.12)

Choosing now c in (0, 1) so small that (p0 ·mN ·GFφ(cf ; I)) ≤ 1, one obtains

|f̂(nk)| ≤ mN

∫
GN

|f(x)− g(x)|dx ≤
(

mN

mN · c

)
φ−1

(
1

nk

)
in view of (4.12) and (4.9).

Taking φ(x) = xp (p ≥ 1) in Theorem 4.2.6, we get the following.
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Corollary 4.2.7. Let f and I be as in Theorem 4.2.6. Then f ∈ GBF(p)(I) (p ≥ 1)

implies f̂(nk) = O(1/(ml)
1
p ), where ml ≤ nk < ml+1. If, in addition, G is bounded

then f̂(nk) = O(1/(nk)
1
p ).

Remark 4.2.8. Since φBF ⊂ φGBF, Theorem 4.2.6 holds for functions in φBF

also. Similarly, as BF(p) ⊂ GBF(p), Corollary 4.2.7 holds for functions in BF(p) also.

Theorem 4.2.9. Let f and I be as in Theorem 4.2.6. Then f ∈ φΛGBF (I) implies

f̂(nk) = O

(
φ−1

(
1

/( ml∑
j=1

1

λj

)))
,

where ml ≤ nk < ml+1. If, in addition, G is bounded then

f̂(nk) = O

(
φ−1

(
1

/( nk∑
j=1

1

λj

)))
.

Proof. Proceeding as in the proof of Theorem 4.2.6, for c > 0, we get (4.9) and

(4.10). Let αi, i = 0, 1, ..., L− 1, denote a rearrangement of 0, 1, ..., L− 1 such that

{bi}L−1
i=0 is non-increasing, where

bi =

∫
z
(l)
αi

+Gl

φ
(
c|f(x)− f(z(l)

αi
)|
)
dx

for all i. For each i = 0, 1, ..., L − 1 put ai = 1
λi+1θL

, where θn =
∑n

j=1
1
λj

, for all

n ∈ N. Then {ai}L−1
i=0 is non-increasing and

∑L−1
i=0 ai = 1. Therefore by Lemma

4.1.20

L−1∑
α=0

∫
z
(l)
α +Gl

φ(c|f(x)− f(z(l)
α )|)dx =

L−1∑
i=0

bi ≤ L

L−1∑
i=0

aibi

=
L

θL

L−1∑
i=0

∫
z
(l)
αi

+Gl

(
φ(c|f(x)− f(z

(l)
αi )|)

λi+1

)
dx

≤ L

θL

L−1∑
i=0

∫
z
(l)
αi

+Gl

(
φ(osc(cf ; z

(l)
αi +Gl))

λi+1

)
dx

=
ml

mNθL

L−1∑
i=0

φ(osc(cf ; z
(l)
αi +Gl))

λi+1

· 1

ml

≤ GFφΛ(cf ; I)

mNθL
.
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Therefore
L−1∑
α=0

∫
z
(l)
α +Gl

φ(c|f(x)− f(z(l)
α )|)dx ≤ GFφΛ(cf ; I)

θml
, (4.13)

since {λi} is non-decreasing. In view of (4.13) and (4.10) we get

φ

(
mN · c ·

∫
GN

|f(x)− g(x)|dx
)
≤ mN ·GFφΛ(cf ; I)

θml
. (4.14)

Since φ is convex and φ(0) = 0, we can choose c in (0, 1) so small such that

(mN · GFφΛ(cf ; I)) ≤ 1. This proves, in view of (4.14) and (4.9), that f̂(nk) =

O(φ−1(1/θml)).

Finally, if G is bounded, 1
θml
≤ p0

θnk
and hence by (4.10) and (4.13)

φ

(
mN · c ·

∫
GN

|f(x)− g(x)|dx
)
≤ mN · p0 ·GFφΛ(cf ; I)

θnk
.

Choosing now c ∈ (0, 1) small enough such that (mN · p0 · GFφΛ(cf ;G)) ≤ 1, we

then get ∫
GN

|f(x)− g(x)|dx ≤
(

1

mN · c

)
φ−1

(
1

θnk

)
,

and hence the theorem in view of (4.9).

Taking φ(x) = xp (p ≥ 1) in Theorem 4.2.9, we get the following result, which is

the Vilenkin group analogue of the result of Patadia and Vyas [41, Theorem 5].

Corollary 4.2.10. Let f and I be as in Theorem 4.2.6. Then f ∈ ΛGBF(p)(I)

(p ≥ 1) implies

f̂(nk) = O

1

/(
ml∑
j=1

1

λj

) 1
p

 ,

where ml ≤ nk < ml+1. If, in addition, G is bounded then

f̂(nk) = O

1

/(
nk∑
j=1

1

λj

) 1
p

 .

Remark 4.2.11. Since φΛBF ⊂ φΛGBF, Theorem 4.2.9 holds for functions in

φΛBF also. Similarly, as ΛBF(p) ⊂ ΛGBF(p), Corollary 4.2.10 holds for functions

in ΛBF(p) also. In fact, in [14], we have proved results for the functions of the

class φΛBF and now observed that the same proof works for functions of the class

φΛGBF.
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Remark 4.2.12. Observe that nk = k for all k =⇒ q = 1 in (1.11) =⇒ I is of

Haar measure 1 in above theorems =⇒ I = G; and one gets corresponding results

(of Section 4.1) for non-lacunary Vilenkin Fourier series [16]. On the other hand,

if the Vilenkin Fourier series (4.5) of f ∈ L1(G) has gaps (1.5) then above results

hold if the coset I is just of positive measure. Because if |I| > 0, by the form of I,

|I| = 1/mN where N ∈ N can be taken as large as required. In view of (1.5), one

gets (nk+1−nk) ≥ mN for all k ≥ k0 for a suitable k0 = k0(N). Then adding to f(x)

the Vilenkin polynomial
∑k0

j=1(−f̂(nj))χnj(x) one gets a function g whose Fourier

series is lacunary of the form (4.5) having gaps (1.11) with q = mN and results

are true for g. Since f and g differ by a polynomial, results are true for f as well.

Our results thus interpolates lacunary and non-lacunary results concerning order

of magnitude of Fourier coefficients—displaying beautiful interconnection between

types of lacunarity (as determined by q in (1.11)) and localness of hypothesis to be

satisfied by the generic function (as determined by the q-dependent length of I).
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Chapter 5

Absolute Convergence Of Vilenkin

Fourier Series

5.1 Absolute convergence of non-lacunary Fourier

series of functions of generalized bounded fluc-

tuation on Vilenkin groups

In Chapter 4 we have studied the order of magnitude of Vilenkin Fourier coefficients

of functions of various classes of functions of generalized bounded fluctuation. Here

we study the absolute convergence of Vilenkin Fourier series for functions of these

classes. Our result (see Theorem 5.1.3) generalizes the earlier result Theorem 1.2.42

of Uno [66].

In what follows, it is assumed that G is a bounded Vilenkin Group and f is a

complex-valued function on G. Vilenkin Fourier coefficients are defined by (1.23) in

Chapter 1, Section 1.1 (D) and various concepts of generalized bounded fluctuation

are defined in Section 4.1. Here following results are obtained. Main results of

this section are Theorems 5.1.3 and 5.1.7. To prove them, following lemmas due to

Vilenkin N. Ja. and Rubinstěin A. I. [67, p. 5] and Stečhkin [60, Lemma 2] are

needed.

