LIST OF FIGURES

Figure 1. 1 Global distribution of malaria (WHO report, 2015)
Figure 1. 2 Distribution of malaria in INDIA (WHO report, 2015)5
Figure 1. 3 Approximate malaria cases in each region due to P. vivax, 2015 (WHO
report, 2015)
Figure 1. 4 Distribution of malaria vectors in relation to physio-geographic regions of
India (Dev et al., 2013)
Figure 1. 5 Female Anopheles mosquito using proboscis for her blood meal.
(http://www.neomosquito.com/understanding-mosquitoes/)
Figure 1. 6 Life cycle of Plasmodium species (Image from www.
http://vivaxmalaria.com/template_disease.htm)
Figure 1. 7 Thin blood smear of Plasmodium vivax with different blood stages
(http://www.cdc.gov/)
Figure 1. 8 Development and function of monocyte (Ginhoux et al., 2014)
Figure 1. 9 Diagrammatic representation of the chemokine receptor (Murdoch et al.,
2000)
Figure 1. 10 Model of chemokine receptor activation and signal transduction for IL-8
and neutrophils (Murdoch et al., 2000).
Figure 1. 11 Flow chart explaining the different settings for diagnosis and drug
selection for the treatment of malaria (http://www.nvbdcp.gov.in/)
Figure 2. 1 Isolation and analysis of genomic DNA from P. vivax infected individuals.
Ethidium bromide stained 0.8% agarose gel electrophoresis of (A) Genomic DNA
isolated from infected individuals and (B) PCR amplification of human β_2
microglobulin gene from the P. vivax genomic DNA (negative control). 62

Figure 2. 2 Analysis of PCR products from <i>P. vivax</i> genomic DNA
Figure 2. 3 0.8% agarose gel stained with EtBr showing confirmation of AMA1 (A),
MSP7 (B) and WARP (C) inserts in pJET1.2 vector by restriction digestion 64
Figure 2. 4 0.8% agarose gel stained with EtBr showing confirmation of AMA1 (A),
MSP7 (B) and WARP (C) inserts in pET30a (+) vector by restriction digestion 65
Figure 2. 5 Coomassie stained 10% SDS-PAGE with whole cell extracts of E. coli
BL21 (DE3) transformed with either pET30a(+) or pET30a(+)-AMA-1 (A),
pET30a(+)-MSP7 (B) and pET30a(+)-WARP (C)
Figure 2. 6 Silver stained 10% SDS-PAGE of purified AMA-1, MSP7 and WARP by
nickel affinity chromatography
Figure 2. 7 AMA1, MSP7 and WARP gene position in P. vivax genome. All the genes
are highlighted with yellow background. (Maps were generated in www.plasmodb.org)
Figure 2. 8 Schematic representation of the cloning strategy
Figure 3. 1 Western blot analysis of recombinant antigen AMA-1, MSP7 and WARP
with serum of patient 1 82
with serum of patient 1 82 Figure 3. 2 Western blot analysis of recombinant antigen AMA1 and WARP with
Figure 3. 2 Western blot analysis of recombinant antigen AMA1 and WARP with
Figure 3. 2 Western blot analysis of recombinant antigen AMA1 and WARP with serum of patient 2
Figure 3. 2 Western blot analysis of recombinant antigen AMA1 and WARP with serum of patient 2
Figure 3. 2 Western blot analysis of recombinant antigen AMA1 and WARP with serum of patient 2
Figure 3. 2 Western blot analysis of recombinant antigen AMA1 and WARP with serum of patient 2

Figure 3. 6 Western blot analysis of recombinant antigen AMA-1 and WARP with
serum of patient 6
Figure 3. 7 Western blot analysis of recombinant antigen AMA1 and WARP with
serum of patient 785
Figure 3. 8 Western blot analysis of recombinant antigen AMA1 and WARP with
serum of patient 8
Figure 3. 9 Western blot analysis of recombinant antigen AMA1 and WARP with
serum of patient 9
Figure 3. 10 Western blot analysis of recombinant antigen AMA-1 and WARP with
serum of patient 10
Figure 3. 11 Western blot analysis of recombinant antigen AMA1 and WARP with
serum of patient 11
Figure 3. 12 Western blot analysis of recombinant antigen AMA1 and WARP with
serum of patient 12
Figure 3. 13 Western blot analysis of recombinant antigen AMA1 and WARP with
serum of patient 13
Figure 3. 14 Western blot analysis of recombinant antigen AMA1 and WARP with
serum of patient 14
Figure 3. 15 Western blot analysis of recombinant antigen MSP7 with serum of patient
2-3 & 5-7
Figure 3. 16 Western blot analysis of recombinant antigen MSP7 with serum of patient
8-11
Figure 3. 17 Western blot analysis of recombinant antigen AMA-1, MSP7 and WARP
with serum of control 1

