LIST OF FIGURES

Figure no.	Title	Page number
Figure 1	Blast infected rice plants.	4
Figure 2	Disease cycle of <i>M. grisea</i> .	7
Figure 3	Laccase-catalysed oxidation of phenolic groups of lignin.	18
Figure 4	A ball-and-stick model of Coprinus cinereus laccase.	24
Figure 5	Crystallographic structure of the Cu-2 depleted laccase for <i>Coprinus cinereus</i> .	26
Figure 6	β-barrel (A) and $β$ -sandwich (B) conformations of <i>Coprinus cinereus</i> laccase.	28
Figure 7	The laccase-catalysed oxidation of ABTS to a cation radical.	51
Figure 8	The laccase-catalysed oxidation of syringaldazine to its corresponding quinine.	52
Figure 9	The phylogenetic analysis of 12 multicopper oxidase genes at protein level.	73
Figure 10	Relative expression of 12 multicopper oxidases in <i>M. grisea</i> in normal and nitrogen starvation.	74
Figure 11	Construction of expression vector pEG (KT)MgLac1.	75
Figure 12	Construction of expression vector pEG (KT)MoLac2.	76
Figure 13	The protein purification.	78
Figure 14	Western blot analysis.	79
Figure 15	In vitro laccase activity of MgLac1.	81
Figure 16	In vitro laccase activity of MgLac2.	82
Figure 17	In vitro inhibition studies of MgLac1.	84
Figure 18	In vitro inhibition studies of MgLac2.	85
Figure 19	Thermostability studies of MgLac1 and MgLac2.	88
Figure 20	Optimum pH studies of MgLac1.	89
Figure 21	Optimum pH studies of MgLac2.	90
Figure 22	Dye decolorising activity.	91
Figure 23	DHN polymerisation potential.	93

Figure 24	Construction of MgLac1 antisense vector.	94
Figure 25	Construction of MgLac2antisense vector.	95
Figure 26	Agrobacterium tumefaciens mediated transformation of grisea (ATMT)	97
Figure 27	Southern blot analysis of <i>MgLac</i> 1 and <i>MgLac</i> 2 knock-down transformants.	98
Figure 28	Relative expression of Mglac1 and MgLac2 gene in transformants.	101
Figure 29	Representative appressorium formation and infection assay of <i>MgLac</i> 1 knock-down transformants.	102
Figure 30	Effect of metals on growth of <i>MgLac</i> 1 knock-down transformants.	103
Figure 31	Elemental analysis of <i>MoLac</i> 1 knock-down transformants.	104
Figure 32	Profile of laccase activity in wild type B157 and <i>MgLac</i> 1 knock- down transformants.	105
Figure 33	RepresentativemorphologyofMgLac2knock-downtransformants.	107
Figure 34	Treatment of <i>MgLac</i> 2 knock-down transformants with cell-wall-degrading enzymes.	108
Figure 35	Representative infection and penetration assay of <i>MoLac2</i> knock- down transformants.	109
Figure 36	Effect of metals and chemicals on growth of <i>MgLac</i> 2 knock-down transformants.	114
Figure 37	Elemental analysis of MgLac2 knock-down transformants.	115
Figure 38	Cellular distribution of lipids in wild type strain B157 and <i>MgLac2</i> knock-down transformants.	116
Figure 39	Profile of laccase activity in B157 and MgLac2 knock-down transformants.	117
Figure 40	Relative expression of other multicopper oxidases in the <i>MgLac1</i> knock-down transformants.	118
Figure 41	Relative expression of other multicopper oxidases in the <i>MgLac2</i> knock-down transformants.	119
Figure 42	Preparation of dsRNA and siRNA of 5 multicopper oxidases.	120

Figure 43	Reduction in the GFP fluorescence	121
Figure 44	siRNA based protoplast transformation of <i>M. grisea</i> .	122
Figure 45	Transmembrane localisation prediction of MGG_07771.	123