Lemma 5.1.1. For each N = 0, 1, 2, ... and k ≥ mN we have

(a)
∫
GN

χk(h)dh = 0;

(b)
∫
GN
|χk(h)− 1|2dh = 2

∫
GN

[1− Reχk(h)]dh = 2|GN | = 2
mN

.
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Lemma 5.1.2. If un ≥ 0, for n ∈ N, un 6≡ 0 and a function F (u) is concave,

increasing, and F (0) = 0, then
∑∞

1 F (un) ≤ 2
∑∞

1 F ( 1
n

∑∞
k=n uk).

Theorem 5.1.3. If f ∈ ΛGBF(p), 1 ≤ p < 2r, 1 ≤ r <∞ and

∞∑
n=0

(mn)2/β−1
(
ω(p+(2−p)r′)(f, n)

)2−p/r(∑mn
j=1

1
λj

)1/r


β/2

<∞,

then
∞∑
k=0

|f̂(k)|β <∞, (0 < β ≤ 2). (5.1)

Proof. LetM ∈ N be fixed and letN ∈ N be the integer such thatmN ≤M < mN+1.

For each α = 0, 1, ...,mN − 1 and h ∈ GN put

fα(x) = f
(
x+ z(N)

α + h
)
− f

(
x+ z(N)

α

)
, ∀x ∈ G.

Then for each n ≥ 0 we have

f̂α(n) = f̂(n)χn
(
z(N)
α + h

)
− f̂(n)χn

(
z(N)
α

)
= f̂(n)χn

(
z(N)
α

)
(χn(h)− 1).

Since f ∈ ΛGBF(p) for any x ∈ G = G0 we see that

|f(x)|p = |f(0) + f(x)− f(0)|p

≤ 2p|f(0)|p + 2p|f(x)− f(0)|p

= 2p|f(0)|p + 2pλ1

(
|f(x)− f(0)|p

λ1

)
≤ 2p|f(0)|p + 2pλ1

(
osc
(
f ; z

(0)
0 +G0

))p
≤ 2p|f(0)|p + 2pλ1 (ΛGFp(f ;G))p .

Thus f is bounded on G and hence f ∈ L2(G). As a result each fα ∈ L2(G) and so

by Parseval’s equality (since |χn(z
(N)
α )| = 1) we have

B(h) ≡
∞∑
n=0

|f̂(n)|2|χn(h)− 1|2 = ||fα||22, ∀α. (5.2)
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Now, suppose r > 1 and set 2 = p+(2−p)r′
r′

+ p
r
; then using the Hölder’s inequality we

get

||fα||22 =

∫
G

|fα(x)|2dx

=

∫
G

|fα(x)|(
p+(2−p)r′

r′ + p
r

)dx

=

∫
G

(
|fα(x)|(p+(2−p)r′)

)1/r′

(|fα(x)|p)1/r dx

≤
{∫

G

|fα(x)|(p+(2−p)r′)dx

}1/r′ {∫
G

|fα(x)|pdx
}1/r

≤ (ΩN)1/r

(∫
G

|fα(x)|pdx
)1/r

,

where ΩN =
(
ω(p+(2−p)r′)(f,N)

)2r−p
since h ∈ GN . This together with (5.2) implies

(B(h))r ≤ ΩN

∫
G

|fα(x)|pdx, (5.3)

for all α = 0, 1, ...,mN − 1. Since the left hand side of (5.3) is independent of α,

multiplying both the sides of it by (1/λα+1) and taking summation over α, we get

(B(h))rθmN ≤ ΩN

∫
G

(
mN−1∑
α=0

|fα(x)|p

λα+1

)
dx,

where θt =
∑t

j=1(1/λj) =
∑t−1

j=0(1/λj+1), for all t ∈ N; and hence

B(h) ≤
(

ΩN

θmN

)1/r
{∫

G

(
mN−1∑
α=0

|fα(x)|p

λα+1

)
dx

}1/r

.

Integrating both sides of this inequality over GN with respect to h we get

∫
GN

B(h)dh ≤
(

ΩN

θmN

)1/r ∫
GN

{∫
G

mN−1∑
α=0

|fα(x)|p

λα+1

dx

}1/r

dh. (5.4)

Now, for any h ∈ GN and any x ∈ G the points x+ z
(N)
α + h and x+ z

(N)
α lie in the

coset x+ z
(N)
α +GN of GN in G and hence

|fα(x)| = |f(x+ z(N)
α + h)− f(x+ z(N)

α )| ≤ osc(f, x+ z(N)
α +GN). (5.5)
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Since f ∈ ΛGBF(p), for any h ∈ GN and x ∈ G, in view of (5.5), we have

mN−1∑
α=0

|fα(x)|p

λα+1

≤
mN−1∑
α=0

(
osc(f, x+ z

(N)
α +GN)

)p
λα+1

≤ (ΛGFp(f ;G))p , (5.6)

because for any x ∈ G, the finite sequence of cosets {x + z
(N)
α + GN : α =

0, 1, ...,mN − 1} is a rearrangement of the sequence {z(N)
α +GN : α = 0, 1, ...,mN − 1}.

Further, from (5.2),∫
GN

B(h)dh ≥
∞∑

k=M

|f̂(k)|2
∫
GN

|χk(h)− 1|2dh =

(
2

mN

) ∞∑
k=M

|f̂(k)|2, (5.7)

in view of Lemma 5.1.1, because k ≥ M implies k ≥ mN . Using (5.6) and (5.7) in

(5.4) we get

RM ≡
∞∑

k=M

|f̂(k)|2 = O

[(
ΩN

θmN

)1/r
]
. (5.8)

Applying Lemma 5.1.2 with uk = |f̂(k)|2 and F (u) = uβ/2 we get

∞∑
k=1

|f̂(k)|β =
∞∑
k=1

F (uk) ≤ 2
∞∑
k=1

F

(
1

k

∞∑
j=k

|f̂(j)|2
)

= 2
∞∑
k=1

F

(
Rk

k

)
. (5.9)

Thus in view of (5.8) we get

∞∑
k=1

|f̂(k)|β = O(1)
∞∑
k=1

(
Rk

k

)β/2
= O(1)

∞∑
n=0

mn+1−1∑
k=mn

(
Rk

k

)β/2

= O(1)
∞∑
n=0

mn+1−1∑
k=mn

[
(Ωn)1/r

mn(θmn)1/r

]β/2

= O(1)
∞∑
n=0

[
(Ωn)1/r

mn(θmn)1/r

]β/2
(mn+1 −mn)

= O(1)
∞∑
n=0

(mn)2/β−1
(
ω(p+(2−p)r′)(f, n)

)2−p/r(∑mn
j=1

1
λj

)1/r


β/2

<∞,
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because G is bounded and by the assumption of theorem. This completes the proof

of the theorem for r > 1.

For the case r = 1, s =∞, simply note that

|fα(x)|2 = |fα(x)|2−p|fα(x)|p ≤ (ωN(f))2−p|fα(x)|p,

because

|fα(x) = f(x+ z(N)
α + h)− f(x+ z(N)

α )| ≤ ωN(f)

since h ∈ GN ; and proceed as above.

Remark 5.1.4. Since ΛBF(p) ⊂ ΛGBF(p), Theorem 5.1.3 obviously holds true for

functions in ΛBF(p) also.

