LIST OF FIGURES

S. No.	Title	Pg. No.
1	Structures of α -, β -, γ - and δ -HCH isomers	7.
2	Various transportation and transformation processes involved in distribution of a pollutant in the environment	11
3	Anaerobic and aerobic degradation pathway of γ-HCH	27
4	Map showing soil sampling locations, Vadodara and Junagadh districts in Gujarat state, India.	53
5	Flow chart of procedure followed for the enrichment and isolation of γ -HCH degrader	54
6	Morphological characteristics and γ -HCH-clearance assay for isolate CGR-L1.	64
7	PCR amplification of partial 16S rDNA sequence of the bacterial isolates from the soil the soil samples	65
8	Phylogenetic relatedness of <i>Shewanella</i> sp. CGR-L1 based on 16S rDNA sequence	66
9	γ-HCH-clearance assay for isolate CGR-L2	69
10	Bacterial isolates obtained from γ-HCH degrading enrichment culture in MSM-L2 (presence γ-HCH) of soil Sample no. 4	70 .
11	Abundant of each bacterium in enrichment culture of soil sample no. 4	71
12	Phylogenetic tree of the bacterial partial 16S rDNA sequences of the cultivable isolates obtained from the γ-HCH degrading enrichment culture of the soil sample no. 4	73
13	Phylogenetic analysis of the isolate strain CGR-L2. The position of strain CGR-L2 is shown with respect to other species of the genus <i>Sphingobium</i>	74
14	Colorimetric determination for γ-HCH dechlorination using cell-free extracts of <i>Shewanella</i> sp. strain CGR-L1	89

15	Growth kinetics and biodegradation of γ -HCH by isolate Shewanella sp.	90
	CGR-L1	
16	GC-MS analysis of γ-HCH degradation by <i>Shewanella</i> sp. strain CGR-L1	93
	(analyzed from the clearance zone around culture of agar plate).	
17	GC-MS analysis for the identification of metabolites produced during γ-	95
	HCH degradation using cell free extract of Shewanella sp. CGR-L2	
18	PCR amplification of linA from isolate Shewanella sp. CGR-L1 and its	97
	phylogenetic analysis	
19	Analysis of role of plasmid in γ-HCH biodegradation by Shewanella sp.	100
	CGR-L1	
20	Southern blot hybridization of genomic DNA extracted from Shewanella	101
	sp. strain CGR-L1 and hybridised with non-radioactively labeled linA gene	•
	probe	
21	Growth of Shewanella sp. CGR-L1 in MSM-L1 (supplemented with	102
	glucose) in presence and absence of different concentration manner of γ -	
	нсн	
22	SDS-PAGE analysis and colorimetric assay for γ-HCH dechlorination	115
	using cell-free extracts of strain CGR-L2	
23	Growth kinetics and γ-HCH biodegradation analysis for Sphingobium sp.	118
٠	strain CGR-L2	
24	Effect of initial inoculum on biodegradation of γ-HCH by isolate	120
	Sphingobium sp. CGR-L2	
25	Effect of carbon source on growth of Sphingobium sp. strain CGR-L2	123
26	Effect of glucose on biodegradation of γ-HCH by isolate <i>Sphingobium</i> sp.	124
	CGR-L2	
27	Effect of pH and temperature on biodegradation of γ-HCH by	126
	Sphingobium sp. strain CGR-L2	
28	GC-analysis of γ-HCH biodegradation by Sphingobium sp. CGR-L2 in	128
•	optimized parameters	

29	Analysis of growth and γ-HCH residual concentration for <i>Sphingobium</i> sp.	129
	CGR-L2 under optimized parameters	
30	GC-MS analysis of the metabolites producing during biodegradation of γ-	′130
	HCH by Sphingobium sp. CGR-L2	
31	GC analysis of biodegradation of technical HCH by isolate Sphingobium	132
	sp. CGR-L2	
32	Reduction in residual concentration of HCH isomers in a time-dependent	133
	manner in MSM-L2, in presence and absence of Sphingobium sp. CGR-L2	
33	Growth kinetics of Sphingobium sp. CGR-L2 in different concentration of	135
	γ-HCH, from 0 to 1000mg l ⁻¹	
34	Biodegradation of γ-HCH by isolate <i>Sphingobium</i> sp. CGR-L2 at different	. 136
	initial concentration	
35	PCR amplification of lin genes from Sphingobium sp. strain CGR-L2	138
	genomic DNA using gene specific primers	
36	Southern blot hybridization of genomic DNA of Sphingobium sp. strain	141
•	CGR-L2 probed with nonradioactively labeled linA or linB or linC	
37	Biodegradation of Hydroquinone by isolate CGR-L2 in MSM-L2	143
38	Microcosm (bioremediation) study by the isolate CGR-L2	144
39	Analysis of technical HCH biodegradation by Sphingobium sp. CGR-L2	145
	during microcosm study	
40	Amplification of linA (A), linB (B) and linC (C) from bacterial isolate of	148
	enrichment culture.	