List of Figures

Figure No.	Title	Page No.
Figure 1	Blast disease symptoms in rice	1
Figure 2	Infection disease cycle of <i>M. oryzae</i>	5
Figure 3	Comparison of major signalling pathways between <i>S. cerevisiae</i> and <i>M. oryzae</i>	7
Figure 4	Control of Mg ²⁺ homeostasis	9
Figure 5	Structure of CorA Mg ²⁺ transporters	14
Figure 6	Cryo-EM structure and schematic model for the asymmetric opening of CorA Mg ²⁺ transporter	15
Figure 7	Bioinformatics analysis of MoALR2, MoMNR2 and MoMRS2	55
Figure 8	Cloning of <i>MoALR2</i> in pYES2 at <i>Pvu</i> II site to give pYES2- <i>MoALR2</i>	56
Figure 9	Cloning of <i>MoMNR2</i> in pYES2 at <i>PvuII</i> site to give pYES2- <i>MoMNR2</i>	57
Figure 10	Cloning of <i>MoMNR2</i> ₄₈₉₋₈₁₂ in pYES2 at <i>Pvu</i> II site to give pYES2- <i>MoMNR2</i> ₄₈₉₋₈₁₂	58
Figure 11	Complementation of <i>S. cerevisiae</i> $\Delta alr 1 \Delta alr 2$ mutant (CM66)	59
Figure 12	Double joint PCR based generation of knockout cassette for <i>MoMNR2</i>	61
Figure 13	Screening of <i>Amnr2</i> knockout transformants with PCR	62
Figure 14	Southern blot analysis of $\Delta mnr2$ and WT with 1 kb of <i>MNR2</i> (UP) probe	63
Figure 15	Southern blot analysis of $\Delta mnr2$ and WT with 1 kb of <i>MNR2</i> (DN) probe	64
Figure 16	Double joint PCR based generation of knockout cassette for Mgg_02763 and Mgg_06582	65
Figure 17	PCR screening of the putative disruption transformants for Mgg_02763	66
Figure 18	PCR screening of the putative disruption transformants for Mgg_06582	67
Figure 19	Cloning of Disruption cassette of MoALR2	68
Figure 20	Cloning of <i>siALR2</i> in pSD2 at <i>Sma</i> I site to give pSD2- <i>siALR2</i>	69

Figure 21	Cloning of <i>MoALR2</i> _{1400bp} in pSilent at <i>Kpn</i> I and <i>Bgl</i> II site to give	70
0	pSilent-MoALR2 _{1400bp}	
Figure 22	Transformants (obtained after ATMT) growing on selection plate	72
Figure 23	Growth of putative disruption transformants for <i>MoALR2</i> on	73
8	Co(III)Hex	
Figure 24	PCR screening of the putative disruption transformants using split	74
	marker for MoALR2	
Figure 25	PCR screening of the putative disruption transformants using pBSKS-	76
	<i>MoALR2</i> -HPT in $\Delta ku 80$ for <i>MoALR2</i>	
Figure 26	Sensitivity assay in presence of Co(III) Hex. for the knockout and	79
	knockdown transformants	
Figure 27	Expression analysis of <i>MoALR2</i> and <i>MoMNR2</i> in the knockout and	80
	knockdown transformants	
Figure 28	Southern blot analysis of knockdown transformants	81
Figure 29	Expression of CorA domain of MoMnr2 in E. coli BL21 DE3 and	83
	generation of antibodies against CorA domain	
Figure 30	Western blot analysis of MoAlr2 and MoMnr2 in the knockout and	84
	knockdown transformants	
Figure 31	Localisation of CorA proteins by immunostaining	85
Figure 32	Growth of WT and $\Delta mnr2$ on media with low Mg ²⁺ and different pH	86
Figure 33	Alteration in pH and extracellular laccase activity	87
Figure 34	Impaired sexual reproduction in $\Delta mnr2$ transformant	89
Figure 35	Double joint PCR based generation of localisation cassette for	90
	MoALR2	
Figure 36	Cloning of Loc <i>MoALR2</i> -GFP at <i>EcoRV</i> to give KS-Loc <i>MoALR2</i> -GFP	91
Figure 37	Double joint PCR based generation of localisation cassette for	92
	MoALR2	
Figure 38	Cloning of Loc <i>MoALR2</i> -GFP-Zeo ^r at <i>EcoRV</i> to give KS-	93
	Loc <i>MoALR2</i> -GFP-Zeo ^r	
Figure 39	Screening of putative transformants transformed with localisation	94

	cassette of <i>MoALR2</i> (Loc <i>MoALR2</i> -GFP-Zeo ^r)	
Figure 40	CorA Mg^{2+} transporters alter metal ion composition in <i>M. oryzae</i>	96
Figure 41	XRF analysis of knockdown transformants	97
Figure 42	Regulation of <i>MoALR2</i> at mRNA and protein level with respect to	98
	extracellular Mg ²⁺	
Figure 43	Regulation of <i>MoMNR2</i> at mRNA and protein level with respect to	99
	extracellular Mg ²⁺	
Figure 44	Regulation of <i>MoALR2</i> at mRNA and protein level with respect to	101
	extracellular Ca ²⁺	
Figure 45	Altered cation sensitivity in the knockdown transformants	103
Figure 46	CorA transporters are required for mycelial growth	104
Figure 47	Growth of WT under Mg ²⁺ limiting conditions (EDTA)	105
Figure 48	CorA transporters are required for preventing autolysis	107
Figure 49	CorA transporters are required for surface hydrophobicity	108
Figure 50	CorA transporters are required for sporulation	110
Figure 51	Effect of low Mg ²⁺ availability on sporulation and mycelial growth	111
Figure 52	CorA transporters are required for appressorium formation	113
Figure 53	Appressorium formation in WT under Mg ²⁺ limiting conditions	114
	(EDTA)	
Figure 54	Mg ²⁺ uptake by CorA transporters is essential for progression of the	115
	infection cycle	
Figure 55	MoALR2 affects intracellular cAMP levels	117
Figure 56	Expression analysis of <i>MoMAC1</i> in the knockout and knockdown	118
	transformants	
Figure 57	Expression analysis of <i>MoPMK1</i> in the knockout and knockdown	118
	transformants	
Figure 58	Cell Wall Integrity assay of the knockdown transformants	119
Figure 59	Expression analysis of chitin synthases and genes involved in	121
	cytoskeletal organisation in the knockdown transformants	
Figure 60	Expression analysis of genes involved in the CWI pathway in	122

	knockout and knockdown transformants	
Figure 61	Expression analysis of effector genes involved in the CWI pathway in	124
	knockout and knockdown transformants	