Taking β = 1 in Theorem 5.1.3 we obtain

Corollary 5.1.5. Let 1 ≤ r <∞ and 1 ≤ p < 2r. If f ∈ ΛGBF(p) satisfies

∞∑
n=0

(mn)1/2
(
ω(p+(2−p)r′)(f, n)

)1−p/2r(∑mn
j=1

1
λj

)1/2r
<∞,

then (5.1) holds for β = 1.

Remark 5.1.6. Corollary 5.1.5 is a result due to Yoshikazu Uno [66].

Theorem 5.1.7. If f ∈ φΛGBF, 1 ≤ p < 2r, 1 ≤ r <∞ and

∞∑
k=1

(mn)2/β−1

{
φ−1

((
ω(p+(2−p)r′)(f, n)

)2r−p∑mn
j=1

1
λj

)}1/r
β/2 <∞,

then (5.1) holds, in which φ is a ∆2−function (that is, there is a constant d ≥ 2

such that φ(2x) ≤ dφ(x), ∀x ≥ 0).

Proof. Since f ∈ φΛGBF for any x ∈ G we have

|f(x)| ≤ |f(0)|+ Cφ−1(ΛGFφ(f ;G)).

Thus f is bounded on G and hence f ∈ L2(G). For r > 1, proceeding as in the

proof of Theorem 5.1.3 we get (5.3). Since multiplying f by a positive constant
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alters ω(p)(f, n) (see (1.27)) by the same constant, and φ is ∆2, we may assume that

|f(x)| ≤ 1
2

for all x. But then from (5.3) we get

(B(h))r ≤ ΩN

∫
G

|fα(x)|dx, (α = 0, 1, ...,mN − 1).

Since φ(2x) ≤ dφ(x),∀x ≥ 0, we get φ(ax) ≤ dlog2 a+1φ(x),∀x ≥ 0, ∀a ≥ 1. For,

using induction on n we get

φ(2nx) ≤ dnφ(x),∀x ≥ 0,∀n ∈ N.

Next, if a ≥ 1 is any real number, choosing n ∈ N such that 2n−1 ≤ a < 2n we get

0 < a
2n
< 1. Therefore for all x ≥ 0 we have

φ(ax) = φ
( a

2n
· 2nx

)
≤ a

2n
φ(2nx) ≤ a

2n
dnφ(x) < dnφ(x) ≤ dlog2 a+1φ(x).

Since ΩN ≥ 0, if ΩN < 1 then we get

φ((B(h))r) ≤ φ

(
ΩN

∫
G

|fα(x)|dx
)
≤ ΩNφ

(∫
G

|fα(x)|dx
)
.

Further when ΩN ≥ 1, as above

φ((B(h))r) ≤ φ

(
ΩN

∫
G

|fα(x)|dx
)

≤ dlog2 ΩN+1φ

(∫
G

|fα(x)|dx
)

= d(ΩN)log2 dφ

(∫
G

|fα(x)|dx
)

= d(ΩN)log2 d−1ΩNφ

(∫
G

|fα(x)|dx
)

≤ dΩNφ

(∫
G

|fα(x)|dx
)
,

in view of the fact that (ΩN)log2 d−1 ≤ 1, as |f(x)| ≤ 1
2
,∀x and log2 d− 1 ≥ 0. Since

d ≥ 2, in either case

φ ((B(h))r) ≤ dΩNφ

(∫
G

(|fα(x)|)dx
)
≤ dΩN

∫
G

φ(|fα(x)|)dx,

in view of the Jensen’s inequality. Now multiplying both the sides of this inequality

by (1/λα+1) and taking summation over α = 0, 1, ...,mN − 1 we get

φ ((B(h))r) ≤ d

(
ΩN

θmN

)∫
G

(
mN−1∑
α=0

φ(|fα(x)|)
λα+1

)
dx. (5.10)
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Since f ∈ φΛGBF and φ is increasing, for all h ∈ GN and x ∈ G we have

mN−1∑
α=0

φ(|fα(x)|)
λα+1

≤
mN−1∑
α=0

φ
(

osc(f ;x+ z
(N)
α +GN)

)
λα+1

≤ ΛGFφ(f ;G). (5.11)

Using (5.11) in (5.10) we get φ ((B(h))r) ≤ C
(

ΩN
θmN

)
, where C is a constant such

that C ≥ 1. Thus (B(h))r ≤ φ−1
{
C
(

ΩN
θmN

)}
≤ Cφ−1

(
ΩN
θmN

)
and therefore

B(h) = O

[{
φ−1

(
ΩN

θmN

)}1/r
]
.

Integrating both sides of this inequality over GN with respect to h, in view of (5.7)

we get

RM ≡
∞∑

k=M

|f̂(nk)|2 ≤
(mN

2

)∫
GN

B(h)dh = O

[{
φ−1

(
ΩN

θmN

)}1/r
]
.

Thus in view of (5.9) we get

∞∑
k=1

|f̂(k)|β = O(1)
∞∑
k=1

(
Rk

k

)β/2
= O(1)

∞∑
n=0

mn+1−1∑
k=mn

(
Rk

k

)β/2

= O(1)
∞∑
n=0

mn+1−1∑
k=mn

[
1

mn

{
φ−1

(
Ωn

θmn

)}1/r
]β/2

= O(1)
∞∑
n=0

[
1

mn

{
φ−1

(
Ωn

θmn

)}1/r
]β/2

(mn+1 −mn)

= O(1)
∞∑
n=0

[
(mn)2/β−1

{
φ−1

(
Ωn

θmn

)}1/r
]β/2

<∞,

since G is bounded and in view of the assumption of the theorem. This completes

the proof of the theorem for r > 1. For the case r = 1, s =∞, the proof is similar

as that of Theorem 5.1.3.

Remark 5.1.8. Since φΛBF ⊂ φΛGBF, Theorem 5.1.7 obviously holds true for

functions in φΛBF also. With β = 1, Theorem 5.1.3 and Theorem 5.1.7 are bounded

Vilenkin group analogue of the corresponding circle group results of Schramm and

Waterman [56].
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5.2 The Wiener-Ingham type inequality and its

application to harmonic analysis

Wiener’s investigations of properties of gap series in terms of separation condition on

exponents using real and complex variable methods is classical. While attempting

to prove Fabry’s version of the classical Hadamard gap theorem concerning func-

tions with natural boundary, Wiener proved an important trigonometric inequality

concerning lacunary trigonometric sums. This inequality was later on made precise

by Ingham and it is given below (see [80, Vol. I, p. 222]).

Theorem 5.2.1. Consider a finite lacunary trigonometric sum

f(x) =
N∑
−N

Ak exp(inkx) (n−k = −nk) (5.12)

where {Ak} is a sequence of complex numbers and {nk} is a sequence of integers

satisfying the small gap condition (1.11). If I is any subinterval of [−π, π] of length

|I| = 2π(1 + δ)/q > 2π/q then∑
|Ak|2 ≤ Aδ|I|−1||f ||22,I , (5.13)

|Ak| ≤ Aδ|I|−1||f ||1,I , (5.14)

where Aδ depends only on δ and ||f ||p,I = ||fχI ||p for p ≥ 1 in which χI is the

characteristic function of I and || · ||p is the usual Lp norm. The results hold for

infinite trigonometric sums if the series (5.12) converges uniformly.

