	LIST OF FIGURES				
No. of figures	Title of Figures	Page number			
Fig.1	General features and consequences of ncRNA/mRNA interaction	2			
Fig.2	Approach of sRNA identification and characterization	5			
Fig. 3	Biocomputational strategy of sRNA prediction	7			
Fig.4	Experimental approaches to identify ncRNA candidates	9			
Fig.5	Structural interchanges by riboswitches to regulate transcription termination and translation initiation	14			
Fig. 6	Regulatory mechanism of CsrB/C with CsrA	17			
Fig. 7	Bacterial adaptive immunity	18			
Fig. 8	Dual role of small RNA SprA1	19			
Fig. 9	Pathogenic factors of <i>Staphylococcus aureus</i> with surface and secreted products	25			
Fig. 10	Colonization of <i>Staphylococcus aureus</i> onto host epithelial surfaces	27			
Fig. 11	Model showing the activation of <i>agr</i> and RNAIII	32			
Fig. 12	Chemical structure of analogues of DNA	40			
Fig.13	Genomic location of SprA-G in S. aureus Newman	61			
Fig.14	Schematic representations of the genetic organization of <i>S. aureus</i> SprX from strain Newman	67			
Fig.15	Secondary structure prediction of SprX by Mfold	68			
Fig.16	ClustalW sequence alignment of SprX	69			
Fig. 17	Schematic representation of cloning of SprX1 in <i>E. coli</i> - staphylococcal shuttle vector	71			
Fig. 18	PCR amplification, cloning and subcloning of SprX1	72			
Fig. 19	Schematic representation of cloning strategy of disruption of <i>sprX1</i>	73			
Fig. 20	PCR amplification, cloning and subcloning of gene disruption cassette <i>sprX1::kan</i>	74			

Fig. 21	Expression analysis of SprX1 by Northern blot	75
Fig. 22	Confirmation of disruption mutant <i>sprX1::kan</i> strain	77
Fig. 23	Growth physiology of altered strains of <i>S. aureus</i> Newman expressing SprX1	79
Fig. 24	Expression of predicted targets under altered levels of SprX1 in <i>S. aureus</i> Newman	80
Fig. 25	Spectrophotometric assay of delta and alpha hemolysis	81
Fig. 26	Influence of SprX1 on biofilm formation by microtiter plate assay	82
Fig. 27	Confocal (CLSM) images of biofilms and clumped cells	83
Fig. 28	PCR amplification of SprX1	85
Fig. 29	PCR amplification and cloning of interaction region of delta hemolysin (Hld) in pBSKS ⁺	86
Fig. 30	PCR amplification and cloning of interaction region of clumping factorB (ClfB) in pBSKS ⁺	86
Fig. 31	<i>in vitro</i> transcription of SprX1,Hld, ClfB and PhrD RNA	87
Fig. 32	Gel mobility shift assay of SprX1 with Hld/ ClfB mRNA	88
Fig. 33	Morphological changes in organs of mice infected with altered levels of SprX1 in <i>S. aureus</i> Newman	89
Fig. 34	Virulence studies of SprX1in mice model of infection	90
Fig. 35	Schematic representations of the genetic organization of SprB from <i>S. aureus</i> strain Newman	93
Fig. 36	Secondary structure prediction of SprB by Mfold	93
Fig. 37	Sequence alignment of SprB	94
Fig. 38	Schematic representation of cloning of SprB in <i>E. coli</i> - staphylococcal shuttle vector	95
Fig. 39	PCR amplification, cloning and subcloning of SprB	96
Fig. 40	Analysis of overexpression of SprB by Northern blot	97
Fig. 41	Growth physiology of altered strains of <i>S. aureus</i> Newman expressing SprB	97
Fig. 42	Quantitative Real time PCR expression of predicted mRNA targets	98

	under the regulation of SprB	
Fig. 43	Confocal (CLSM) images of biofilm formation	99
Fig. 44	Quantitative measurement of biofilm by microtiter plate assay	100
Fig. 45	Influence of SprB on staphyloxanthin pigment production	101
Fig. 46	Influence of altered levels of SprB on antibiotic susceptibility	102
Fig. 47	Morphological changes in organs of mice infected with altered levels of SprB in <i>S. aureus</i> Newman	103
Fig. 48	Virulence studies of SprB in mice model of infection	104