Figure 3. 18 Western blot analysis of recombinant antigen AMA-1, MSP7 and WARP
with serum of control 2
Figure 3. 19 Western blot analysis of recombinant antigen AMA-1, MSP7 and WARP
with no serum
Figure 3. 20 Phagocytosis assay of monocytes of healthy individual 1. Fluorescence
microscopy showing phagocytosis of latex beads. Phase contrast (i), fluorescent (ii) and
superimposed images (iii) are shown for monocytes treated and untreated with the
recombinant antigens. 93
Figure 3. 21 Phagocytosis assay of monocytes of healthy individual 2. Fluorescence
microscopy showing phagocytosis of latex beads. Phase contrast (i), fluorescent (ii) and
superimposed images (iii) are shown for monocytes treated and untreated with the
recombinant antigens. 95
Figure 3. 22 Phagocytosis assay of monocytes of healthy individual 3 Fluorescence
microscopy showing phagocytosis of latex beads. Phase contrast (i), fluorescent (ii) and
superimposed images (iii) are shown for monocytes treated and untreated with the
recombinant antigens
Figure 3. 23 Phagocytosis index: Percentage of macrophages that phagocytosed single
latex beads, in the presence and absence of recombinant antigen, were plotted 99
Figure 3. 24 Phagocytosis index: Percentage of macrophages that phagocytosed
multiple latex beads, in the presence and absence of recombinant antigen, were plotted
Figure 3. 25 Nitroblue tetrazolium (NBT) reduction by treated and untreated healthy
monocytes (i, ii, iii) viewed under 40x magnification

Figure 4. 1 Analysis of RNA and cDNA preparation of patient 1. Ethidium bromide
stained 0.8% agarose gel electrophoresis of total RNA and β -actin amplicon from
cDNA prepared from an individual infected with P. vivax
Figure 4. 2 Analysis of RNA and cDNA preparation of patient 2. Ethidium bromide
stained 0.8% agarose gel electrophoresis of total RNA and β -actin amplicon from
cDNA prepared of an individual infected with P. vivax
Figure 4. 3 Analysis of RNA and cDNA preparation of patient 3. Ethidium bromide
stained 0.8% agarose gel electrophoresis of total RNA and β -actin amplicon from
cDNA prepared from an individual infected with P. vivax
Figure 4. 4 Analysis of RNA and cDNA preparation of patient 4. Ethidium bromide
stained 0.8% agarose gel electrophoresis of total RNA and β -actin amplicon from
cDNA prepared from an individual infected with P. vivax
Figure 4. 5 Analysis of RNA and cDNA preparation of patient 5, 6 and 7. Ethidium
bromide stained 0.8% agarose gel electrophoresis of total RNA and β -actin amplicon
from cDNA prepared from an individual infected with <i>P. vivax.</i>
Figure 4. 6 Analysis of RNA and cDNA preparation of patient 8. Ethidium bromide
stained 0.8% agarose gel electrophoresis of total RNA and β -actin amplicon from
cDNA prepared from an individual infected with P. vivax
Figure 4. 7 Analysis of RNA and cDNA preparation of patient 9. Ethidium bromide
stained 0.8% agarose gel electrophoresis of total RNA and β -actin amplicon from
cDNA prepared from an individual infected with <i>P. vivax</i>
Figure 4. 8 Analysis of RNA and cDNA preparation of patient 10. Ethidium bromide
stained 0.8% agarose gel electrophoresis of total RNA and β -actin amplicon from
cDNA prepared from an individual infected with P. vivax

Figure 4. 9 Analysis of cDNA prepared from healthy individual-1 (β actin PCR) after
stimulation of (A) monocytes with recombinant antigens and (B) monocytes derived
from PBMCs treated with antigens
Figure 4. 10 Analysis of cDNA prepared from healthy individual-2 (β actin PCR) after
stimulation of (A) monocytes with recombinant antigens and (B) monocytes derived
from PBMCs treated with antigens
Figure 4. 11 Analysis of cDNA prepared from healthy individual-3 (β actin PCR) after
stimulation of (A) monocytes with recombinant antigens and (B) monocytes derived
from PBMCs treated with antigens of healthy individual 3
Figure 4. 12 Analysis of chemokine receptor expression in patients (n=10). Results
were normalized to the expression of a housekeeping gene, Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH)
Figure 4. 13 Analysis of chemokine receptor expression: (A) Chemokine receptor
levels in monocytes of healthy individuals (n=3) treated with recombinant antigens (B)
Chemokine receptor levels in monocytes of healthy individuals (n=3) following
treatment of peripheral blood mononuclear cells (PBMC) with recombinant antigens.
Results were normalized to the expression of a housekeeping gene, Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH). *P < 0.05, **P< 0.01 and ***P< 0.001 121