This theorem is actually true for nonharmonic trigonometric sums (that is, when

nk’s are real) and exhibits a beautiful interconnection between the ‘type of lacunar-

ity’ in the trigonometric sums and the ‘localness of the hypothesis’ satisfied by f . It

may be observed that for infinite sums the requirement of their uniform convergence

to f(x) can be replaced by a weaker hypothesis: “{Ak} satisfies

∞∑
−∞

|Ak|s|nk| <∞ (0 < s < 1) (5.15)

and f is defined on I by lim
s→1
||f − fs||2,I = 0 where fs(x) =

∑∞
−∞Ake

inkxs|nk| ” — in

view of the facts that the symmetric partial sums of fs(x), to which the theorem can
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be applied, converges uniformly to f(x) and ||fs||2,I → ||f ||2,I as s → 1. Hence, in

particular, if the Fourier series of f ∈ L1[−π, π] is lacunary of the form
∑
f̂(nk)e

inkx

with nk satisfying (1.11) and I ⊂ [−π, π] is an interval of length |I| > 2π/q then

Theorem 5.2.1 can be applied to the Fourier series of f if f ∈ L2(I) — showing that

the lacunary Fourier series with small gaps behave well on [−π, π] if it behave well on

any interval I ⊂ [−π, π] of length > 2π/q. Since several results of Sidon, Zygmund,

Stečhkin and others, showing that the lacunary Fourier series on the circle group

T with Hadamard type big gaps behave well on T whenever they behave well on

a subset E of T positive measure, are extended to the case of a general compact

abelian group (refer [31]), it is natural to inquire whether the above phenomenon

for the lacunary Fourier series with small gaps as illustrated by the Wiener-Ingham

Theorem 5.2.1 can be extended to other compact abelian groups. It is shown here

that type of Theorem 5.2.1 can be extended to the case of Vilenkin groups G.

Ingham’s idea in the case of T in proving Theorem 5.2.1 was to select a suitable

function P (x) vanishing outside a concerned subinterval I and possessing absolutely

convergent Fourier series, and then to show that || |f 2|P ||1,I majorizes a fixed

multiple of
∑
|Ak|2. However, the technique employed here is entirely different: one

selects a trigonometric polynomial P vanishing outside a concerned subinterval I,

having constant term 1 and of degree less than the gaps in the Fourier series of f ;

and then shows that f̂(χ) = (fP ) (̂χ) for concerned characters χ — the technique

which works with remarkable ease in the present setting unlike in the case of T. The

Wiener-Ingham type inequality established in the setting of Vilenkin groups is then

applied to estimate the tails of
∑
|f̂(nk)|2 for the Fourier series of f ∈ L2 with small

gaps in terms of local mean modulus of continuity of f . Also, we get the analogues

on G of Patadia’s earlier results on T extending the results concerning the absolute

convergence of non-lacunary Fourier series on G to the lacunary Fourier series with

small gaps.

We prove the following analogue of the Wiener-Ingham inequality of Theorem

5.2.1.

Theorem 5.2.2. Let f and I be as in Theorem 4.2.6. If f ∈ Lp(I), 1 < p ≤ 2, then(
∞∑
k=1

|f̂(nk)|p
′

)1/p′

≤ |I|−1||f ||p,I , (5.16)

|f̂(nk)| ≤ |I|−1||f ||1,I . (5.17)
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Proof. By our assumption, we have |I| = 1/mN with mN ≤ q because |I| ≥ 1/q.

Consider the polynomial P ≡ PN of degree N and having the constant term 1

constructed in the following way:

P (x) =
N−1∏
k=0

(
1 + ϕk(y0)ϕk(x) + (ϕk(y0))2(ϕk(x))2 + ...+ (ϕk(y0))pk+1−1(ϕk(x))pk+1−1

)
.

Put y0 =
∑∞

i=0 cixi, 0 ≤ ci < pi+1, i = 0, 1, 2, ... . Then for each k = 0, 1, ..., N − 1,

x ∈ I ⇒ x =
∞∑
i=0

bixi with 0 ≤ bi < pi+1 for all i, and bi = ci for i = 0, 1, ..., N − 1

⇒ ϕk(x) = ϕk

(
N−1∑
i=0

cixi

)
ϕk

(
∞∑
i=N

bixi

)

⇒ ϕk(x) = ϕk

(
N−1∑
i=0

cixi

)
· 1

⇒ ϕk(x) = ϕk

(
N−1∑
i=0

cixi

)
ϕk

(
∞∑
i=N

cixi

)
= ϕk(y0)

because ϕk ∈ Xk+1 ⊂ XN for k = 0, 1, ..., N − 1, and
∑∞

i=N bixi,
∑∞

i=N cixi ∈ GN .

Therefore,

x ∈ I ⇒ P (x) = P (y0) =
N−1∏
k=0

pk+1 = mN . (5.18)

Also, x /∈ I implies x =
∑∞

i=0 bixi with 0 ≤ bi < pi+1 for all i and bj 6= cj for some

j ∈ {0, 1, ..., N − 1}. If k = min{j : bj 6= cj} then

ϕk(y0)ϕk(x) = ϕk(ckxk)ϕk(bkxk) = (ϕk(xk))
bk
(
ϕk(xk)

)ck
=
(
e2πi/pk+1

)bk−ck
= tk,

say; because
∑k−1

i=0 cixi =
∑k−1

i=0 bixi, ϕk ∈ Xk+1 and
∑∞

i=k+1 cixi,
∑∞

i=k+1 bixi ∈ Gk+1.

It follows that the kth factor of the product comprising P (x) is (1 + tk + (tk)
2 + ...+

(tk)
pk+1−1) = 0 because bk − ck 6= 0 implies tk 6= 1 is the pk+1

th root of unity. Thus

x /∈ I implies P (x) = 0. (5.19)

In view of (5.18) and (5.19) we have fP ∈ Lp(G) because f ∈ Lp(I); and hence an

application of Hausdorff-Young inequality gives us(∑
χ∈X

|(fP ) (̂χ)|p′
)1/p′

≤ ||fP ||p,G.
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Therefore (
∞∑
k=1

|(fP ) (̂nk)|p
′

)1/p′

≤ mN ||f ||p,I , (5.20)

where for each k = 1, 2, ... we have

(fP ) (̂nk) =

∫
G

f(x)P (x)χnk(x)dx

= f̂(nk) +
N−1∑
i=0

ϕi(y0)f̂(ϕ̄iχnk)

+
N−1∑
i,j=0
i 6=j

pi+1−1∑
u=1

pj+1−1∑
m=1

(ϕi(y0))u(ϕj(y0))mf̂
(

(ϕi)u(ϕj)mχnk

)

+ ...+
N−1∏
i=0

(ϕi(y0))pi+1−1f̂

((
N−1∏
i=0

(ϕi)pi+1−1

)
χnk

)
. (5.21)

The first term in the right hand side of (5.21) is nonzero because the Fourier

series of f is lacunary of the form (4.5), and the characters appearing in the

other terms are of the form χχnk wherein χ is such that deg χ is positive and

≤ N . However, the total number of characters of positive degree ≤ N is given by

(m1 −m0) + (m2 −m1) + ...+ (mN −mN−1) = mN − 1, they are from χ1 to χmN−1

and they constitute ∪Nj=1(Xj −Xj−1) — because for each j = 1, 2, ... there are

exactly mj − mj−1 characters of degree j, namely: χmj−1
≡ ϕj−1, χmj−1+1 ≡

ϕj−1χ1, ..., χmj−1 ≡
∏j−1

i=0 (ϕi)
pi+1−1, constituting Xj − Xj−1. Therefore when χnk

is multiplied by any character of positive degree ≤ N the resulting character χm is

such that

nk < m ≤ nk +mN − 1 < nk +mN ≤ nk + q ≤ nk+1

because q ≥ mN . Therefore in view of the gaps (1.11) in the Fourier series (4.5) of

f , all the terms on the right side of (5.21) vanish except the first. Thus

(fP ) (̂nk) = f̂(nk) for k = 1, 2, ... . (5.22)

(5.20) and (5.22) obviously imply (5.16) because |I| = 1/mN . Next, for each k =

1, 2, ... we have

|f̂(nk)| = |(fP ) (̂nk)| ≤‖ |f | |P | |wnk | ‖1,G= mN ‖ f ‖1,I= |I|−1 ‖ f ‖1,I .

This proves (5.17) and the theorem is proved.
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Remark 5.2.3. In particular, Theorem 5.2.2 obviously holds for any polynomial

f(x) =
∑M

i=1 dkχnk(x) on G with {nk} satisfying (1.11) because then f̂(nk) = dk

for k = 1, 2, ...,M and f̂(nk) = 0 otherwise. Theorem 5.2.2 with p = p′ = 2 is the

analogue of the Wiener-Ingham inequality in the setting of Vilenkin groups.

Remark 5.2.4. The conclusion (5.16) of Theorem 5.2.2 with p = p′ = 2 clearly

gives the global L2-integrability of f from its local L2-integrability (f ∈ L2(I) implies

f ∈ L2(G)) if the Fourier series (4.5) of f possess gaps (1.11).

Corollary 5.2.5. Let f ∈ L1(G) possess a lacunary Fourier series of the form (4.5)

with {nk} satisfying the gap condition (1.5). Then for any coset I = y0 + GN as

in Theorem 5.2.2 but now just of positive measure (that is, N is arbitrary large) we

have

(a) (5.16) and (5.17) hold with a suitable constant on the right side if f ∈ Lp(I),

where 1 < p ≤ 2;

(b) f ∈ L2(I) implies f ∈ L2(G).

Proof. The form of I implies |I| = 1/mN , where N ∈ N may be taken very large be-

cause I is just of positive measure. In view of (1.5), we have (nk+1 − nk) ≥ mN

for all k ≥ k0 for suitable k0 = k0(N). Then adding to f(x) the polynomial∑k0
j=0(−f̂(nj))χnj we get the function g whose Fourier series is lacunary of the

form (4.5) having gaps (1.11) with q = mN . Since f ∈ Lp(I) implies g ∈ Lp(I),

Theorem 5.2.2 is applicable to g. But f̂(n) = ĝ(n) for all but finitely many n, hence

the corollary is proved.

Remark 5.2.6. Corollary 5.2.5 (b) is an analogue on G of a result due to Payley

& Wiener quoted by Kennedy [29, Lemma 4].

Now we give an application of the Wiener-Ingham Inequality. Theorem 5.2.2 is

a sort of an extension of the Hausdorff-Young inequality — in a sense that if there

are no gaps in the Fourier series, that is, if equality holds throughout in (1.11) then

one needs to take I = G and (5.16) coincides with the Hausdorff-Young inequal-

ity. Consequently, the analogues on a Vilenkin group G of the well-known results

of Bernstein, Zygmund, Szász and Stečhkin concerning the absolute convergence of

Fourier series on G obtained by Vilenkin and Rubinstein [67], Onneweer [40] and
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Quek and Yap [54, 55] can be extended for the lacunary Fourier series on G. We be-

gin by estimating the tails of
∑
|f̂(nk)|2 in terms of the mean modulus of continuity

/ the best approximation of f considered only on a coset of G.

To prove Theorem 5.2.10, we need following definitions lemma.

Definition 5.2.7. For a function f : G → C and n ∈ N ∪ {0}, we define the n-th

modulus of continuity of f over the coset I = y0 +GN by

ωn(f, I) = sup{|(Thf − f)(x)| : x ∈ I, h ∈ Gn},

where (Thf)(x) = f(x+ h), ∀x ∈ G.

Definition 5.2.8. For a function f : G→ C, n ∈ N∪{0} and 1 ≤ p <∞, we define

the n-th integral modulus of continuity of order p of f over the coset I = y0 + GN

by

ω(p)(f, n, I) = sup{||Thf − f ||p,I : h ∈ Gn},

where ||(·)||p,I = ||(·)χI ||p in which χI is the characteristic function of I and ||(·)||p
denotes the Lp norm on G.

When p =∞ we put, ω(∞)(f, n, I) = ωn(f, I), where ωn(f, I) is as in Definition

5.2.7. Also, when I = G, we omit writing I and in that case ωn(f) is the n-th

modulus of continuity on G as in Definition 2 of [39].

Lemma 5.2.9. For each N = 0, 1, 2, ... the following statements are true.

(a) GN − {0} = ∪∞n=N(Gn −Gn+1), the union being disjoint.

(b) h ∈ GN if and only if |h| < 1/mN .

(c) If n ≥ mN then χn ∈ X \Xn.

(d) For h ∈ GN − {0} we have χn(h) = 1 if n < mN and χn(h) 6= 1 if n ≥ mN .

Proof. In view of (1.24), (a) is obvious. Observing that |h| = 1/mn+1 if and only

if h ∈ Gn \ Gn+1 for each n = 0, 1, 2, ..., (b) follows from (a). The fact that

Xn = {χ0, χ1, χ2, ..., χmn−1} implies (c) which in turn clearly gives (d).
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Theorem 5.2.10. Under the hypothesis of Theorem 5.2.2 with p = p′ = 2, we have∑
nk≥mn

|f̂(nk)|2 ≤
(
1/2|I|2

) (
ω(2)(f, n, I)

)2
for n ≥ N, (5.23)

∑
nk≥mN

|f̂(nk)|2 ≤
(
1/2|I|2

) (
E(2)(f,N, I)

)2
, (5.24)

where ω(2)(f, n, I) is as in Definition 5.2.8 and

E(2)(f,N, I) = inf
T
‖ f − T ‖2,I ,

in which T is a trigonometric polynomial on G of degree not exceeding N .

Proof. f ∈ L2(I) implies (Thf − f) ∈ L2(I) for any h ∈ GN . For, if h ∈ GN then

x ∈ I = y0 +GN ⇒ x = y0 + y, for some y ∈ GN

⇒ x+ h = y0 + y + h ∈ y0 +GN = I,

and

x+ h ∈ I = y0 +GN ⇒ x+ h = y0 + z, for some z ∈ GN

⇒ x = y0 + z − h ∈ y0 +GN = I,

since GN is a subgroup of G; which shows that∫
I

|Thf(x)|2dx =

∫
y0+GN

|f(x+ h)|2dx

=

∫
y0+h+GN

|f(x)|2dx

=

∫
y0+GN

|f(x)|2dx <∞,

since h ∈ GN and f ∈ L2(I) = L2(y0 +GN). Since the Fourier series of f is lacunary

of the form (4.5) with gaps (1.11) so is the Fourier series of (Thf − f). Therefore,

Theorem 5.2.2 gives

∞∑
k=1

|(Thf − f) (̂nk)|2 ≤ |I|−2 ‖ Thf − f ‖2
2,I .

Since (Thf − f) (̂nk) = (Thf) (̂nk)− f̂(nk) = f̂(nk)(χnk(h)− 1), this gives

∞∑
k=1

|f̂(nk)|2|χnk(h)− 1|2 ≤ |I|−2 ‖ Thf − f ‖2
2,I . (5.25)
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Integrating both sides of (5.25) over Gn (n ≥ N) with respect to h and applying

Lemma 5.2.9 (b) and Lemma 5.1.1, (5.23) is obtained.

Next, for any trigonometric polynomial T on G with degree not exceeding N ,

f − T ∈ L2(I) and the Fourier coefficients of f and f − T differ for, at most, first

mN terms. The proof of Theorem 5.2.2 shows that it can be applied to f −T to get∑
nk≥mN

|f̂(nk)|2 ≤ |I|−2 ‖ f − T ‖2
2,I . (5.26)

Since (5.26) holds for an arbitrary trigonometric polynomial of degree not exceeding

N , (5.24) clearly follows.

Theorem 5.2.11. Under the hypothesis of Theorem 5.2.2 we have

∞∑
k=1

|f̂(nk)|β <∞ (5.27)

whenever
∞∑
k=0

(mk+1)1−β/p′ (‖ ∆k ∗ f ‖p,I)β <∞, (5.28)

where in 0 < β ≤ p′ and ∆k ∗ f is the convolution of ∆k = Dmk+1
− Dmk with f ,

Dt =
∑t

i=0 χi being the Dirichlet kernel of order t.

Proof. f ∈ Lp(I) implies ∆N ∗ f ∈ Lp(I) for each N = 0, 1, 2, ... . Since the Fourier

series of f is lacunary of the form (4.5) with gaps (1.11) so is the Fourier series of

∆N ∗ f as (∆N ∗ f) (̂χ) = (∆N) (̂χ)f̂(χ). Therefore by Theorem 5.2.2 , for each

N = 0, 1, 2, ..., we have(∑
′ |f̂(nk)|p

′
)1/p′

≤ |I|−1 ‖ ∆N ∗ f ‖p,I , (5.29)

where in
∑′ indicates that the summation is over those nk for which nk satisfy

mN ≤ nk < mN+1. Hölder’s inequality and (5.28) now give

∞∑
k=1

|f̂(nk)|β =
∞∑
N=0

(∑
′ |f̂(nk)|β

)
≤

∞∑
N=0

((∑
′ |f̂(nk)|p

′
)β/p′ (∑

′ 1
)1−β/p′

)
= O(1)

∞∑
N=0

(‖∆N ∗ f‖p,I)β (mN+1 −mN)1−β/p′

= O(1)
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which proves the theorem.

Corollary 5.2.12. Theorem 5.2.11 holds if (5.28) is replaced by the condition

∞∑
N=0

(mN+1)1−β/p′ (ω(p)(f,N, I)
)β
<∞,

where ω(p)(f,N, I) is defined as in Definition 5.2.8.

Proof. We have

‖ ∆N ∗ f ‖p,I ≤ ‖ DmN+1
∗ f − f ‖p,I + ‖ DmN ∗ f − f ‖p,I ;

and

(DmN ∗ f − f)(x) =

∫
GN

(f(x− y)− f(x))DmN (y)dy

because 1 =‖ DmN ‖1=‖ DmN ‖1,GN as m(GN) = 1/mN and DmN (y) = mN for

y ∈ GN ; DmN (y) = 0 for y ∈ G \GN . It follows that

‖ DmN ∗ f − f ‖p,I =

(∫
I

∣∣∣∣∫
GN

(f(x− y)− f(x))DmN (y)dy

∣∣∣∣p dx)1/p

≤
(∫

I

(∫
GN

|f(x− y)− f(x)|DmN (y)dy

)p
dx

)1/p

≤
∫
GN

(∫
I

|f(x− y)− f(x)|p(DmN (y))pdx

)1/p

dy

≤
∫
GN

ω(p)(f,N, I)DmN (y)dy

= ω(p)(f,N, I) (5.30)

in view of the Minkowski inequality for integrals. The corollary now obviously

follows from Theorem 5.2.11.

Corollary 5.2.13. Under the hypothesis of Theorem 5.2.2 with p = p′ = 2 the

Fourier series of f converges absolutely if either

∞∑
N=1

(mN+1)1/2ω(2)(f,N, I) <∞ or
∞∑
N=1

(mN+1)1/2ω(f,N, I) <∞.

Proof. Corollary 5.2.12 with p = 2, β = 1 and an argument of [67] gives the result.
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Corollary 5.2.14. Let 0 < p ≤ 2, α > 1
p
− 1

2
. If f ∈ Lip (α, p, I) then( ∑

nk≥mL

|f̂(nk)|p
)1/p

= O
(
(mL+1)1/p−α−1/2

)
,

where Lip (α, p, I) =
{
f ∈ Lp(I) : ω(p)(f, n, I) = O ((mn+1)−α)

}
.

Proof. In view of the Hölder’s inequality, (5.29) and (5.30) we have∑
′ |f̂(nk)|p ≤

(∑
′ |f̂(nk)|2

)p/2
(mN+1 −mN)1−p/2

≤ |I|−p ‖ ∆N ∗ f ‖p2,I (mN+1)1−p/2

= O
(
ω(p)(f,N, I)

)p
(mN+1)1−p/2

= O(1)(mN+1)p(−α+1/p−1/2) (5.31)

for N = 0, 1, 2, ... . Since mk+1 ≥ 2mk for all k and p(1/p−α−1/2) < 0 the corollary

follows from (5.31) upon taking summation on both sides from N = L onwards.

Remark 5.2.15. Theorem 5.2.10 is an analogue on G of Patadia’s earlier result

[47, Lemma 3]. As explained in Corollary 5.2.5, in case the Fourier series of f is

lacunary of the form (4.5) with {nk} satisfying the gap condition (1.5) then Theorems

5.2.10 and 5.2.11 as well as Corollaries 5.2.12, 5.2.13 and 5.2.14 hold true even if

y0 + GN = I ⊂ G is just of positive measure. In this case, Corollary 5.2.12 with

p = p′ = 2 is analogue on G of Patadia’s earlier result [47, Theorem 1].

Remark 5.2.16. Theorem 5.2.10 is also an extension of the Vilenkin and Rubinstěin

result [67, Theorem 1, p. 2] because if there are no gaps in the Fourier series

if f then one needs to take I = G and Theorem 5.2.10 reduces to their result.

Similarly, Theorem 5.2.11 and Corollary 5.2.12 extend the results of Quek and Yap

[54, Theorem 3.1 and Corollary 3.3] while Corollaries 5.2.13 and 5.2.14 extend the

Quek and Yap results of [55, Theorems 4.2, 4.3 and 4.5].

5.3 Absolute convergence of lacunary Fourier se-

ries of functions of generalized bounded fluc-

tuation on Vilenkin groups

In Section 5.1, we have studied absolute convergence of non-lacunary Vilenkin

Fourier series for the functions of various classes of generalized bounded fluctua-
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tion. Here we study the absolute convergence of lacunary Vilenkin Fourier series for

functions of these classes. Our new results generalizes and gives lacunary analogues

of our earlier results of Section 5.1.

Let G be bounded and f : G→ C. Here the following results are obtained.

Theorem 5.3.1. Let f ∈ L1(G) possess a lacunary Vilenkin Fourier series (4.5)

with small gaps (1.11) and I = y0 +GN0 be a coset with Haar measure 1/mN0 ≥ 1/q.

If f ∈ ΛGBF(p)(I), 1 ≤ p < 2r, 1 ≤ r <∞ and

∞∑
n=N0


(ω(p+(2−p)r′)(f, n, I))2−p/r

(
∑mn/mN0

j=1
1
λj

)1/r


β
2 ∑

k
mn≤nk<mn+1

1

kβ/2

 <∞,

then (5.27) holds for 0 < β ≤ 2.

Proof. We may assume without loss of generality that y0 = 0 so that I = GN0 ; for,

otherwise one works with g = Ty0f ∈ ΛGBF(p)(GN0) whose Fourier series also has

gaps (1.11).

Let M ∈ N be fixed such that nM ≥ mN0 and let N ∈ N be the integer such

that mN ≤ nM < mN+1. Then clearly N ≥ N0. Put tN = mN/mN0 and for each

α = 0, 1, ..., tN − 1, h ∈ GN define

fα(x) = f(x+ z(N)
α + h)− f(x+ z(N)

α ), ∀x ∈ G.

Then

f̂α(n) = f̂(n)χn(z(N)
α + h)− f̂(n)χn(z(N)

α ) = f̂(n)χn(z(N)
α )(χn(h)− 1), ∀n ≥ 0.

Since f ∈ ΛGBF(p)(GN0) for any x ∈ GN0 we have

|f(x)|p = |f(0) + f(x)− f(0)|p

≤ 2p|f(0)|p + 2p|f(x)− f(0)|p

= 2p|f(0)|p + 2pλ1

(
|f(x)− f(0)|p

λ1

)
≤ 2p|f(0)|p + 2pλ1

(
(osc(f ; z

(0)
0 +GN0))

p

λ1

)
≤ 2p|f(0)|p + 2pλ1(ΛGFp(f ;GN0))

p.
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Thus f is bounded on GN0 = I and hence f ∈ L2(I). In view of (5.16) for p′ = 2,

f ∈ L2(G) and hence each fα ∈ L2(I). Since the Fourier series of fα also has gaps

(1.11), again using the same inequality for fα (since |χn(z
(N)
α )| = 1) we get

B(h) ≡
∞∑
k=1

|f̂(nk)|2|χnk(h)− 1|2 ≤ |I|−2||fα||22,I , ∀α. (5.32)

Now, suppose r > 1 and set 2 = p+(2−p)r′
r′

+ p
r
; then using the Hölder’s inequality we

get

||fα||22,I =

∫
I

|fα(x)|2dx

=

∫
I

|fα(x)|(
p+(2−p)r′

r′ + p
r

)dx

=

∫
I

(
|fα(x)|(p+(2−p)r′)

)1/r′

(|fα(x)|p)1/r dx

≤
{∫

I

|fα(x)|(p+(2−p)r′)dx

}1/r′ {∫
I

|fα(x)|pdx
}1/r

≤ (ΩN)1/r

(∫
I

|fα(x)|pdx
)1/r

,

where ΩN =
(
ω(p+(2−p)r′)(f,N, I)

)2r−p
since h ∈ GN . This together with (5.32)

implies

(B(h))r ≤ |I|−2rΩN

∫
I

|fα(x)|pdx, (5.33)

for all α = 0, 1, ..., tN − 1. Since the left hand side of (5.33) is independent of α,

multiplying both the sides of it by (1/λα+1) and taking summation over α, we get

(B(h))rθtN ≤ |I|−2rΩN

∫
I

( tN−1∑
α=0

|fα(x)|p

λα+1

)
dx,

where θt =
∑t

j=1(1/λj) =
∑t−1

j=0(1/λj+1), for all t ∈ N; and hence

B(h) ≤ |I|−2

(
ΩN

θtN

)1/r{∫
I

( tN−1∑
α=0

|fα(x)|p

λα+1

)
dx

}1/r

.

Integrating both sides of this inequality over GN with respect to h we get∫
GN

B(h)dh ≤ |I|−2

(
ΩN

θtN

)1/r ∫
GN

{∫
I

tN−1∑
α=0

|fα(x)|p

λα+1

dx

}1/r

dh. (5.34)
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Now, for any h ∈ GN and any x ∈ I = GN0 the points x+ z
(N)
α + h and x+ z

(N)
α lie

in the coset x+ z
(N)
α +GN of GN in GN0 (since N ≥ N0) and hence

|fα(x)| = |f(x+ z(N)
α + h)− f(x+ z(N)

α )| ≤ osc(f, x+ z(N)
α +GN). (5.35)

Since f ∈ ΛGBF (p)(I), for h ∈ GN , in view of (5.35),

tN−1∑
α=0

|fα(x)|p

λα+1

≤
tN−1∑
α=0

(osc(f, x+ z
(N)
α +GN))p

λα+1

≤ (ΛGFp(f ; I))p, (5.36)

for all x ∈ I; because for any x ∈ I, the finite sequence of cosets {x+z
(N)
α +GN : α =

0, 1, ..., tN − 1} is a rearrangement of the sequence {z(N)
α +GN : α = 0, 1, ..., tN − 1}

since this collection gives all the cosets of GN in I. Further, since mN ≤ nM < mN+1

and nk ≥ nM for k ≥M , from (5.32),∫
GN

B(h)dh ≥
∞∑

k=M

|f̂(nk)|2
∫
GN

|χnk(h)− 1|2dh

=

(
2

mN

) ∞∑
k=M

|f̂(nk)|2, (5.37)

for all α; in view of Lemma 5.1.1. Using (5.36) and (5.37) in (5.34) we get

RnM ≡
∞∑

n=nM

|f̂(n)|2

=
∞∑

k=M

|f̂(nk)|2

≤ |I|−2
(mN

2

)(ΩN

θtN

)1/r ∫
GN

{∫
I

(ΛGFp(f ; I))pdx

}1/r

dh

= |I|−2
(mN

2

)(ΩN

θtN

)1/r (
(ΛGFp(f ; I))p

mN0

)1/r (
1

mN

)
= O

[(
ΩN

θtN

)1/r]
. (5.38)

Now, applying Lemma 5.1.2 with uk = |f̂(nk)|2 and F (u) = uβ/2 we get (5.9) in
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view of (5.38) we obtain

∞∑
k=1

|f̂(nk)|β = O(1)
∞∑
k=1

(
Rnk

k

)β/2
= O(1)

∞∑
n=0

∑
k

mn≤nk<mn+1

(
Rnk

k

)β/2

= O(1)

1 +
∞∑

n=N0

∑
k

mn≤nk<mn+1

[
(Ωn)1/r

k(θtn)1/r

]β/2
= O(1)

1 +
∞∑

n=N0

[
(Ωn)1/r

(θtn)1/r

]β/2 ∑
k

mn≤nk<mn+1

1

kβ/2

 <∞,

by the assumption of theorem. Thus the theorem is proved for r > 1.

For the case r = 1, r′ =∞, simply note that

|fα(x)|2 = |fα(x)|2−p|fα(x)|p ≤ (ωN(f))2−p|fα(x)|p,

because

|fα(x) = f(x+ z(N)
α + h)− f(x+ z(N)

α )| ≤ ωN(f)

since h ∈ GN ; and proceed as above.

Remark 5.3.2. Since ΛBF(p)(I) ⊂ ΛGBF(p)(I), Theorem 5.3.1 obviously holds for

functions in ΛBF(p)(I) also.

When the Fourier series is non-lacunary, taking nk = k for all k and I = G in

Theorem 5.3.1 we obtain

Corollary 5.3.3. Let 1 ≤ r <∞ and 1 ≤ p < 2r. If f ∈ ΛGBF(p)(G) satisfies

∞∑
n=0

[
(mn)2/β−1(ω(p+(2−p)r′)(f, n))2−p/r

(
∑mn

j=1
1
λj

)1/r

]β
2

<∞,

then (5.27) holds for 0 < β ≤ 2.
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Proof. Taking nk = k for all k, N0 = 0 and I = G we have

∞∑
n=N0


(ω(p+(2−p)r′)(f, n, I))2−p/r(∑mn/mN0

j=1
1
λj

)1/r


β
2 ∑

k
mn≤nk<mn+1

1

kβ/2


=
∞∑
n=0


(ω(p+(2−p)r′)(f, n))2−p/r(∑mn

j=1
1
λj

)1/r


β
2
mn+1∑
k=mn

1

kβ/2


=
∞∑
n=0


(ω(p+(2−p)r′)(f, n))2−p/r(∑mn

j=1
1
λj

)1/r


β
2

1

(mn)β/2
(mn+1 −mn)


= O(1)

∞∑
n=0

(mn)1−2/β(ω(p+(2−p)r′)(f, n))2−p/r(∑mn
j=1

1
λj

)1/r


β
2

<∞,

since G is bounded and by the assumption of the corollary. Thus Corollary 5.3.3

follows from Theorem 5.3.1.

Theorem 5.3.4. Let f and I be as in Theorem 5.3.1. If f ∈ φΛGBF(I), 1 ≤ p <

2r, 1 ≤ r <∞ and

∞∑
n=N0



φ−1

(ω(p+(2−p)r′)(f, n, I))2r−p∑mn/mN0
j=1

1
λj


1/r

β
2 ∑

k
mn≤nk<mn+1

1

kβ/2

 <∞,

then (5.27) holds, in which φ is a ∆2-function.

Proof. As in the proof of Theorem 5.3.1, here also we may assume that y0 = 0.

Since f ∈ φΛGBF(I) for any x ∈ I = GN0 , we have

|f(x)| ≤ |f(0)|+ Cφ−1(ΛGFφ(f ; I)).

Thus f is bounded on I and hence f ∈ L2(I). For r > 1, proceeding as in the proof

of Theorem 5.3.1 we get (5.33). Since multiplying f by a positive constant alters

ω(p)(f, n, I) by the same constant, and φ is ∆2, we may assume that |f(x)| ≤ 1
2

for

all x ∈ I. But then from (5.33) we get

(B(h))r ≤ |I|−2rΩN

∫
I

|fα(x)|dx, (α = 0, 1, ..., tN − 1).
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Since φ(2x) ≤ dφ(x),∀x ≥ 0, as in the proof of Theorem 5.1.7 we get φ(ax) ≤
dlog2 a+1φ(x),∀x ≥ 0,∀a ≥ 1. Since |I|−2rΩN ≥ 0, if |I|−2rΩN < 1 then we get

φ (mN0(B(h))r) ≤ φ

(
mN0|I|−2rΩN

∫
I

|fα(x)|dx
)
≤ |I|−2rΩNφ

(
mN0

∫
I

|fα(x)|dx
)
.

Further when |I|−2ΩN ≥ 1, as above

φ (mN0(B(h))r) ≤ φ

(
mN0 |I|−2rΩN

∫
I

|fα(x)|dx
)

≤ dlog2(|I|−2rΩN )+1 · φ
(
mN0

∫
I

|fα(x)|dx
)

= d · (|I|−2rΩN)log2 d · φ
(
mN0

∫
I

|fα(x)|dx
)

= d · |I|−2r log2 d · (ΩN)log2 d−1 · ΩN · φ
(
mN0

∫
I

|fα(x)|dx
)

≤ d · |I|−2r log2 d · ΩN · φ
(
mN0

∫
I

|fα(x)|dx
)
,

in view of the fact that (ΩN)log2 d−1 ≤ 1, as |f(x)| ≤ 1
2
,∀x ∈ I, and log2 d − 1 ≥ 0.

Therefore in either case

φ (mN0(B(h))r) = O(1)ΩNφ

(
mN0

∫
I

(|fα(x)|)dx
)

= O(1)ΩNmN0

∫
I

φ(|fα(x)|)dx,

in view of the Jensen’s inequality. Now multiplying both the sides of this inequality

by (1/λα+1) and taking summation over α = 0, 1, ..., tN − 1 we get

φ (mN0(B(h))r) = O(1)

(
ΩN

θtN

)∫
I

(
tN−1∑
α=0

φ(|fα(x)|)
λα+1

)
dx. (5.39)

Since f ∈ φΛGBF(I) and φ is increasing, for all h ∈ GN and x ∈ I we have

tN−1∑
α=0

φ(|fα(x)|)
λα+1

≤
tN−1∑
α=0

φ(osc(f ;x+ z
(N)
α +GN))

λα+1

≤ GFφΛ(f ; I). (5.40)

Using (5.40) in (5.39) we get

φ (mN0(B(h))r) ≤ C

(
ΩN

θtN

)
,

where C is a constant such that C ≥ 1. Thus

mN0(B(h))r ≤ φ−1

{
C

(
ΩN

θtN

)}
≤ Cφ−1

(
ΩN

θtN

)
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and therefore

B(h) = O

[{
φ−1

(
ΩN

θtN

)}1/r
]
.

Integrating both sides of this inequality over GN with respect to h, in view of (5.37)

we get

RnM ≡
∞∑

k=M

|f̂(nk)|2 ≤
(mN

2

)∫
GN

B(h)dh = O

[{
φ−1

(
ΩN

θtN

)}1/r
]
.

Thus from (5.9) we get

∞∑
k=1

|f̂(nk)|β = O(1)
∞∑
k=1

(
Rnk

k

)β/2
= O(1)

∞∑
n=0

∑
k

mn≤nk<mn+1

(
Rnk

k

)β/2

= O(1)

1 +
∞∑

n=N0

∑
k

mn≤nk<mn+1

[
1

k

{
φ−1

(
Ωn

θtn

)}1/r
]β/2

= O(1)

1 +
∞∑

n=N0

[{
φ−1

(
Ωn

θtn

)}1/r
]β/2 ∑

k
mn≤nk<mn+1

1

kβ/2

 <∞,

in view of the assumption of the theorem. This completes the proof of the theorem

for r > 1. For the case r = 1, r′ = ∞, the proof is similar as that of Theorem

5.3.1.

Corollary 5.3.5. If f ∈ φΛGBF(G), 1 ≤ p < 2r, 1 ≤ r <∞ and

∞∑
n=0

(mn)2/β−1

{
φ−1

(
(ω(p+(2−p)r′)(f, n))2r−p∑mn

j=1
1
λj

)}1/r

β
2

<∞,

then (5.27) holds, in which φ is a ∆2-function.

Proof. Similar as the proof of Corollary 5.3.3.

Remark 5.3.6. Since φΛBF(I) ⊂ φΛGBF(I), Theorem 5.3.4 obviously holds for

functions in φΛBF(I) also. Corollaries 5.3.3 and 5.3.5 are our earlier results (see

Theorems 5.1.3 and 5.1.7). Thus Theorems 5.3.1 and 5.3.4 generalizes and gives

lacunary analogues of our earlier results. Also, Theorems 5.3.1 and 5.3.4 are Vilenkin

group analogue of the corresponding circle group results of Vyas [70, Theorem 1.1]

and [71, Theorem 1.1] respectively.
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absolute convergence, and series in systems of characters of zero-dimensional
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